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1 Estimation

The mixed frequency threshold panel VAR is defined as:

Zit =

c1,i +

P∑
j=1

b1,i,jZit−j +

Q∑
j=1

d1,i,jXt−j + uit

Sit+ (1)

c2,i +

P∑
j=1

b2,i,jZit−j +

Q∑
j=1

d2,i,jXt−j + uit

 (1− Sit)

where Sit = 1⇐⇒ zit−di ≤ z∗i .
The covariance of errors is defined as

var (uit) = Σit = Sit � Σ1i + (1− Sit)� Σ1i

Σ1i = A−1
1i H1iA

−1′
1i

Σ2i = A−1
2i H2iA

−1′
2i

where A1i, A2i are lower triangular and H1i = diag (h1i) , H2i = diag (h2i) are diagonal matrices with the variances of

the orthogonal shocks
(
h1i = [h

(1)
1i , .., h

(N)
1i ], h2i = [h

(1)
2i , .., h

(N)
2i ]

)
on the main diagonal. Here � denotes element by element

multiplication

1.1 Priors

Collect the slope coeffi cients in the following K̄ × 1 vectors β1,i = vec


b1i,1
.
.

bPi,1
.

dPi,1

 and β2,i = vec


b1i,1
.
.

bPi,1
.

dPi,1

 . Denote the

vectorised non-zero and non-one elements in A1i, A2i as a1i, a2i. The model assumes the following hierararchical priors

p
(
β1,i|β̄1, λ1

)
˜N
(
β̄1, λ1Λi

)
p
(
β2,i|β̄2, λ2

)
˜N
(
β̄2, λ2Λi

)
where β̄1 and β̄2 are the (weighted) cross-sectional average coeffi cients in the two regimes and Λi is set according to the
Minnesota procedure. The parameter λ controls the degree of pooling in the model. As λ→ 0 the heterogeneity across states
declines. In order to set the variances Λi, we use dummy observations as in Banbura et al. (2010a), setting the overall prior
tightness parameter to 1. Note that we use a Minnesota type prior for the average coeffi cients β̄1 and β̄2. Following Banbura
et al. (2010b) we implement the prior via dummy observations. The overall prior tightness of this prior is set as τ = 0.1.
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The prior for λ1, λ2 is assumed to be inverse Gamma:p (λk) ˜IG (S0, V0) where S0 = 0 and V0 = −1 and k = 1, 2. As
discussed in Gelman (2006), this prior corresponds to a uniform prior on the standard deviation.

Similarly, a hierararchical prior is set for a1i, a2i:

p (a1,i|ā1, δ1) ˜N (ā1, δ1Ξi)

p (a2,i|ā2, δ2) ˜N (ā2, δ2Ξi)

where ā1 and ā2 are weighted cross-sectional averages and Ξi equals a matrix with 10 × abs (ai,ols) on the main diagonal.
ai,ols represents the non-zero and non-one elements of preliminary estimate of the contemporaneous impact matrix obtained
via OLS. The degree of pooling is controlled by δ.
The prior for δ1, δ2 is assumed to be inverse Gamma:p (δk) ˜IG (s0, v0) where s0 = 0 and v0 = −1 and k = 1, 2.
We assume a normal prior for the intercepts: p (cK) ˜N (c0,ΛC) where ΛC is a diagonal matrix with 10,000 on the main

diagonal. The prior for h1i, h2i is inverse Gamma with mean h0 where h0 is an estimate of the average variance of the error
terms obtained using OLS estimation of the VAR for each state using a preliminary estimate of Git.1 The variance of this
prior is set to v2

h0
where this equals 0.1 for i = 1 and is set to 10 for the remaining shocks. In other words, we have a relatively

tight prior for variance of the shock to Git.

1.2 Gibbs Sampling Algorithm

The Gibbs algorithm is based on Jarocinski (2010), Chen and Lee (1995) and Schorfheide and Song (2015). It draws from
the following conditional posterior distributions (Ξ∗ denotes all remaining parameters):
The following steps are repeated for state i = 1, 2..., 50.

1. G (β1,i|Ξ∗). This conditional posterior is normal: N (M,V ) where

V =
(

(λ1Λi)
−1

+ Σ−1
1i ⊗ x′1,ix1,i

)−1

M = V
(

(λ1Λi)
−1
β̄1 + Σ−1

1i ⊗ x′1,i (y1,i − c1,i)
)

where y1,it and x1,it denote the left and the right hand side of the VAR model for country i with data selected for
regime 1, i.e. over periods when Sit = 1. The number of observations in the regime are denoted by T1,i.

2. G (c1,i\Ξ∗). The conditional posterior is normal: N(m, v) where

v =
(
Λ−1
C + Σ−1

1i ⊗ x̃′1,ix̃1,i

)−1

m = v
(

Λ−1
C c0 + Σ−1

1i ⊗ x′1,ivec
(
y1,i − x1,iβ̃1,i

))
where x̃1,i = 1T1,i×1 and β̃1,i denotes β1,i reshaped to be comformable with x1,i.

2. G (a1i\Ξ∗). Denote the residuals in regime 1 as E1,it = y1,i − y1,iβ̃1,i − c1,i. Then the model in regime 1 can be
written as A1iE1,it = H

1/2
1i U1,it where U1,it is N (0, 1). This is a system of linear equations. The kth equation is

E1,it (k) = −αE1,it (−k) + H
1/2
1i (K)U1,it (k) where k in the parenthesis denotes the kth column while −k denotes

columns 1 to k − 1 and α denotes the relevant elements of a1i. The draw from this conditional posterior thus requires
drawing the coeffi cients of a series of linear regressions. As is well known, the conditional posterior is normal with mean
and variance M∗ and V ∗ :

M∗ =

((
δ1Ξ

(k)
i

)−1

+
1

H1i (k)
E1,it (−k)

′
E1,it (−k)

)−1((
δ1Ξ

(k)
i

)−1

ā
(k)
1 +

1

H1i (k)
E1,it (−k)

′
E1,it (k)

)
V ∗ =

((
δ1Ξ

(k)
i

)−1

+
1

H1i (k)
E1,it (−k)

′
E1,it (−k)

)−1

Note that the superscript (k) denotes the fact that priors corresponding to the parameters of the kth equation are used.

3. G (h1i\Ξ∗). As discussed in step 3, the model in regime 1 can be written as A1iE1,it = Ũ1,it where Ũ1,it˜N(0, h1i). As
the prior is parameterised in terms of mean h0 and standard deviation vh0, it is convenient to draw the precision 1

h1i

using the Gamma distribution. Note that 1
h1i
∼ G (a, b) where a = ν1

2 , b = 2
s1
. The parameters of this Gamma density

are given by ν1 = ν0 + T1,i and s1 = s0 + Ũ ′1,itŨ1,it. s0 can be calculated as 2h0

(
1 +

h20
v2h0

)
while ν0 = 2

(
2 +

h20
v2h0

)
and

T1,i is the length of the sample in regime 1 for state i

1This preliminary estimate is obtained via a Mixed Frequency Bayesian VAR estimated for each state separately. This model contains annual
government spending and employment for each state and a set of US wide variables (GDP, federal government spending, federal taxes, GDP
deflator and the treasury bill rate).
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5. G (β2,i|Ξ∗). The form of the conditional posterior is as defined in step 1.

4. G (c2,i|Ξ∗). The form of the conditional posterior is as defined in step 2.

5. G (a2,i|Ξ∗). The form of the conditional posterior is as defined in step 3.

6. G (h2,i|Ξ∗). The form of the conditional posterior is as defined in step 4.

9. G (z∗i |Ξ∗). The threshold value is drawn using a Metropolis Hastings step. We draw candidate value of z∗i,new from
z∗i,new = z∗i,old+Ψ

1/2
i ε, ε ∼ N(0, 1). The acceptance probability is given by F

(
Zit
∣∣z∗i,new,Ξ∗ ) /F (Zit ∣∣∣z∗i,old,Ξ∗), where

F (.) denotes the posterior density: F (Zit |z∗i ,Ξ∗ ) ∝ f (Zit |z∗i ,Ξ∗ ) p (z∗i ) where f (.) is the likelihood function of the
VAR model for country i. Note that the likelihood function is simply the product of the likelihood in the two regimes.
The scale Ψi is chosen to ensure that the acceptance rate is between 20% and 50%.

7. G (di|Ξ∗). Chen and Lee (1995) show that the conditional posterior for d is a multinomial distribution
with probability f (Yt |di,Ξ∗ ) /

∑di,max
di=1 f (Yt |di,Ξ∗ ), where di,max denotes the maximum delay allowed for.

8. G (Git|Ξ∗). Conditional on the remaining parameters for state i, the model has a linear state space representation with
observation equation:

Z̃it = H̃tβ̃t + Ṽt,

var
(
Ṽt

)
= R̃t

where Z̃i =



na Yi1 Ei1
na Yi2 Ei2
na . .
Gai4 . .
na . .
na . .
na . .
Gai8 . .
. . .
. YiT EiT


, β̃t =



Git
Yit
Eit
.
.
.

Git−P−1

Yit−P−1

Eit−P−1


︸ ︷︷ ︸

Ns×1

and:

H̃t =

(
01×Ns

IN−1 0(N−1)×(Ns−N+1)

)
︸ ︷︷ ︸

N×Ns

if Z̃i(1) = na

H̃t =

(
0.25 0 0 0.25 0 0 0.25 0 0 0.25 0 0
IN−1 0(N−1)×(Ns−N+1)

)
if Z̃i(1) 6= na

R̃t = diag
(

1e10 0 0
)
if Z̃i(1) = na

R̃t = diag
(

0 0 0
)
if Z̃i(1) 6= na

The transition equation is given by
β̃t = µ̃t + F̃ β̃t + Ũt

where:

µ̃t =

 c1i +

Q∑
j=1

d1i,jXt−j

0(Ns−N)×1

 if Sit = 1

µ̃t =

 c2i +

Q∑
j=1

d2i,jXt−j

0(Ns−N)×1

 if Sit = 2

and F̃ denotes the VAR coeffi cients in regime 1 b1i,j in companion form with var
(
Ũt

)
given by Σ1i in companion form

when Sit = 1. When the system is in regime 2, F̃ denotes the VAR coeffi cients in regime 2 b2i,j in companion form with

var
(
Ũt

)
given by Σ2i in companion form. With the model in state-space form, the Carter and Kohn (2004) algorithm

is used to draw the state vector and obtain a draw for Git from its conditional posterior.
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This completes the loop across states.

11. G (λ1\Ξ∗) . The form of the conditional posterior is inverse Gamma with scale parameter
∑M
i=1

(
β1,i − β̄1

)
Λ−1
i

(
β1,i − β̄1

)′
+

S0 and degrees of freedom
(
M × K̄

)
+ V0

12. G (λ2\Ξ∗) . The form of the conditional posterior is as defined in step 11.

13. G
(
β̄1\Ξ∗

)
. By the Bayes Theorem, G

(
β̄1\β1, λ1

)
∝ p

(
β1\β̄1, λ1

)
p
(
β̄1

)
with β1 = [ β1,1, β1,2, .., β1,50] denoting the

coeffi cients for each state. This density is normal as p
(
β1\β̄1, λ1

)
is normal and a product of the normal priors for each

i. This density is given by N
(
M̄, V̄

)
:

V̄ =

(
V −1
β̄

+
1

λ1

M∑
i=1

Λ−1
i

)−1

M̄ = V̄

(
V −1
β̄
β̄0 +

1

λ1

M∑
i=1

Λ−1
i β1,i

)

where the prior is defined as p
(
β̄1

)
˜N
(
β̄0, Vβ̄

)
with the mean and variance of this prior implied by the dummy

observations described above.

14. G
(
β̄2\Ξ∗

)
. The form of the conditional posterior is as defined in step 13 above.

15. G (δ1\Ξ∗). As in step 11, this conditional posterior is inverse Gamma with scale parameter
∑M
i=1 (a1,i − ā1) Λ−1

i (a1,i − ā1)
′
+

s0 and degrees of freedom
(
M ×

(
N×(N−1)

2

))
+ v0

16. G (δ2\Ξ∗). The form of the conditional posterior is as defined in step 15 above.

17. G (ā1\Ξ∗). The form of the conditional posterior is as defined in step 13 assuming a flat prior for ā1. The conditional
posterior is normal N (m̄, v̄) where:

v̄ =

(
1

δ1

M∑
i=1

Ξ−1
i

)−1

m̄ = v̄

(
1

δ1

M∑
i=1

Ξ−1
i a1,i

)

18. G (ā2\Ξ∗). The form of the conditional posterior is as defined in step 17 above.

1.3 Convergence

The ineffi ciency factors for key parameters of the model are presented in Figure 1. These are reasonably low in most cases.
Given the heavily parameterised nature of the model, these provide some evidence for convergence.

2 Further Results
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Figure 1: Ineffi ciency Factors. For the VAR coeffi cients, constants, variances and contemporaneous coeffi cients, the figure
reports the average for each state in the two regimes.
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Figure 2: The black line is the median estimate of Git while the red dots are the annual observations.
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Figure 3: Cumulated log score and the probability of regime 1
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Figure 4: Robustness analysis
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Figure 5: Multipliers estimated using a fixed effects version of the benchmark model. The model includes state-specific and time-dummies.

Figure 6: Parameters controlling coeffi cient heterogeneity in the benchmark model.
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Figure 7: Difference in the multiplier between regime 1 and regime 2. Positive number indicates higher multiplier during downturns (regime 1).
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Figure 2 presents the posterior median estimates of Git. Figure 3 shows the cumulated log score along with the probability
of regime 1. The top panel of 4 shows the income multiplier from the model that includes the state-specific unemployment
rate and house prices. The bottom panel is benchmark model where the Ramey (2011) measure of defense news is added
as an extra exogenous variable. Figure 5 presents results from a version of the benchmark model with homogenous slopes
and error covariances. In this restricted model, we are able to include both cross-section and time fixed effects/dummies
(where the latter replace the exogenous variables). The main purpose of estimating this version of the model is to check if
the addition of time-effects alters our conclusions regarding the non-linearity of the multiplier. We stress that this model
with homogenous coeffi cients is not supported by the data as we find a large degree of heterogeneity with the variances.
Figure 5 shows the estimated multipliers using this model. The figure shows that the conclusions regarding non-linearity are
not altered. The level of the multipliers is estimated to be slightly smaller than the benchmark at short horizons. However,
this possibly reflects a bias from imposing homogeneity (see Pesaran and Smith (1995)). As shown in figure 6, the posterior
distributions of λR and δR in the benchmark model shown in the main text are centered away from zero, suggesting the
presence of parameter heterogeneity.
Figure 7 displays state-specific multipliers using a heat map. In particular, the figure shows the median difference in the

multiplier (at the 20 quarter horizon) between recessions and expansions, with positive numbers indicating that the estimates
in recessions are larger. In all but 7 states, the median estimate of the multiplier in recessions is larger. States such as
Maryland, Texas, California and Michigan top this list with the effect of spending shocks estimated to be more than 1 unit
larger. When the posterior distribution of the multipliers is considered, the null hypothesis that this difference equals zero
can be rejected for 7 of these states. For some states, the impact of spending shocks appears to be larger in expansions.
Examples include Washington, Wyoming, South and North Dakota.
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(1) (2) (3) (4) (5) (6) (7) (8)

Home Vacancy Rate
141.320∗∗

(55.636)
11.919

(21.346)
7.476

(21.394)
0.702∗∗

(0.276)
129.507∗∗

(62.392)
107.791∗∗∗

(34.815)
124.507∗∗∗

(43.006)
147.250∗∗∗

(50.123)

Mining
−10.535∗∗

(4.608)
−1.819
(2.799)

−0.758
(2.227)

−0.654∗∗

(0.286)
−7.006
(7.110)

−9.213∗

(4.743)
−9.959∗∗

(4.566)
−13.290∗∗

(5.585)

Agriculture
−26.400∗∗∗

(8.672)
−11.646
(7.771)

−6.154
(7.181)

−0.773∗∗∗

(0.254)
−13.633
(8.219)

−21.859∗∗∗

(7.458)
−24.534∗∗∗

(8.134)
−32.786∗∗∗

(11.632)

Manufacturing
−9.607∗∗

(4.122)
1.355

(3.133)
1.558

(1.911)
−0.709∗∗

(0.304)
−9.930∗

(5.415)
−7.675∗∗

(3.360)
−8.650∗∗

(3.606)
−10.991∗∗

(4.315)

Small Banks
3.248∗∗

(1.268)
1.425∗∗

(0.686)
0.944∗

(0.550)
0.751∗∗

(0.293)
3.272∗

(1.906)
2.995∗∗

(1.376)
3.107∗∗

(1.293)
2.198∗

(1.253)

Tax revenue
−9.092∗

(5.247)
0.201

(2.150)
0.889

(1.767)
−0.519∗

(0.300)
−12.618
(8.325)

−9.728
(5.806)

−9.386∗

(5.390)
−11.260∗∗

(5.169)

Small firms
−16.959
(11.543)

−1.589
(6.386)

3.954
(6.386)

−0.409
(0.279)

−33.248∗

(18.590)
−21.039∗

(11.750)
−18.930
(11.252)

−4.766
(14.546)

obs 50 50 50 50 50 50 50 50
R2 0.40 0.13 -0.01 0.40 0.14 0.31 0.37 0.39

Table 1: Regression results. Dependent variable: Percentage difference in government spending multiplier in recession relative to expansion." * p<0.1, ** p<0.05,
***P<0.001. Robust Standard errors in parenthesis. Regional dummies included
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Table 1 presents some robustness analysis for the cross-section regression. Column 1 presents the baseline results. Column
2 shows the regression when the dependent variable is multiplier in busts. Column 3 shows the regression when the dependent
variable is multiplier in booms. Column 4 is the benchmark model where the independent variables are standardized.
Column 5 to 7 show the regression where the dependent variable is calculated at horizons of 4, 8 and 12 quarters,

respectively. In column 8, weighted least squares is used for estimation of the benchmark regression. The weights are the
inverse of the posterior variance of the multiplier estimated using the panel threshold model.

3 Data for cross-section regressions

The first set of covariates that we consider account for differences in the structure of industry. We include the share of
the proportion of nominal state-level GDP accounted for by manufacturing, finance, real estate, agriculture, construction,
mining, oil and gas, and the government.
The next set of variables attempts to account for financial frictions. Following Carlino and Defina (1998), we include the

percentage of each state’s loans that are made by small banks. To proxy for the broad credit channel the proportion of small
firms in terms of employment are included.
In order to account for cross-state differences in the housing market we use the homeowner vacancy rate in the benchmark

specification, but also consider the rental vacancy rate and the homeownership rate.
To capture the fiscal situation in each state we use a number of proxies: Taxes and net intergovernment transfers (each

as a share of total government revenue), as well as expenditures on welfare and unemployment insurance (each as a share
of total government expenditures). The budget situation is accounted for via the budget balance and debt as a share of
expenditures.
We explore the role played by labour market rigidities. To proxy this, we include the degree of unionization in some

of the specifications. In addition, we construct a dummy variable that takes the value of 1 for states where ‘right to work’
laws are in existence. These laws represent an attempt to provide the right to work to employees without the implicit or
explicit requirement to join a union. We also consider the degree of business creation as an additional proxy in some of the
specifications discussed below.
Details of data sources and construction are below. See also Mumtaz et al. (2018).

• Small establishment employment share: Employment at the 6-digit NAICS industry level, by state and establishment
size, annual 1986 to 2013. Source: Census Bureau, County Business Patterns. Small establishments are defined as
those with less than 10 employees. We aggregate to the state level, and average over time.

• Industry shares of GDP: State-level GDP by industry, annual 1963 to 2013, average over time. Source: BEA. Industry
classification is NAICS since 1997, SIC prior to that.

• Share of loans extended by small banks: Bank balance sheet data on all FDIC-insured financial institutions excluding
bank holding companies, quarterly 2001Q1 to 2015Q3. Source: Call Reports from the FFIEC. Small banks are defined
as at or below the 90th percentile of the national distribution of bank size by assets. The small bank loans share is
the time-average of the fraction of total loans on small bank balance sheets in each state. The panel contains 449,777
observations, the cross-section contains on average 150 institutions per state.

• State government finance variables: State government sources of revenues and expenditures, annual 1992 to 2013,
average over time. Source: Census Bureau. Net intergovernment transfers are the sum of transfers to/from federal and
local governments.

• Housing sector variables: Homeowner and rental vacancy rate, and homeownership rate, quarterly 2005Q1-2015Q4.
Source: Census Bureau.

• Union membership as a share of nonagricultural employment by state, average of 1964, 1984 and 2000. Source: Barry
T. Hirsch (2001)

• Business creation: Net entry rate of firms, 1977-2014 average. Source: Census Bureau.

• Right to work: Dummy for whether a state has right to work legislation as of 2016. Source: http://www.nrtw.org/right-
to-work-states/.
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