Paul M. Anglin
;
Ramazan Gençay
You're currently viewing an old version of this dataset. To see the current version, click here.

semiparametric estimation of a hedonic price function (replication data)

Previous work on the preferred specification of hedonic price models usually recommended a Box-Cox model. In this paper we note that any parametric model involves implicit restrictions and they can be reduced by using a semiparametric model. We estimate a benchmark parametric model which passes several common specification tests, before showing that a semiparametric model outperforms it significantly. In addition to estimating the model, we compare the predictions of the models by deriving the distribution of the predicted log(price) and then calculating the associated prediction intervals. Our data show that the semiparametric model provides more accurate mean predictions than the benchmark parametric model.

Data and Resources

This dataset has no data

Suggested Citation

Anglin, Paul M.; Gençay, Ramazan (1996): Semiparametric estimation of a hedonic price function (replication data). Version: 1. Journal of Applied Econometrics. Dataset. https://jda-test.zbw.eu/dataset/semiparametric-estimation-of-a-hedonic-price-function?activity_id=92af4465-d0d1-459e-95da-7da2c9a938ad