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This online supplement is set out in eight sections. Section S1 reviews the literature. Section

S2 establishes the classical multigroup SIR model as a linearized version of the moment conditions

we have derived for our proposed model. This section also generalizes the proposed model to allow

for truncated geometric recovery and provides a derivation of vaccine effi cacy in the multigroup

version of the model. Section S3 discusses the edge probability and how the random networks

were generated in our simulation exercises. This section also compares the simulated models

across different population sizes, the number of groups, and network types. Section S4 reports

additional Monte Carlo results on estimation of the transmission rate and details the algorithm

used to jointly estimate the transmission rate and multiplication factor. It also discusses the

estimation of the recovery rate. Section S5 presents additional estimates of the reproduction

numbers for selected European countries and the US. Section S6 reports further estimates of the

multiplication factor for the European countries and the US. It also compares the reported total

cases without and with adjustment for under-reporting. Section S7 provides results of additional

counterfactual exercises. Finally, Section S8 gives the details of data sources.

S1 Related literature

Our modelling approach relates to two important strands of the literature on mathematical mod-

elling of infectious diseases, namely the classical SIR model due to Kermack and McKendrick
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(1927) and its various extensions to multigroup SIR models, and the individual-based network

models. The multigroup SIR model allows for a heterogeneous population where each compart-

ment (S, I, or R) is further partitioned into multiple groups based on one or more factors, including

age, gender, location, contact patterns, and a number of economic and social factors. One of the

earliest multigroup models was pioneered by Lajmanovich and Yorke (1976), who developed a

class of SIS (susceptible-infected-susceptible) models for the transmission of gonorrhea. Subse-

quent extensions to the multigroup SIR model and its variants include Hethcote (1978), Thieme

(1983, 1985), Beretta and Capasso (1986), and many others. Reviews of multigroup models can

be found in Hethcote (2000) and Thieme (2013). For some of the recent contributions on the

multigroup SIR models and their stability conditions, see, for example, Hyman, Li, and Stanley

(1999), Guo, Li, and Shuai (2006), Li, Shuai, and Wang (2010), Ji, Jiang, and Shi (2011), Ding,

Qin, and Ding (2015) and Zhou, Yang, and Zhang (2017). In contrast, we do not model the pro-

gression of epidemics at the compartment level; instead, we develop an individual-based stochastic

model from which we derive a set of aggregate moment conditions. Interestingly, we are able to

show that the multigroup SIR model can be derived as a linearized-deterministic version of our

individual-based stochastic model.

Our analysis also relates to the more recent literature on mathematical models of epidemics

on networks, whereby the spread of the epidemic is modelled via networks (or graphs), with nodes

representing single individuals or groups of individuals and links (or edges) representing contacts.

The adoption of networks in epidemiology has opened up a myriad of possibilities, using more

realistic contact patterns to investigate the impact of network structure on epidemic outcomes

and to design network-based interventions. Kiss, Miller, and Simon (2017) provide a systematic

treatment of this literature, with related reviews in Miller and Kiss (2014) and Pastor-Satorras

et al. (2015).

Being based on individual outcomes, our approach is more closely related to the individual-

based models surveyed by Willem et al. (2017) and Nepomuceno, Resende, and Lacerda (2018).

These models consider the transition probability of individuals from one state (S, I, R) to another

(Rocha and Masuda, 2016; Gourieroux and Jasiak, 2020). In contrast, as noted in the introduc-

tion, we do not model the transition probabilities, but rather we model the contact probabilities
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and unobserved individual-specific probability of becoming infected, and then derive individual-

specific transition probabilities. Like the individual-based models, our approach also allows for

considerable group heterogeneity and has the advantage that aggregates up to the multigroup SIR

model.

In order to calibrate the average number of contacts in our model, we drew upon the literature

on social contact patterns relevant to the transmission of respiratory infectious diseases. Before

the outbreak of Covid-19, large-scale social contact surveys have been conducted in many countries

aiming to guide effective policies on infectious disease control and prevention.S1 The POLYMOD

study of social contacts in eight European countries by Mossong et al. (2008) is a notable land-

mark.S2 Many similar surveys have been conducted since. Among them, the contact studies in

Hong Kong (Leung et al., 2017) and Shanghai (Zhang et al., 2019) provide valuable information

about the pre-Covid social contacts in China. Most of these studies summarize contact patterns

based on age groups, contact locations (e.g., households, schools, workplaces), and time schedules

(e.g., weekdays or weekends) that can be utilized in multigroup epidemiological models. With the

outbreak of Covid-19, a few recent articles reported significant changes in contact patterns. For

example, Zhang et al. (2020) find that the median number of daily contacts in Wuhan went down

from 7 in normal times to 2 after the Covid-19 outbreak. The median number of daily contacts

in Shanghai fell from 10 to 2. Jarvis et al. (2020) find that the average daily number of contacts

declined from 10.8 in normal times to 2.8 immediately after the lockdown in the UK. In all these

three cases, the contact number by age flattened after the outbreak.

In this study, we propose a new method of estimating the transmission rate, βt, using the

moment conditions we derive from our stochastic network SIR model. The transmission rate is

closely connected to the reproduction numbers, which are epidemiologic metrics used to measure

the intensity of an infectious disease. The basic reproduction number, denoted by R0, is the

number of new infections expected to result from one infected individual at the start of the

epidemic, and within SIR models it is defined by R0 = β0/γ, where β0 is the initial transmission

S1Summaries of these social contact surveys are provided by Hoang et al. (2019) and Supplementary Table S1
of Leung et al. (2017).

S2The eight countries are Belgium, Germany, Finland, Great Britain, Italy, Luxembourg, The Netherlands, and
Poland.
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rate, and γ is the recovery rate. For the current Covid-19, estimates of R0 range between 2 to

3.S3 Since the disease transmissibility will vary over time due to changes in immunity and/or

mitigation policies, the effective reproduction number, which we denote by Ret, measures the R

number t periods after the initial outbreak. The effective R number is governed by the extent to

which the susceptible population is shrinking and the effectiveness of mitigation policies (whether

mandated or voluntary). In the single group SIR model, we have Ret = (1− ct) βt/γ, where ct is

the per capita number of infected cases at time t.

Various methods are available in the epidemiological literature to estimate the reproduction

numbers at the beginning and/or in real time during epidemics, but there is no uniform framework.

Estimation approaches that are data-driven and involve simplifying assumptions include the use

of the number of susceptibles at endemic equilibrium, the average age at infection, the final size

equation, and calculation from the intrinsic growth rate of the number of infections (Heffernan,

Smith, and Wahl, 2005). Estimation of reproduction numbers based on different mathematical

models are reviewed by Chowell and Nishiura (2008), Obadia, Haneef, and Boëlle (2012), and

Nikbakht et al. (2019). More recent contributions focusing on estimation of reproduction numbers

for the Covid-19 pandemic include Atkeson, Kopecky, and Zha (2020), Baqaee et al. (2020), Elliott

and Gourieroux (2020), Fernández-Villaverde and Jones (2020), Korolev (2021), and Toda (2020).

In this study, we estimate the transmission rate using the moment conditions derived from

our stochastic individual-based network SIR model. We do not use mortality data due to its

unreliability,S4 but instead, our method of moment estimation requires only data on per capita

infected cases. Our estimation method is not only simple to apply but also accounts for the time-

varying under-reporting of cases. It has been widely acknowledged that the reported infected cases

may suffer from considerable under-reporting, especially during the early stages of the epidemic.

Li et al. (2020) estimate that only 14 percent of all infections were documented in China prior

to the January 23, 2020 travel restrictions. This translates to a multiplication factor (MF) of

1/0.14 ≈ 7.1. Jagodnik et al. (2020) estimate that the recorded cases were under-reported by a

S3A summary of published R0 values is provided in Table 1 of D’Arienzo and Coniglio (2020).
S4The recorded Covid death toll has undergone major revisions on several occasions. For example, the UK

death toll was revised downwards by 5,377 on August 12, 2020, after a review concluded the daily death figure
should only include deaths that had occurred within 28 days of a positive test.
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factor in the range of 3 to 16 times in seven countries as of March 28, 2020.S5 In the US, according

to the study by Havers et al. (2020) led by the Centers for Disease Control and Prevention (CDC),

the number of infected cases is likely to be ten times more than reported based on antibody tests

from March through May 2020. A more recent study based on antibodies from the National

Institutes of Health estimates that 20 million individuals in the US were infected by mid-July,

2020, about 17 million more than previously thought (Kalish et al., 2021). This implies that MF is

about 20/3 ≈ 6.7. Rahmandad, Lim, and Sterman (2021) consider 92 countries through December

22, 2020, and estimate that the cumulative cases are 7.03 times the number of offi cially reported

cases, with 10th—90th percentile range 3.2—18. They also find that the magnitude of under-reporting

has declined over time as testing has increased. Another source of measurement errors is reporting

delays. Harris (2020) estimates that in New York City, the mean delay in reporting was five days,

with 15 percent of cases reported after ten or more days, from June 21—August 1, 2020. Many

existing estimation methods of reproduction numbers do not allow for measurement errors and

might not be robust to acknowledged under-reporting errors. For instance, the SUR estimates

developed by Korolev (2021) may be biased downward if one neglects the under-reporting of

confirmed cases.

Our study also contributes to a growing literature on quantitative epidemic policy analyses.

We focus on two counterfactual analyses, but our model can be used in a variety of other contexts.

First, we investigate the impact of different vaccination strategies in conjunction with social dis-

tancing policy on the evolution of the epidemic. Second, we study the timing of the lockdowns,

comparing the spread of Covid-19 in UK and Germany in March 2020. A number of studies

have used the SIR or other compartmental models to consider the effects of different interven-

tion strategies (such as isolating the elderly, closing schools and/or workplaces, and alternating

work/school schedules) by hypothetically lowering the average number of contacts of some specific

age groups, and/or contact locations/schedules from normal (pre-Covid) levels. (See Acemoglu

et al. (2021), Akbarpour et al. (2020), Ferguson et al. (2020), Matrajt and Leung (2020), Willem

et al. (2020), among others.) Chudik, Pesaran, and Rebucci (2021) simulate the trade-off between

S5See Table 2 of Jagodnik et al. (2020). The seven countries considered are China, France, Italy, Spain, the US,
Germany, and the UK.
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flattening the epidemic curves and lessening unemployment loss under different degrees of manda-

tory and voluntary social distancing policies using a modified SIR model. Toda (2020) simulates

the effects of different mitigation policies on epidemic curves by reducing the transmission rate

in the SIR model from its initial level. Atkeson et al. (2020) investigate the impact of earlier or

later mitigation measures on the death toll. Our model can be used to investigate different non-

pharmaceutical interventions either by lowering the number of contacts across age groups and/or

by reducing the rate of infection upon contact. To study the effect of vaccination on controlling

infection, we calibrate the model parameters so that the reduction in the probability of infection

matches a given vaccine effi cacy. A large body of literature has extended the standard SIR models

to allow for vaccination. The typical method is to add an additional compartment, V, for vac-

cinated individuals and model its relationship with other compartments by another differential

equation. See, for example, Berkane, Harizi, and Tayebi (2021), Dashtbali and Mirzaie (2021),

and Schlickeiser and Kröger (2021).

S2 Theoretical details and extensions

S2.1 Relation to the multigroup SIR model

In this section, we show that the classical multigroup SIR model given by (8)—(10) of the main

paper is a linearized-deterministic version of our moment conditions. To see this, using the identity

S`t = n` − C`t and s`t = S`t/n`, (30) of the main paper can be expressed as

E (s`,t+1|s`t, it) = s`t exp

(
−

L∑
`′=1

β``′i`′t

)
+O

(
n−1
)
≈ s`t

(
1−

L∑
`′=1

β``′i`′t

)
+O

(
n−1
)
. (S.1)

Let ∆s`,t+1 = s`,t+1 − s`t. Then (S.1) can be rewritten as

E (∆s`,t+1|s`t, it) ≈ −s`t
L∑

`′=1

β``′i`′t +O
(
n−1
)
. (S.2)

In comparison, dividing both sides of (8) in the multigroup SIR model by n` gives

∆s`,t+1 = −s`t
L∑

`′=1

β``′i`′t. (S.3)
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To exactly match the deterministic expression of s`t given by (S.3) with the stochastic process

given by (S.2), we can introduce either an additive or a multiplicative random error to the right-

hand side of (S.3). To ensure that s`t is non-negative for all t, a multiplicative error with mean

unity would be a more reasonable choice.

Turning to the recovery process, the recovery governed by (27) of the main paper matches with

the deterministic recovery equation, (10), of the SIR model under a geometric recovery process.

Finally, since I`t = n` − R`t + S`t, the active cases of our model also match with the infected

equation, (9), of the SIR model.

S2.2 Truncated geometric model of recovery

Here we consider a generalization of the recovery model used in the main paper. Suppose that for

all individuals in group ` (` = 1, 2, . . . , L), the time to recovery (or infection duration), denoted

by T ∗i`,t = t− t∗i`, follows a truncated geometric distribution with the probability mass distribution

Pr
(
T ∗i`,t = t− t∗i`

)
= A` (1− γ`)t−t

∗
i` , for t− t∗i` = 1, 2, . . . ,D`, (S.4)

where D` is the maximum number of days for an individual to recover and is assumed to be the

same for all individuals in group `. γ` is the probability of recovery on each day if the geometric

distribution is non-truncated (i.e., D` →∞). A` is a normalizing constant such that

A`

D∑̀
s=1

(1− γ`)s = A`

[
1− (1− γ`)D`
1− (1− γ`)

]
= 1,

which yields

A` =
γ`

1− (1− γ`)D`
. (S.5)

Then the "hazard function", denoted by h` (s,D) (s = 1, 2, . . . ,D), defined as the probability of

individuals in group ` recovering at time s conditional on having remained infected for s− 1 days

is given by

h` (s,D`) =
Pr (T ∗ = s)

Pr (T ∗ > s− 1)
=

Pr (T ∗ = s)

1− Pr (T ∗ ≤ s− 1)

=
A` (1− γ`)s−1

1− A`
∑s−1

x=1 (1− γ`)x
.
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Now using (S.5) we have

h` (s,D`) =
γ` (1− γ`)s−1

(1− γ`)s−1 − (1− γ`)D`
, for s = 1, 2, . . . ,D`.

Note that given a finite D` and 0 < γ` < 1, h` (s,D`) monotonically increases with s. Hence,

by assuming a truncated geometric distribution for recovery time, we are able to allow for the

possibility that the longer an individual is infected, the more likely s/he will recover. It is also

clear that h` (s,D`) → γ` as D` → ∞, which establishes the familiar result for a non-truncated

geometric distribution used in the main paper. Under the truncated geometric distribution, we

have

E
[
ζi`,t+1 (t∗i`)

∣∣xi`,t, yi`,t, yi`,t−1, . . . , yi`,t∗i` ]
= Pr

[
ζi`,t+1 (t∗i`) = 1

∣∣xi`,t, yi`,t = 0, yi`,t−1 = 0, . . . , yi`,t∗i` = 0
]

= h` (t− t∗i`,D`) ,

and the recovery process will be given by

E (R`,t+1|R`t, C`t) = R`,t +

n∑̀
i=1

h` (t− t∗i`,D`) (1− yi`,t)xi`,t

= R`,t +

n∑̀
i=1

γ` (1− γ`)t−t
∗
i`−1

(1− γ`)t−t
∗
i`−1 − (1− γ`)D`

(1− yi`,t)xi`,t, (S.6)

which does not simplify to the standard recovery process used in the SIR models, unless D` →∞.

S2.3 Derivation of vaccine effi cacy in the multigroup model

The main paper has established Eq. (56), µ1/µ0 ≈ 1/ (1− εv), assuming a single group model.

Here we show that this result also holds in the multigroup model. Recall that

E (xi`,t+1 |xi`,t = 0, µi`, it ) = 1−
L∏

`′=1

(
1− p``′ + p``′e

− τ`
µi`

)I`′t
≈ 1− e

τ`
µi`

(
∑L
`′=1 i`′tk``′) ≈ τ`

µi`

(
L∑

`′=1

i`′tk``′

)
.

Using this in (54) of the main paper and letting i0`t be the proportion of active cases in group `

when the vaccine is introduced, we obtain

τ`
∑L

`′=1 i
0
`′tk``′

µ1
= (1− εv)

τ`
∑L

`′=1 i
0
`′tk``′

µ0
,
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which simplifies to µ1/µ0 = 1/ (1− εv).

S3 Calibration and simulation of the model

S3.1 Generating random networks

This section describes how we generated random draws from the Erdős-Rényi and power law

networks in the case of single and multigroup random networks used in our simulations.

First, in an Erdős-Rényi (ER) random graph, each edge has a fixed probability of being present

or not independently of all other edges. Specifically, we generate the ER random network with

n nodes and a single group by considering all possible edges and including an edge between each

distinct pair of nodes with probability p = k/ (n− 1).

Second, we generate the power law random network in the case of a single group following

the standard procedure in the literature:S6 at each time t, we first draw a degree sequence from

the (truncated) power law distribution given by (S.8), and then generate a network with that

degree sequence based on a configuration model.S7 Specifically, we draw a degree sequence ki (t)

randomly and independently over i for i = 1, 2, · · · , n, (with replacement), such that ki (t) realizes

with probability pki . Then we generate a configuration model with the degree sequence {ki (t)}

by the standard algorithm —first assign each node with a number of stubs (half edges) that is

equal to its degree, then match two stubs uniformly at random to form an edge and continue

until all stubs are matched. Since the number of edges, denoted by m (t), in a graph satisfies

2m (t) =
∑

i ki (t), the generated degrees must add to an even number to be able to construct a

graph. If the generated degrees add to an even number, we simply throw them away and generate

another sequence. Also notice that this algorithm may produce self-loops and multi-edges. This

is not a concern if n is suffi ciently large since the density of such problematic links is of order

O(n−1).S8 In simulations, we discard self-loops and collapse multi-edges. The resulting graph is

used as the power law contact network for time t, and the same procedure is repeated in each t

S6See, for example, Kiss et al. (2017), p. 20.
S7A configuration model is a model of a random graph with a given degree sequence. The name "configuration"

originates from Bollobás (1980) meaning arrangements of edges in the model.
S8A proof can be found in Newman (2018), pp. 373—375.
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and over replications.

It follows from the degree distribution given by (S.8) that the normalizing constant has the

expression C =
(∑kmax

kmin
x−α

)−1
, and then the average degree of the power law graph is

k = E (x) =
kmax∑
kmin

xp (x) = C

kmax∑
kmin

x1−α =

(
kmax∑
kmin

x−α

)−1(kmax∑
kmin

x1−α

)
. (S.7)

In simulations, the value of the exponent, α, is solved from (S.7) such that k = 10.

Given the degree sequence k (t) = [k1 (t) , k2 (t) , . . . , kn (t)]
′
, the (conditional) edge probability

between node i and node j in the configuration model isS9

E [dij (t) | k (t)] =
ki (t) kj (t)

2m (t)− 1
,

which in the limit of large m (t) can be rewritten as

E [dij (t) | k (t)] =
ki (t) kj (t)

2m (t)
=

ki (t) kj (t)∑n
r=1 kr (t)

=
ki (t) kj (t)

nk
.

Since ki (t) and kj (t) are independent draws from the power law distribution with mean k, the

(unconditional) edge probability is

pij = E [dij (t)] = E {E [dij (t) | k (t)]} =
k2

nk
=
k

n
,

which is the same as the edge probability in the ER random network.

Finally, the network with multigroup can be generated following the stochastic block model

(SBM), which is a popular random graph model for blocks (groups or communities) in networks.S10

Recall our assumption that the probability of contacts is homogeneous within groups but different

across groups. Node (or individual) i in group ` is denoted by (i, `). At each time t, we draw

a network in which the edge between each distinct pair of nodes, (i, `) and
(
j, `

′)
, exists with

probability p``′ . That is, the edge probabilities depend on the groups to which nodes belong. We

set the within-group probability p`` = k``/ (n` − 1) ≈ k``/n`, and the between-group probability

p``′ = k``′/n`′ . By construction, we have p``′ = p`′` under the reciprocity condition, n`k``′ = n`′k`′`.

Note that if p``′ = p for all groups ` and `
′
, the SBM reduces to the ER random graph. If p``′ are

not all identical, the SBM generates ER random graphs within each group and random bipartite

S9See, e.g., Newman (2018), p. 373.
S10A recent review of the stochastic block models is provided by Lee and Wilkinson (2019).
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graphs between groups. Accordingly, the degree distribution of the generated network is a mixture

of Poisson degree distributions. To create heavy-tailed degree distributions or other types of degree

heterogeneity, one can generalize the SBM analogous to the configuration model or consider the

degree-corrected SBM, but these generalizations are beyond the scope of the current paper.S11

S3.2 Simulated properties of the model

First, we consider how the simulated properties of the proposed model vary as we increase the

population size, n. Specifically, we carry out simulations with n = 10, 000, 50, 000, and 100, 000,

assuming a fixed transmission rate and a single group model, where the parameters take values

k = 10, γ = 1/14, R0 = 3, β = γR0 = 3/14, and τ = β/k. For each replication, the simulation is

initialized with 1/1000 of the population randomly infected on day 1. The number of replications

is set to B = 1, 000 for all experiments. Figure S.1 displays the proportions of new cases. As

can be seen, the simulated cases are hardly affected by the choice of n in the range of (10, 000,

100, 000). The maximum proportion of infected, c∗ = B−1
∑B

b=1 maxt c
(b)
t , equals 0.94 in all three

cases. The time at which new cases peak is also almost the same across n. Although uncertainty

in the simulation results decreases with larger n, the interquartile range with n = 10, 000 is quite

tight.

Figure S.2 compares the simulated aggregate new cases averaged over 1, 000 replications ob-

tained by the single group model and the multigroup model with five age groups detailed in Section

5 of the main paper. What stands out in the figure is the similarity of the epidemic outcomes,

including the peak of new cases, the maximum proportion of infected, and the duration of the

epidemic. This result suggests that the aggregate outcomes do not seem to be affected by the

number of groups used in the simulations.

We next examine the effect of network topology on the simulation results. In particular, we

consider two widely used random networks —the Erdős-Rényi (ER) and the power law random

networks. For simplicity, we examine the single group model. Recall that in an ER random

graph, each pair of the nodes are connected at random with a uniform probability p = k/ (n− 1).

In the limit of large n (with the mean degree k fixed), the ER random network has a Poisson

S11See, for example, Newman (2018), Section 12.11.16, for a discussion.
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Figure S.1: Simulated number of new cases using a single group model withR0 = 3 under different
population sizes

n = 10, 000 n = 50, 000 n = 100, 000

Notes: We set 1/1000 of the population randomly infected on day 1 and use the Erdős-Rényi random network with
mean contact number k = 10. The recovery rate is γ = 1/14. The exposure intensity parameter is τ = γR0/k.
c∗ = B−1

∑B
b=1 maxt c

(b)
t = 0.94 in all three cases. The number of replications is B = 1, 000.

degree distribution, which may depart from real-world contact networks in which a small number of

individuals (such as school-aged children, medical professionals, delivery drivers, and sales workers)

may have a relatively high number of daily contacts. In other words, the degree distribution of

the contact networks may be heavy-tailed (right-skewed). The power law random network is

a popular choice to model this phenomenon. In a (truncated) power law graph, the degree

distribution follows the power-law distribution:

px = Cx−α, x = kmin, kmin + 1, . . . , kmax, (S.8)

where px is the fraction of nodes in the graph with degree x, kmin (kmax) is the minimum (maximum)

degree, α > 1 is a constant known as the power law exponent, and C is a normalization constant

such that
∑kmax

kmin
px = 1. Figure S.3 illustrates the two networks with n = 50 nodes and the same

average degree, k = 10. It is assumed that the minimum and maximum degrees of the power law

network are kmin = 5 and kmax = 49, respectively. The networks were generated following the

algorithms described in Section S3.1 of this online supplement. It can be seen from the figure

that most nodes in the ER random network have comparable degrees with the mean degree of

10 approximately. In contrast, the power law network has a heavy-tailed degree distribution, and

there are many small-degree nodes as well as a few highly connected nodes in the graph.

Figure S.4 compares the simulation results obtained using the two random networks with the
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Figure S.2: The average number of aggregate new cases using the single- and multi-group models
with R0 = 3

Notes: The average proportion of new cases over 1, 000 replications is displayed. The average number of new cases
is very close to the median, although not shown. Population size is n = 10, 000. In the case of a single group, the
Erdős-Rényi random network with mean contact number k = 10 was used. c∗ = B−1

∑B
b=1 maxt c

(b)
t = 0.94, and

the duration of the epidemic is T ∗ = 212 days. In the case of the multigroup model, c∗ = 0.90, and T ∗ = 215 days.

Figure S.3: Examples of Erdos-Renyi and power law networks

Erdős-Rényi random network (Truncated) power law network

Notes: n = 50. Mean degree is k = 10 in both networks. The degree distribution in the power law network follows
px = Cx−2.43, for x = 5, 6, . . . , 49.

same average degree of 10. We set kmin = 5 and kmax = 50 for the power law networks. The

values of γ, R0, and τ , and initialization of the simulation process are as given above. We plot

the proportion of new cases with uncertainty bands and the mean values across 1, 000 replications

for easy comparison. It is clear from Figure S.4 that the mean epidemic curves obtained by the

two different random networks overlap. Although not shown, the median simulation results are

very close to the mean values for both types of networks. We therefore focus on using the random

network in our simulation and calibration exercises.
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Figure S.4: Simulated number of new cases using a single group model withR0 = 3 under different
network topologies

Random network Power law network Comparison of means

Notes: We set 1/1000 of the population randomly infected on day 1. Both networks have mean degrees k = 10.
The recovery rate is γ = 1/14. The exposure intensity parameter is τ = γR0/k. Population size is n = 10, 000.
c∗ = B−1

∑B
b=1 maxt c

(b)
t = 0.94 using both networks. The number of replications is B = 1, 000.

S4 Estimation of transmission and recovery rates

S4.1 Estimation of transmission rates

This section first provides further evidence on the performance of the rolling estimators of the

transmission rates assuming no measurement errors, and then describes the method that estimates

the transmission rate and the multiplication factor jointly. Table S.1, which complements Table

1 in the main paper, reports the finite sample properties of the 3-weekly rolling estimates of R0

in the case where it is fixed at R0 = 3. The simulated data were obtained under the same set-up

as that for Table 1, and are based on a single group model with the random network and the

parameter values k = 10, γ = 1/14, and β = 3/14. Table S.1 presents the bias and root mean

square error (RMSE) of the rolling estimates, R̂0 (W ) = β̂t (W ) /γ, where the window size W = 3

weeks, and β̂t (W ) is computed based on (49) of the main paper. The results refer to averages

computed over the four non-overlapping 3-weekly sub-samples covering the 4th− 15th weeks since

the outbreak.

As to be expected, the bias remains small and similar over different sub-samples. The RMSE

is smaller in the middle of the epidemic than at the beginning and end stages, where it is very

close to zero. Overall, the average RMSE of R̂0 is reasonably small compared to the true value of
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3. Compared with Table 1 of the main paper, the properties of the 2-weekly and 3-weekly rolling

estimates are very close, with the 3-weekly rolling estimates having slightly smaller RMSE than

the 2-weekly estimates.

Table S.1: Finite sample properties of the 3-weekly rolling estimates of R0, in the case where it
is fixed at R0 = 3

3-weekly sub-samples
Weeks since the outbreak 4th − 6th 7th − 9th 10th − 12th 13th − 15th

Population
n = 10, 000 Bias -0.0119 -0.0037 -0.0024 0.0026

RMSE 0.0966 0.0488 0.0737 0.1687
n = 50, 000 Bias -0.0019 -0.0002 -0.0009 -0.0005

RMSE 0.0395 0.0218 0.0332 0.0750
n = 100, 000 Bias -0.0003 0.0005 0.0000 -0.0006

RMSE 0.0275 0.0150 0.0229 0.0544

Notes: The true value of R0 is set to β/γ, where β = 3/14 and γ = 1/14 so that R0 = 3. We fix γ and estimate β
using (48) in the main paper. The number of replications is B = 1, 000.

Next, to allow for time-varying under-reporting of cases, Section 6.2 of the main paper proposes

a method that jointly estimates the transmission rate and the multiplication factor (MF). Here

we give detailed steps for the joint estimation. Let c̃0 denote a small threshold value and m̂(j)

denote the jth estimate of MF, for j = 1, 2, . . .. We propose the following algorithm.

• In the initial period of the epidemic when c̃t ≤ c̃0, t = 1, 2, . . . , t0, carry out the rolling

estimation of βt with a guess value of MF. Then simulate the stochastic network model

using the
{
β̂t

}t0
t=1
, and compute the first estimate of MF as the ratio of the mean calibrated

cases to realized cases at the end of the initial period, namely, m̂(1) = c̄t0/c̃t0 , where c̄t0 =

B−1
∑B

b=1 c
(b)

t0 .

• When c̃t > c̃0, we jointly estimate βt and mt by the two equations below:

β̂t (Wβ) = Argminβ

t∑
τ=t−Wβ+1

[
1− m̂τ (Wm)c̃τ

1− m̂τ−1(Wm)c̃τ−1
− e−β m̂τ−1(Wm)ı̃τ−1

]2
. (S.9)

m̂t(Wm) =
W−1
m

∑t
τ=t−Wm+1

(
1−B−1

∑B
b=1 e

−β̂τ−1(Wβ) i(b)τ−1
)

W−1
m

∑t
τ=t−Wm+1

[
c̃τ −

(
B−1

∑B
b=1 e

−β̂τ−1(Wβ) i(b)τ−1
)
c̃τ−1

] , (S.10)

where Wβ and Wm are the rolling window sizes. Specifically,
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—From t0 + 1 to t2 = t0 + Wm, carry out rolling estimation of βt by (S.9) using m̂(1).

Then continue the simulations using
{
β̂t

}t2
t=t0+1

from the stored status, and compute

m̂(2) by (S.10) at t2.

—From t2 + 1 to t3 = t2 + Wm, carry out rolling estimation of βt by (S.9) using m̂(2).

Then continue the simulations using
{
β̂t

}t3
t=t2+1

and compute m̂(3) by (S.10) at t3.

—Continue the above steps to obtain m̂(4), m̂(5), . . . , until the end of the sample.

In practice, MF varies slowly, and it is reasonable to consider Wβ = Wm = 2 or 3 weeks. We

apply the above procedure to Covid-19 data in a number of European countries and the US. The

results are presented in Section 7 of the main paper and Sections S5 and S6 of this supplement.

S4.2 Estimation of the recovery rate

As noted in the main paper, with reliable data on the number of removed (recovered or dead), the

recovery rate, γ, can be estimated using the moment condition given by (29) of the main paper.

In reality, however, it is hard to measure Rt accurately. We do not estimate γ in the calibration

exercise because the data on recovery are either unavailable or problematic in the countries we

considered. In the current section, we demonstrate that the recovery rate can be estimated very

precisely using simulated data. To simplify the exposition, we consider a single group (L = 1) and

suppose that the time to recovery follows a geometric distribution as in the standard SIR model.

The same aggregate outcome follows in the multigroup case if the probability of recovery is the

same across all groups. Under these conditions, the aggregate moment condition for recovery can

be written as

∆Rt+1 = γIt + un,t+1, (S.11)

where ∆Rt+1 = Rt+1 −Rt and un,t+1 is a martingale difference process with respect to It and Rt.

(It = Ct − Rt). Recall from (5) and (6) of the main paper that Rt =
∑n

i=1 yit and It =
∑n

i=1 zit,

we note that un,t+1 is an aggregated error, namely, un,t+1 =
∑n

i=1 ui,t+1. Dividing both sides of

(S.11) by n yields

∆rt+1 = γit + ūn,t+1, (S.12)
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Table S.2: Finite sample properties of the rolling estimates of γ

3-weekly sub-samples
Weeks since the outbreak 4th − 6th 7th − 9th 10th − 12th 13th − 15th

2-weekly rolling estimates
Population
n = 10, 000 Bias(×100) 0.0917 0.0111 0.0040 0.0072

RMSE(×100) 0.9077 0.2465 0.1315 0.1833
n = 50, 000 Bias(×100) 0.0247 0.0006 0.0000 0.0023

RMSE(×100) 0.3716 0.1034 0.0602 0.0840
n = 100, 000 Bias(×100) 0.0116 0.0012 -0.0002 0.0008

RMSE(×100) 0.2536 0.0730 0.0430 0.0601
3-weekly rolling estimates
Population
n = 10, 000 Bias(×100) 0.0495 0.0082 0.0041 0.0067

RMSE(×100) 0.5614 0.1681 0.1104 0.1639
n = 50, 000 Bias(×100) 0.0092 -0.0019 0.0005 0.0020

RMSE(×100) 0.2302 0.0713 0.0511 0.0760
n = 100, 000 Bias(×100) 0.0055 0.0008 -0.0002 0.0009

RMSE(×100) 0.1589 0.0512 0.0366 0.0542

Notes: The true value of γ is 1/14. The estimating equation is given by (S.12). The number of replications is
1, 000.

where ∆rt+1 = rt+1 − rt, rt = Rt/n, it = It/n and ūn,t+1 = n−1
∑n

i=1 ui,t+1. For suffi ciently large

n and assuming that the individual differences in recovery are cross-sectionally weakly correlated,

we have ūt+1 = Op(n
−1/2). It follows that γ can be consistently estimated from (S.12) by ordinary

least squares (OLS) regression of ∆rt+1 on it. Note that T is finite as n→∞. Due to the presence

of Op

(
n−1/2

)
in (S.12), it is expected that as n increases, the randomness will diminish and

estimates of γ become increasingly precise. In the limit we would expect ∆rt+1−γit = Op(n
−1/2).

To examine the finite sample properties of the OLS estimator of γ, we simulate our model

assuming a homogeneous recovery rate and compute the aggregate time series for B = 1, 000

replications under a given population size, n. Denote the recovery and infection time series of the

bth replication by r(b)t+1 and i
(b)
t , respectively, for b = 1, 2, . . . , B. For each replication, we obtain

γ̂(b) by regressing ∆r
(b)
t+1 on i

(b)
t , without an intercept. The true value of γ in the experiment is set

to 1/14.

Table S.2 reports the bias and RMSE of the OLS estimator of γ averaged over the four non-
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overlapping 3-weekly sub-samples during the 4th−15th weeks after the outbreak. Even though the

bias and RMSE in the table have been multiplied by 100, they are very small in magnitude. It is

evident that we can estimate γ very precisely even with short time series samples and population

size n = 10, 000. The RMSE declines as n increases, lending support to the theory. As in the

case of estimating the transmission rates, the RMSEs are relatively larger in the early and late

stages of the epidemic when it is small. The 2-weekly and 3-weekly estimates are similar, with

the 3-weekly estimator having some improvement as the outbreak amplifies into an epidemic.

S5 Estimates of the effective reproduction numbers

S5.1 Estimates for selected European countries

This section provides additional estimation results of the effective reproduction numbers (Ret) and

transmission rates (βt) for the six European countries considered in the main paper. First, Figure

S.5 presents the realized daily new cases (7-day average per 100, 000 people) and the 2-weekly

rolling estimates of the transmission rates assuming a fixed MF = 3 and 5. It can be seen that the

estimates of the transmission rate under different values of MF are virtually the same when ct is

small. This observation clearly shows that MF is not identified in the early stage of the epidemic.

It is also clear that the daily number of infections rapidly rises when βt is high.

To illustrate the relationship between the transmission rate and the effective reproduction

number, Figure S.6 plots β̂t/γ together with R̂et = (1− m̂tc̃t) β̂t/γ for the six countries, where

β̂t and m̂t were estimated jointly using 2-weekly rolling windows. The values of R̂et and m̂t are

displayed in Figures 2 and 3 of the main paper. It is worth noting that R̂et is almost the same as

β̂t/γ in the early stage of the epidemic, since the proportion of infected is very small even after

taking account of under-reporting. As infected cases grow, small differences between β̂t/γ and

R̂et start to become visible.

Figure S.7 compares the 2- and 3-weekly rolling estimates of Ret obtained by the joint es-

timation procedure. It is apparent that using 2- and 3-weekly rolling windows produces very

similar results. Therefore, our conclusions are unaltered if we adopt the 3-weekly estimates of the
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Figure S.5: Realized new cases and two-weekly rolling estimates of the transmission rates for
selected European countries

Austria

France

Germany

Notes: The figure plots the 7-day moving average of the reported number of new cases per 100k population and
the 2-weekly rolling estimates of the transmission rate, βt/γ, where γ = 1/14 and the multiplication factor (MF)
is fixed at 3 and 5.
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Figure S.5: (Continued) Realized new cases and two-weekly rolling estimates of the transmission
rate for selected European countries

Italy

Spain

UK
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Figure S.6: Comparison of R̂et and β̂t/γ for selected European countries

Austria France

Germany Italy

Spain UK

Notes: R̂et = (1− m̂tc̃t) β̂t/γ, where c̃t is the reported number of infections per capita and γ = 1/14. Wβ =
Wm = 2 weeks. The joint estimation starts when c̃t > 0.01. The initial guess estimate of the multiplication
factor is 5. The simulation uses the single group model with the random network and population size n = 50, 000.
The number of replications is 500. The number of removed (recoveries + deaths) is estimated recursively using
R̃t = (1− γ) R̃t−1 + γC̃t−1 for all countries, with C̃1 = R̃1 = 0.
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Figure S.7: Rolling estimates of the effective reproduction numbers (Ret) using the 2- and 3-weekly
rolling windows for selected European countries

Austria France

Germany Italy

Spain UK

Notes: R̂et = (1− m̂tc̃t) β̂t/γ, where c̃t is the reported number of infections per capita and γ = 1/14. Wβ =
Wm = 2 and 3 weeks. The joint estimation starts when c̃t > 0.01. The initial guess estimate of the multiplication
factor is 5. The simulation uses the single group model with the random network and population size n = 50, 000.
The number of replications is 500. The number of removed (recoveries + deaths) is estimated recursively using
R̃t = (1− γ) R̃t−1 + γC̃t−1 for all countries, with C̃1 = R̃1 = 0.
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transmission rates in calibrating the model to the empirical evidence.

S5.2 Estimates for the US

It is also interesting to examine how the reproduction numbers have evolved in the US. This

section presents estimates of Ret for the US at the country and state levels. Figure S.8 presents

the reported daily new cases (per 100, 000 people) and the 2-weekly rolling estimates of Ret

obtained by the joint estimation method for the US over the period of March 2020 to March

10, 2021 (when the share of the population fully vaccinated reached 10 percent). The results

show that R̂et briefly dipped below 1 in May and then again in August 2020. In contrast with

the estimates in the European countries, Ret in the US never decreased to a level as low as 0.5,

resulting in a higher number of cases per capita.

Figure S.8: Realized new cases and two-weekly rolling estimates of the effective reproduction
numbers (Ret) for the US

Daily new cases Estimates of Ret

Notes: The reported daily new cases (7-day moving average) are displayed on the left. R̂et = (1− m̂tc̃t) β̂t/γ, where
c̃t is the reported number of infections per capita and γ = 1/14. Wβ = Wm = 2 weeks. The joint estimation starts
when c̃t > 0.01. The initial guess estimate of the multiplication factor is 5. The simulation uses the single group
model with population size n = 50, 000. The number of replications is 500. The number of removed (recoveries +
deaths) is estimated recursively using R̃t = (1− γ) R̃t−1 + γC̃t−1, with C̃1 = R̃1 = 0.

Figure S.9 presents the 2-weekly rolling estimates of Ret for the 48 contiguous states and the

District of Columbia over the period March 2020 to August 7, 2021. For simplicity, we used a

fixed MF = 3 in the estimation.S12 It can be seen that the estimates share similar comovements

S12Some states had large-scale retrospective reporting or correction that resulted in drastic changes in the esti-
mates. See the figure notes and also the readme file at the CSSE repository for more details.
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but also display interesting patterns of heterogeneity across states. Overall, we observe that Ret

rises above one around July and November 2020 and then increases quite rapidly again in July

2021 in most states. The peaks of the estimates were largely around 1.5—1.7 in the first two hikes.

In contrast, the latest surge in Ret was very rapid, reaching nearly two in most states in early

August. This newest wave occurred right after many states had brought down Ret to 0.5, the

lowest level for many places in the US since the pandemic began.
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Figure S.9: Two-weekly rolling estimates of the effective reproduction numbers (Ret) for the
contiguous US, by state

Alabama Arizona

Arkansas California

Colorado Connecticut

Delaware District of Columbia

Notes: R̂et = (1−MFc̃t) β̂t/γ, where MF = 3, c̃t is the reported number of infections per capita, and γ = 1/14.
The number of removed (recoveries + deaths) is estimated recursively using R̃t = (1− γ) R̃t−1 + γC̃t−1 for all
states, with C̃1 = R̃1 = 0. Alabama included 306, 4, 877, and 1, 235 backlogged cases on May 13—15, 2021.
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Figure S.9: (Continued) Two-weekly rolling estimates of the effective reproduction numbers (Ret)
for the contiguous US, by state

Florida Georgia

Idaho Illinois

Indiana Iowa

Kansas Kentucky

Notes: Florida stopped publishing daily case numbers on June 7, 2021. Georgia added 29, 937 antigen positive
cases on November 3, 2020.
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Figure S.9: (Continued) Two-weekly rolling estimates of the effective reproduction numbers (Ret)
for the contiguous US, by state

Louisiana Maine

Maryland Massachusetts

Michigan Minnesota

Mississippi Missouri

Notes: Missouri removed 11, 454 double counted cases on April 17, 2021.
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Figure S.9: (Continued) Two-weekly rolling estimates of the effective reproduction numbers (Ret)
for the contiguous US, by state

Montana Nebraska

Nevada New Hampshire

New Jersey New Mexico

New York North Carolina
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Figure S.9: (Continued) Two-weekly rolling estimates of the effective reproduction numbers (Ret)
for the contiguous US, by state

North Dakota Ohio

Oklahoma Oregon

Pennsylvania Rhode Island

South Carolina South Dakota

Notes: Ohio stopped publishing daily case numbers on June 2, 2021.
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Figure S.9: (Continued) Two-weekly rolling estimates of the effective reproduction numbers (Ret)
for the contiguous US, by state

Tennessee Texas

Utah Vermont

Virginia Washington

West Virginia Wisconsin
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Figure S.9: (Continued) Two-weekly rolling estimates of the effective reproduction numbers (Ret)
for the contiguous US, by state

Wyoming

S6 Estimates of the multiplication factor

This section presents additional estimation results of the multiplication factor for the selected

European countries and the US. It also compares the number of cases per capita with and without

adjusting for under-reporting.

Figure S.10 compares the 2- and 3-weekly estimates of MF for the six European countries

considered in the main paper. As the figure shows, the 3-weekly estimates of MF are slightly higher

than the 2-weekly estimates. Still, overall they are very close and lead to negligible differences in

the estimates of transmission rates, as we have seen in Figure S.7.

It is interesting to compare the reported number of total cases with the case numbers after

adjusting for under-reporting using the 2-weekly estimates of the MF, which are displayed in

Figure 3 of the main paper. Figure S.11 plots the 7-day moving average of infected cases (per

100, 000 people) for the six countries using the more recent data as of August 5, 2021. The left

panel displays the raw data. The right panel shows the MF-adjusted total cases computed by

accumulating m̂t×∆c̃t from the start of the epidemic, where the MF estimates, m̂t, was updated

every two weeks with values in between obtained by linear interpolation, and ∆c̃t is the reported

number of daily new cases (per 100k population). The MF is fixed at the last estimate for the

period after the joint estimation ends.S13 The figure clearly shows that it is important to adjust

S13We also considered stopping the joint estimation when the share of the population fully vaccinated reaches 15
percent. The results are quite similar and available upon request.
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Figure S.10: Rolling estimates of the multiplication factor using the 2- and 3-weekly rolling
windows for selected European countries

Austria France

Germany Italy

Spain UK

Notes: See the notes to Figure S.7.
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Figure S.11: Total number of infected cases for selected European countries, without and with
adjusting for under-reporting

Reported number of cases (ct) ct after adjusting for under-reporting

Notes: All series are 7-day moving averages. The figure on the right shows the adjusted number of total cases
computed by accumulating m̂t × ∆c̃t from the outbreak to August 5, 2021, where the multiplication factor, mt,
was updated every two weeks with values in between obtained by linear interpolation.

the case counts over time by the time-varying MF. We find that, as of August 5, 2021, the number

of total cases may be underestimated by three times in Spain, four times in Austria, and five times

in the other four countries. After adjusting for under-reporting, we see that Spain ranks fifth in

the case rate instead of first. France and the UK have the highest number of cases per capita after

adjustment among these countries, approaching 40 percent in comparison to 8 percent without

adjustment. In contrast, Germany did the best job controlling the total cases even after taking

under-reporting into account.

We next turn to the estimates of MF for the US. The left panel of Figure S.12 presents the

2-weekly estimates of MF obtained by the joint estimation method over the period of March

2020 to March 2021 (when the share of the population fully vaccinated reached 10 percent). The

results show that the estimated MF gradually declined from 7 to 3 from July 2020 to March

2021. This finding is in line with an estimate of 7 times under-reporting by mid-July in the US

based on antibody tests (Kalish et al., 2021). The right panel of Figure S.12 shows the calibrated

new cases compared with the realized cases that have been multiplied by the estimated MF. We

can immediately observe that the calibrated cases match the several waves of Covid in the US

reasonably well.

S33



Figure S.12: Estimates of the multiplication factor and comparison of realized and calibrated new
cases for the US

Estimates of MF Realized and calibrated new cases

Notes: R̂et = (1− m̂tc̃t) β̂t/γ, where c̃t is the reported number of infections per capita and γ = 1/14. Wβ = Wm = 2
weeks. The joint estimation starts when c̃t > 0.01. The initial guess estimate of the multiplication factor is 5.
The simulation uses the single group model with population size n = 50, 000. The number of replications is 500.
The number of removed (recoveries + deaths) is estimated recursively using R̃t = (1− γ) R̃t−1 + γC̃t−1, with
C̃1 = R̃1 = 0. Realized series (7-day moving average) multiplied by the estimated multiplication factor is displayed
in red.

S7 Additional counterfactual exercises

S7.1 Social distancing and vaccination

This section presents the results of additional counterfactual experiments of social distancing and

vaccination. We consider the same social distancing policy as described in the main paper: the

(scaled) transmission rate, βt/γ, equals 3 in the first two weeks, falls to 0.9 linearly over the

next three weeks, and remains at 0.9 for eight weeks. When social distancing is relaxed, the

transmission rate increases to 1.5 linearly over the next three weeks and remains at 1.5 afterward.

Figure S.13 displays the time profile of the transmission rate under this social distancing policy.

Figure S.14 complements Figure 5 of the main paper and presents additional simulation out-

comes under different vaccination coverages, start times, speeds of delivery, and vaccine effi cacies

under the random vaccination scheme. Specifically, Figure S.14(a) displays the simulated new

cases under 50 and 75 percent vaccination coverages, which are assumed to take 8 and 12 weeks,

respectively. The epidemic lasts much longer if the vaccine uptake is lower, although the number
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Figure S.13: Time profile of the transmission rate under social distancing

of daily new cases and total cases end up very similar. In both cases, the second epidemic wave

is successfully prevented. Two important reasons are that the vaccination started early enough

(during the last month of social distancing), and the vaccine is highly effective. If the vaccination

begins at the end of social distancing (as shown in Figure S.14(b)), there will be a resurgence of

cases, resulting in a longer duration of the epidemic and a greater number of total cases. Figure

S.14(c) shows that if 75 percent of the population gets vaccinated over 8 rather than 12 weeks, the

epidemic could end within 200 days, and there will not be any uptick in new cases when the social

distancing is relaxed. Finally, Figure S.14(d) shows that if the vaccine has 66 percent effi cacy

instead of 95 percent, one would expect to see a small second wave of cases, and the epidemic

would last for 65 days longer.S14

Figure S.15 compares the simulated group-specific and aggregate outcomes under random vac-

cination and vaccination in decreasing age order. It is assumed that 50 percent of the population

is vaccinated over 8 weeks, as opposed to 75 percent vaccinated over 12 weeks as considered in

the main paper. Comparing Figure S.15 with Figure 6 of the main paper reveals that if the

vaccine coverage is lower, prioritizing the elderly would lead to a much higher level of infections

for the younger age groups. The proportions of infected in Groups 2 and 3 could reach 24 and 23

percent, respectively. The age-based vaccination would also substantially increase the duration of

the epidemic from 233 to 380 days if the vaccine coverage decreases from 75 to 50 percent. By

S14The Pfizer-BioNTech, Moderna, and Johnson & Johnson vaccines reported effi cacy rates of 95%, 94.1%, and
66.3%, respectively, in preventing symptomatic Covid-19 infection (Oliver et al., 2020, 2021, and 2021).
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Figure S.14: Simulated average number of new cases for different random vaccination experiments,
with the same social distancing policy

(a) Comparing different vaccination coverages

Notes: The average number of new cases over B = 1, 000 replications is displayed. Population size is n = 10, 000.
The time profile of βt/γ under social distancing is displayed in Figure S.13. The vaccination starts during the last
month of social distancing (i.e., the 10th week after the outbreak). The vaccine effi cacy is εv = 0.95. If 75 percent
of the population is randomly vaccinated over 12 weeks, c∗ = B−1

∑B
b=1 maxt c

(b)
t = 0.12, and the duration of the

epidemic is T ∗ = 215 days. If 50 percent of the population is randomly vaccinated over 8 weeks, c∗ = 0.12, and
T ∗ = 270 days.

(b) Comparing different vaccination start times

Notes: The average number of new cases over B = 1, 000 replications is displayed. Population size is n = 10, 000.
The time profile of βt/γ under social distancing is displayed in Figure S.13. The vaccine effi cacy is εv = 0.95. 75
percent of the population is randomly vaccinated over 12 weeks. If the vaccination starts during the last month of
social distancing (i.e., the 10th week after the outbreak), c∗ = B−1

∑B
b=1 maxt c

(b)
t = 0.12, and the duration of the

epidemic is T ∗ = 215 days. If the vaccination starts at the end of social distancing (i.e., the 13th week after the
outbreak), c∗ = 0.15, and T ∗ = 248 days.
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Figure S.14: (Continued) Simulated average number of new cases for different random vaccination
experiments, with the same social distancing policy

(c) Comparing different vaccination speeds

Notes: The average number of new cases over B = 1, 000 replications is displayed. Population size is n = 10, 000.
The time profile of βt/γ under social distancing is displayed in Figure S.13. The vaccination starts during the last
month of social distancing (i.e., the 10th week after the outbreak). The vaccine effi cacy is εv = 0.95. 75 percent of
the population is randomly vaccinated. If the vaccination is administered over 12 weeks, c∗ = B−1

∑B
b=1 maxt c

(b)
t =

0.12, and the duration of the epidemic is T ∗ = 215 days. If the vaccination is administered over 8 weeks, c∗ = 0.11,
and T ∗ = 197 days.

(d) Comparing different vaccine effi cacies

Notes: The average number of new cases over B = 1, 000 replications is displayed. Population size is n = 10, 000.
The time profile of βt/γ under social distancing is displayed in Figure S.13. The vaccination starts during the
last month of social distancing (i.e., the 10th week after the outbreak). 75 percent of the population is randomly
vaccinated over 12 weeks. If the vaccine effi cacy is εv = 0.95, c∗ = B−1

∑B
b=1 maxt c

(b)
t = 0.12, and the duration of

the epidemic is T ∗ = 215 days. If εv = 0.66, then c∗ = 0.13, and T ∗ = 280 days.
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Figure S.15: Simulated average number of group-specific and aggregate new cases, assuming social
distancing combined with random vaccination or vaccination in decreasing age order

Group 1: [0, 15) Group 2: [15, 30)

Random: c∗1 = 0.04 Random: c∗2 = 0.14
By age: c∗1 = 0.07 By age: c∗2 = 0.24

Group 3: [30, 50) Group 4: [50, 65)

Random: c∗3 = 0.16 Random: c∗4 = 0.13
By age: c∗3 = 0.23 By age: c∗4 = 0.12

Group 5: 65+ Aggregate

Random: c∗5 = 0.10 Random: c∗ = 0.12
By age: c∗5 = 0.08 By age: c∗ = 0.15

Notes: The average number of new cases over B = 1, 000 replications is displayed. Population size is n = 10, 000.
The time profile of βt/γ under social distancing is displayed in Figure S.13. The vaccination starts during the
last month of social distancing (i.e., the 10th week after the outbreak). 50 percent of the population is vaccinated
over eight weeks. The vaccine effi cacy is εv = 0.95. The duration of the epidemic is T ∗ = 270 days under
random vaccination, and T ∗ = 380 days under vaccination by decreasing age order. c∗` = B−1

∑B
b=1 maxt c

(b)
`t , for

` = 1, 2, . . . , 5, and c∗ = B−1
∑B
b=1 maxt c

(b)
t .
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contrast, the random vaccination strategy would increase the duration from 215 to 270 days.

S7.2 Counterfactual outcomes of early interventions in UK and Ger-

many

To complement Figure 7 presented in the main paper assuming that the German (UK) lockdown

had been delayed (brought forward) one week, we further examine the potential outcomes if the

lockdown had been delayed or advanced two weeks. As shown in Figure S.16, if the German

lockdown had been delayed one week, there would have been a whopping five-fold increase in

both infected and active cases. By contrast, if the UK lockdown had been implemented two weeks

earlier, both infected and active cases could have been one-fifth of the realized level. These results

further highlight the importance of taking mitigation actions early in an epidemic outbreak.

S8 Data Sources

This section provides sources of all the data used in our study. For the multigroup model, the

latest population estimates by age for Germany are sourced from the database of the Federal

Statistical Offi ce of Germany at https://www-genesis.destatis.de/genesis/online. The

large-scale social contact surveys by Mossong et al. (2008) provides detailed information on

the contact patterns in Germany, and the age-specific contact matrix can be conveniently con-

structed using the Social Contact Rates (SOCRATES) Data Tool by Willem et al. (2020) avail-

able at https://lwillem.shinyapps.io/socrates_rshiny/. The data on Germany’s Covid-

19 cases by age group are retrieved from the website of the Robert Koch Institute at http:

//www.rki.de/covid-19-altersverteilung.

In matching the model with empirical evidence, the primary data source for the Covid-19

cases is the repository by the Center for Systems Science and Engineering (CSSE) at Johns

Hopkins University available at https://github.com/CSSEGISandData/COVID-19. The Covid-

19 cases for each state in the US were aggregated from the county-level data, also available

at the CSSE’s repository. Since the CSSE data for France and Spain contain negative new
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cases at the time of our access, for these two countries we used the data compiled by the World

Health Organization available at https://covid19.who.int/WHO-COVID-19-global-data.csv.

The population data (for year 2019) are obtained from the World Bank database at https:

//data.worldbank.org/indicator/SP.POP.TOTL. The lockdown dates across countries can be

found at https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdowns.

The effi cacy rates of the Pfizer-BioNTech, Moderna, and Johnson & Johnson vaccines are

reported in the CDC’s Morbidity and Mortality Weekly Reports by Oliver et al. (2020), Oliver

et al. (2021), and Oliver et al. (2021), respectively. The shares of people fully vaccinated are

sourced from the Our World in Data Covid vaccination dataset at https://github.com/owid/

covid-19-data/tree/master/public/data/vaccinations/.

S40



Figure S.16: Counterfactual number of infected and active cases for Germany and UK under
different lockdown scenarios

What if the German lockdown was delayed two weeks?

Infected cases Active cases R̂et

What if the UK lockdown was brought forward two weeks?

Infected cases Active cases R̂et

Notes: The simulation uses the single group model with the Erdős-Rényi random network and begins with 1/1000
of the population randomly infected on day 1. The population size used in the simulation is n = 50, 000. The
recover rate is γ = 1/14. The number of removed (recoveries + deaths) is estimated recursively using R̃t =

(1− γ) R̃t−1 + γC̃t−1 for both countries, with C̃1 = R̃1 = 0, where C̃t is the reported number of infections. β̂t
is the 2-weekly rolling estimate computed by (49) assuming MF = 5. The mean of R̂(b)et =

(
1− c(b)t

)
β̂t/γ, for

b = 1, 2, . . . , 1000 replications, is displayed in the last column.
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