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1 The Gibbs sampling algorithm

Prior Distributions and starting values

Consider the model to be estimated

Zt = c+

P∑
j=1

βjZt−j +

J∑
j=0

γj h̃t−j + Ω
1/2
t et, et˜N(0, 1) (1)

Ωt = A−1HtA
−1′ , Ht = diag

(
exp h̃t

)
(2)

h̃t = θh̃t−1 +Q1/2ηt , ηt˜N(0, 1), E
(
et, ηi,t

)
= 0, i = 1, 2..N (3)

VAR coeffi cients

Let the vectorised coeffi cients of equation 1 be denoted by Γ = vec
(
βj , γj , c

)
. The initial conditions for the VAR

coeffi cients Γ0 (to be used in the Kalman filter as described below) are obtained via an OLS estimate of equation

(1) using an initial estimate of the stochastic volatility. The covariance around these initial conditions P0 is set to

a diagonal matrix with diagonal elements equal to 10.

The initial estimate of stochastic volatility is obtained via a simpler version of the benchmark model where the

stochastic volatility does not enter the mean equations. We use a training sample of 40 observations to initialize

the estimation of this simpler model. The Gibbs algorithm for this model is a simplified version of the algorithm

described in Cogley and Sargent (2005), employing uninformative priors. The estimated volatility from this model

is added as exogenous regressors to a VAR using the data described in the text in order to provide a rough guess

for initial conditions for the VAR coeffi cients.

Elements of Ht

The prior for h̃t at t = 0 is defined as h̃0 ∼ N(lnµ0, IN ) where µ0 are the first elements of the initial estimate of

the stochastic volatility described above.

Elements of A

The prior for the off-diagonal elements A is A0 ∼ N (â, V (â)) where â are the elements of this matrix from the

initial estimation described above. V (â) is assumed to be diagonal with the elements set equal to the absolute

value of the corresponding element of â.
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Parameters of the transition equation

We postulate a Normal, inverse-Wishart prior distribution for the coeffi cients and the covariance matrix of the

transition equation (3). Under the prior mean, each stochastic volatility follows an AR(1) process with an AR(1)

coeffi cient equal to the estimated value over the training sample. The prior is implemented via dummy observations

(see Banbura et al (2010)) and the prior tightness is set to 0.1.

Simulating the Posterior Distributions

The joint posterior distribution H (Γ, A,Ht, θ,Q) is approximated via a Metropolis within Gibbs algorithm that

samples from the following conditional posterior distributions:

VAR coeffi cients : H (Γ|A,Ht, θ,Q)

The distribution of the VAR coeffi cients Γ conditional on all other parameters Ξ and the stochastic volatility h̃t

is linear and Gaussian: Γ|Zt, h̃t,Ξ ∼ N
(
ΓT |T , PT |T

)
where ΓT |T = E

(
ΓT |Zt, h̃t,Ξ

)
, PT |T = Cov

(
ΓT |Zt, h̃t,Ξ

)
.

Following Carter and Kohn (1994), we use the Kalman filter to estimate ΓT |T and PT |T where we account for the

fact that the covariance matrix of the VAR residuals changes through time. The final iteration of the Kalman filter

at time T delivers ΓT |T and PT |T . The Kalman filter is initialized using the initial conditions (Γ0, P0) described

above. This application of Carter and Kohn’s algorithm to our heteroskedastic VAR model is equivalent to a GLS

transformation of the model.

Element of A : H (A|Γ, Ht, θ,Q)

Given a draw for Γ and h̃t, the VAR model can be written as A (vt) = et where vt = Zt − c +
∑P

j=1 βjZt−j +∑J
j=0 γj h̃t−j and V AR (et) = Ht. For a triangular A matrix, this is a system of linear equations with known form

of heteroskedasticity. The conditional distributions for a linear regression apply to this system after a simple GLS

transformation to make the errors homoskedastic (see Cogley and Sargent (2005)). The ith equation of this system

is given as vit = −αv−it + eit where the subscript i denotes the ith column while −i denotes columns 1 to i − 1.

Note that the variance of eit is time-varying and given by exp
(
h̃it

)
. A GLS transformation involves dividing both

sides of the equation by

√
exp

(
h̃it

)
to produce v∗it = −αv∗−it + e∗it where * denotes the transformed variables and

var (e∗it) = 1. The conditional posterior for α is normal with mean and variance given by M∗ and V ∗ :

M∗ =
(
V
(
âols

)−1
+ v∗′−itv

∗
−it

)−1 (
V
(
âols

)−1
âols + v∗′−itv

∗
it

)
V ∗ =

(
V
(
âols

)−1
+ v∗′−itv

∗
−it

)−1

The identification scheme in Blanchard and Perotti (2002) involves a non-triangular A matrix and can be written

as Cvt = Fet. However, as shown in Pereira and Lopes (2014), the C and the F matrices can be transformed such
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that each implied equation only contains exogenous shocks on the right hand side. Given this transformation,

Cogley and Sargent’s equation by equation algorithm becomes applicable again.

Elements of Ht : H (Ht|A,Γ, θ,Q)

Conditional on the VAR coeffi cients and the parameters of the transition equation, the model has a multivariate

non-linear state-space representation. Carlin, Polson and Stoffer (1992) show that the conditional distribution of

the state variables in a general state space model can be written as the product of three terms:

h̃t|Zt,Ξ ∝ f
(
h̃t|h̃t−1

)
× f

(
h̃t+1|h̃t

)
× f

(
Zt|h̃t,Ξ

)
(4)

where Ξ denotes all other parameters. In the context of stochastic volatility models, Jacquier, Polson and Rossi

(1994) show that this density is a product of log normal densities for h̄t and h̄t+1 and a normal density for Zt where

h̄t = exp
(
h̃t

)
. Carlin, Polson and Stoffer (1992) derive the general form of the mean and variance of the underlying

normal density for f
(
h̃t|h̃t−1, h̃t+1,Ξ

)
∝ f

(
h̃t|h̃t−1

)
× f

(
h̃t+1|h̃t

)
and show that this is given by:

f
(
h̃t|h̃t−1, h̃t+1,Ξ

)
˜N (B2tb2t, B2t) (5)

where B−12t = Q̃−1 + F̃ ′Q̃−1F̃ and b2t = h̃t−1F̃
′Q̃−1 + h̃t+1Q̃

−1F̃ . Here F̃ and Q̃ denote the coeffi cients and the

error variance of the transition equation, i.e. θ and Q in companion form. Note that, due to the non-linearity of

the observation equation of the model, an analytical expression for the complete conditional h̃t|Zt,Ξ is unavailable

and a Metropolis step is required.

Following Jacquier, Polson and Rossi (1994), we draw from (4) using a date by date independence Metropolis step

with the density in (5) being the candidate generating density. This choice implies that the acceptance probability is

given by the ratio of the conditional likelihood f
(
Zt|h̃t,Ξ

)
at the old and the new draw. In order to take endpoints

into account, the algorithm is modified slightly for the initial condition and the last observation. Details of these

changes can be found in Jacquier, Polson and Rossi (1994).

Parameters of the transition equation : H (θ|Γ, A,Ht, Q) and H (Q|Γ, A,Ht, θ)

Conditional on a draw for h̃t, the transition equation (3) is a VAR(1) model with a diagonal covariance matrix.

The conditional posterior for the coeffi cients θ is normal with mean and variance given respectively by:

θ∗ = (x∗′x∗)
−1

(x∗′y∗)

v∗ = Q⊗ (x∗′x∗)
−1

where y∗ = [h̃t; yd] and x∗ = [h̃t−1;xd] with yd and xd denoting the dummy observations that implement the prior.

The conditional posterior for Q is inverse Wishart and is given by

H (Q|Γ, A,Ht, θ) ˜IW (S∗, T ∗)

where T ∗ denote the number of actual observations plus the number of dummy observations and S∗ = (y∗ − x∗b∗)′ (y∗ − x∗b∗)
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Figure 1: The Raftery and Lewis (1992) diagnostic.

The on-line technical appendix to the paper presents a small Monte-Carlo experiment that shows that this

algorithm displays a satisfactory performance.

Convergence

The MCMC algorithm is applied using 500,000 iterations discarding the first 50,000 as burn-in. We retain every

45th draw out of the remaining 450,000 iterations. In order to assess convergence, we compute the Raftery and

Lewis (1992) diagnostic which indicates the total length of the run required to generate a desired level of accuracy.

We report the diagnostic for two quantiles 0.025 and 0.975. As in Primiceri (2005), the remaining parameters are:

desired accuracy 0.025, probability of attaining desired accuracy 0.95. The results are presented in figure 1. The

figure shows the estimated total length of the run across the elements of the different parameter block. Note that

the suggested number of iterations are well below the 500,000 iterations employed in our algorithm. As a further

check we calculate ineffi ciency factors (IF) and report them in figure 2. The IF are an estimate of 1 + 2
∑∞

k=1 ρk

where ρk is the autocorrelation of the chain and the infinite lag is approximated using a Parzen window. Values of

IF around 20 are deemed acceptable. With the exception of some stochastic volatilities, this conditions seems to

be satisfied for most parameters. For the stochastic volatilities the majority (greater than 70%) of IF are below 30.

Given the large number of endogenous and state variables, in our view this is reasonable evidence for convergence.
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Figure 2: Ineffi ciency Factors
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Monte-Carlo Experiment

We conduct a Monte-Carlo experiment to test the robustness of the model. The DGP is defined by the following

Bi-variate VAR with stochastic volatility in mean(
yt
xt

)
=

(
0.5 0.2
−0.2 0.5

)(
yt−1
xt−1

)
+

(
c1 c2
c3 c4

)(
lnh1t
lnh2t

)
+

(
d1 d2
d3 d4

)(
lnh1t−1
lnh2t−1

)
+

(
v1t
v2t

)

where
(
v1t
v2t

)
˜N

((
0
0

)
,Ωt

)

Ωt =

(
1 0
−1 1

)−1(
h1t 0
0 h2t

)(
1 0
−1 1

)−1′
and (

lnh1t
lnh2t

)
=

(
0.9 0
0 0.9

)(
lnh1t−1
lnh2t−1

)
+

(
η1t
η2t

)
,(

η1t
η2t

)
˜N

((
0
0

)
, I2

)

We generate data from two versions of this DGP. In the benchmark case
(
c1 c2
c3 c4

)
=

(
−0.1 −0.1
0.1 0.1

)
and(

d1 d2
d3 d4

)
=

(
−0.2 −0.2
0.2 0.2

)
. In the alternative DGP we assume

(
c1 c2
c3 c4

)
=

(
0 0
0 0

)
and

(
d1 d2
d3 d4

)
=(

0 0
0 0

)
and volatility shocks have no direct impact on the endogenous variables in this case. We generate 500

observations for each DGP and discard the first 100 to remove the impact of starting values. Using this artificial

data Zt =

(
yt
xt

)
, the following model is estimated using 5000 MCMC replications (with a burn-in of 4000

iterations)

Zt = c+ β1Zt−1 +

1∑
j=0

γj h̃t−j + Ω
1/2
t et

where Ωt = A−1HtA
−1′ and h̃t = [lnh1t, lnh2t] , Ht = diag

(
exp

(
h̃t

))
. The two stochastic volatilities are assumed

to evolve as AR(1) processes

h̃t = θh̃t−1 +Q1/2ηt

where θ,Q are assumed to be diagonal. We use identical flat priors in each case. At each replication, we estimate the

linear approximation to the impulse response of Zt to 1 standard deviation shocks to ηt. The experiment is repeated

using 100 replications. Figure 3 presents the results when the benchmark DGP is used. The figure shows that the

estimated response to uncertainty shocks is close to the true estimate. Figure 4 presents these estimates using the

alternative DGP where uncertainty shocks do not have a direct impact on the endogenous variables. It is clear from

4 that the estimates indicate that the uncertainty shocks have no systematic impact on the endogenous variables.

These results provide strong evidence that the model is able to adequately capture the impact of uncertainty shocks

and that the proposed MCMC algorithm displays a reasonable performance.
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2 Financial Market uncertainty

In order to account for financial market uncertainty, we re-estimate our benchmark model replacing consumer

confidence with the stock market index. The volatility of the shock to this variable then represents a proxy for

financial market uncertainty that is allowed to affect the endogenous variables along with policy uncertainty. Figure

5 presents the impulse responses to policy uncertainty shocks from this model and shows that the key results are

preserved. Debt uncertainty is still important in this model.

3 DIC calculation

We compare the fit of the benchmark SVAR with stochastic volatility with a linear SVAR using the deviance

information criterion (DIC) (see Spiegelhalter et.al. 2002). The DIC rewards model fit and penalises model

complexity. The DIC is defined as:

DIC = D̄ + pD. (6)

The first term is D̄ = E (−2 ln f (ỹ\Ξm)) ≈ 1
M

∑
m (−2 ln f (ỹ\Ξm)) where f (ỹ\Ξm) is the likelihood evaluated

at the draws from the Gibbs sampler Ξm where m = 1, 2, ...M indexes the draws. This term measures good-

ness of fit. The second term pD is defined as a measure of the number of effective parameters in the model (or

model complexity). This is defined as pD = D̄ − D
(
Ξ̄
)

= E (−2 ln f (ỹ\Ξm)) − (−2 ln f (ỹ\E(Ξm))) and can be

approximated as pD = 1
M

∑
m (−2 ln f (ỹ\Ξm)) −

(
−2 lnL

(
1
M

∑
m

Ξm

))
. The model with the lowest DIC is

preferred. In order to evaluate the likelihood for the benchmark VAR with stochastic volatility we use a particle

filter. The estimated DIC for the benchmark model is 1983.3 with an estimated

goodness of fit D̄ = 1290.45 and model complexity pD = 692.8. The model complexity of linear VAR, in contrast,

is much lower pD = 264.9. However, the fit in this model drops dramatically with D̄ rising to 1737.78 and thus

more than off-setting the reduction in model complexity. The estimated DIC for the linear VAR is 2002.75 which

is larger than that for the benchmark VAR with stochastic volatility. The benchmark model is thus preferred.

4 Response to level shocks

We show the impulse responses of key variables to 1 unit level shocks in figure 6. The red line and the grey shaded

area present the response from the benchmark VAR with stochastic volatility. The dotted line is the response from

a simple linear VAR. In both cases, the benchmark identification scheme is used. The response to spending and tax

shocks from the benchmark model resemble those obtained in the recent literature. For example, in a highly cited

survey paper Caldara and Kamps (2008) finds that a spending shock raises GDP and consumption, while the impact

on investment and inflation is close to zero. We reach very similar conclusions. Similarly, Caldara and Kamps (2008)

reports that a tax shock has a small negative impact on GDP, a result that resembles our estimates. While our

estimated response to the monetary policy shock is imprecise (perhaps due to the large number of parameters in the
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model), the median responses resemble those from standard recursive VARs. Real variables decline in response to

monetary tightening at about the one year horizon, but there is a price puzzle.

A comparison of the benchmark responses with those obtained using the simple VAR model suggests a similarity

in the direction of the response at short horizons, but differences in propagation, with the linear responses more

persistent than the non-linear in many cases. For example, GDP falls in response to tax shocks in both the

benchmark and linear case. However, the median response is more persistent in the linear model. This is perhaps

because the linear model does not account for the direct impact of stochastic volatility and uncertainty shocks and

perhaps suffers from omitted variables as a result.

5 The response of the level of debt to policy uncertainty shocks

Figure 7 presents the response of the level of debt to policy uncertainty shocks.
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Figure 3: Monte-Carlo results using the benchmark DGP. The red line is the median across Monte-Carlo replications. The shaded area is the 1 SD band
across Monte-Carlo replications. The true value of the IRFs is depicted by the black line.
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Figure 4: Monte-Carlo results using the alternative DGP. The red line is the median across Monte-Carlo replications. The shaded area is the 1 SD band
across Monte-Carlo replications. The true value of the IRFs is depicted by the black line.
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Figure 5: Impulse response of key variables to uncertainty shocks. Including the stock price index
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Figure 6: Impulse response to level shocks. The red line is the median. The dark grey shaded area is the 68% error band while the light shaded area is the
90% error band. The dotted black line is the response from a linear BVAR using the same identification scheme as the non-linear model.
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Figure 7: The response of debt to policy uncertainty shocks. The red line is the median. The dark grey shaded area is the 68% error band while the light
shaded area is the 90% error band
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