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Appendix A Theoretical Results

A.1 Model

Suppose we are interested in estimating the treatment effect of a binary treatment D on

outcome Y in a primary population of interest, which is confounded by measured covariates

X and unmeasured ones U , with the aid of an instrumental variable Z. However, we only

observe (Yi, Zi, Xi), i = 1, ..., N1 from this population Fp. As a remedy, suppose an addi-

tional sample (Dj, Zj, Xj), j = 1, ..., N0 is available from an auxiliary population Fa, possibly

different from the primary population. Let R be an indicator variable equal to 1 if drawn

from the primary population and 0 otherwise. We use the notation D(0) to represent the

latent D in the primary sample. The following assumptions give a formal definition of the

data combination model.

Assumption A1 (Random Sampling). With probability Q ∈ (ξ, 1− ξ) for 0 < ξ < 0.5, we

draw a unit at random from Fp and record its realizations of Y , Z, and X, otherwise we
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draw a unit at random from Fa and record its realizations of D, Z, and X.

Assumption A2 (Weak Overlap). Let Xp = {x : fp(x) > 0} and Xa = {x : fa(x) > 0},

then Xp ⊆ Xa.

Assumption A3 (Conditional Distributional Equality). Fp(D(0)|Z,X) = Fa(D|Z,X),

Fp(Y |Z,X) = Fa(Y |Z,X)

Similar to Graham, Pinto, and Egel (2016); Shu and Tan (2020), Assumption A1 defines

how the data are generated. Assumption A2 states that the support of the common variables

(Z,X) in the primary sample is contained within the support of the auxiliary sample. This

ensures that for each unit in the study (primary) sample, there will be matching units with

similar values of X in the auxiliary sample.1 Assumption A3 requires predictive invariance

for the treatment between the two heterogeneous populations. The distributions of (Y, Z,X)

and (D,X,Z) in the two populations differ only in terms of their marginal distributions for

the always measured variable, (Z,X). This assumption is similar to the idea of selection-

on-observables.

Let P ∗ be the matched sample generated by matching each unit in the primary sample,

i, to the auxiliary sample, J(i) with replacement. We only consider one-to-one matching,

since the auxiliary sample in our empirical application is only slightly larger than the pri-

mary sample. We choose the sets of matches J(i) to minimize the sum of the matching

discrepancies,
∑N1

i=1 d(Xi, Xj(i)), where d(·) is the distance metric to measure the matching

discrepancies. The commonly used distance metrics include, for example, the Mahalanobis

distance. Similar to the matching literature, we assume that the sum of matching dis-

crepancies vanishes (i.e., 1√
N1

∑N1

i=1 d(Xi, Xj(i))
p−→ 0) quickly enough to allow asymptotic

unbiasedness as N0, N1 →∞ with N0 > N1.

We now describe the population distribution targeted by the matched sample, P ∗. Since

Fp(·) and Fa(·) are the cumulative distribution functions from the primary and auxiliary

1In the empirical application this is also verified: for less than 5% of the individuals in the main sample,
we can’t find a match from the auxiliary sample.
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samples, we define Ep[·] and Ea[·] as the corresponding expectation operators. We define a

matching target distribution, F ∗p , as

E∗p [(D,Z,X) ∈ A|R = 1] = Ep[(D,Z,X) ∈ A|R = 1] and

E∗p [(D,Z,X) ∈ A|R = 0] = Ep[Ea[(D,Z,X) ∈ A|Z,X,R = 0]|R = 1],

where E∗p represents the corresponding expectation operators on matched targeting distri-

bution and R an indicator that equals 1 for the primary sample and 0 otherwise. The first

expression holds because the primary sample is our matched targeting distribution. The

second expression, the distribution of (D,Z,X) in the auxiliary sample, is generated by in-

tegrating the conditional distribution of (D,Z,X) given Z,X over the distribution of Z,X

in the primary sample.

Assumptions A1, A2, and A3 allow researchers to balance the primary and the auxiliary

sample. To proceed, let K = g(Z,X) be a (k× 1) vector of functions of (Z,X), and let β̃ be

the vector of regression coefficients obtained from regressing D on K in the matched sample.

The choice of K can be but is not limited to (Z,X). To ensure that matching is working,

we also need to assume that conditional expectations are well-behaved and H = E(KK ′) is

invertible. Other assumptions can be found in Abadie and Imbens (2012).

The following Proposition A1 formalizes the idea that the first-stage estimates of the

matched sample recover the parameters of the matching target distribution (i.e., the distri-

bution of the primary sample).

Proposition A1. Under regularity conditions, the regression coefficients (β̃) of D on K in

the matched sample, P ∗, are unbiased estimates of the analogous regression coefficients (β)

in the population of the primary sample.

Proof. We use the notation D(0) to represent the latent D in the primary sample. Therefore,

the regression coefficient in the primary (target) sample is defined by Ep[(D(0)−K ′b)2].
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Ep[(D(0)−K ′b)2] = Ep[Ep[(D(0)−K ′b)2|Z,X]] (1)

= Ep[Ea[(D −K ′b)2|Z,X]] (2)

= Ep[Ea[(D −K ′b)2|Z,X,R = 0]|R = 1] (3)

= E∗[(D −K ′b)2|R = 0] (4)

The equality in (6) follows from the law of iterated expectations; the equality in (7) follows

from propensity score equality (Assumption 3). Equations (8) and (9) follow from the

definition of the matching target distribution. Until here, we have shown that matching

under propensity score equality allows us to reproduce the first stage setting for the primary

sample. Therefore, the regression coefficient in the primary sample is recovered using the

matched sample.

To further establish the large sample property of the estimator, let β̃ be the vector of the

sample regression coefficients obtained from regressing D on K in the matched sample,

β̃ = argmin
b∈Rk

1

N1

∑
i∈P ∗

(D −K ′b)2) = (
1

N1

∑
i∈P ∗

KK ′)−1
1

N1

∑
i∈P ∗

KD. (5)

From 6-9, the matching procedure makes sure that 1
N1

∑
i∈P ∗ KK ′

p−→ H. H = E(KK ′) is

the Hessian, which is invertible by assumption.

β̃ − β = (
1

N1

∑
i∈P ∗

KK ′)−1
1

N1

∑
i∈P ∗

(KD −KK ′β)
p−→ 0 (6)
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A.2 Nonlinear Models

Above, we used a linear model for the second step after balancing the primary and the

auxiliary sample. The results also hold for more complex (nonlinear) models. For example,

we can consider the following moment condition proposed in Graham, Pinto, and Egel (2016)

Ep[ψp(Y ; β)− ψa(D,Z1; β)e(Z)] = 0 (7)

with Z = (Z ′0, Z
′
1)
′. Ep[·] denotes expectations taken with respect to the primary population.

β is the parameter of interest. There exist identification results for moment condition 7,

when D and Y are observed in two different samples (Chen, Hong, Tarozzi et al., 2008).

Note that both TSIV and TSTSLS methods can be seen as a special case of the moment

condition 7. For example, we have the linear model of Angrist and Krueger (1992) if we take

in 7 e(Z) = Z, ψp(Y ; β) = Y and ψa(D,Z1; β) = D′γ1 + Z ′1γ2 with β = (γ1, γ
′
2)
′.

A.3 Simulation Results

We perform simulation results for the two classical methods (TSIV and TSTSLS), the Inverse

Probabilty Tilting method (IPT), and the two-step-TSTSLS estimator proposed in this

paper. In each of our experiments, we assume that X in both the primary sample and the

auxiliary sample is distributed according to a truncated normal distribution, with support

[0, 2]. The location and scale parameters of both distributions, (µp, ω
2
p) and (µa, ω

2
a), may

differ. We assume a multinomial sampling scheme: with probability Q0 = 1/2 a draw

of (Y, Z,X) is taken at random from the population to constitute the primary sample;

otherwise, a draw of (D,Z,X) is taken from the population to constitute the auxiliary

sample. We set µp = 1.5 and µa = 0.5. We vary ωp and ωa to reflect the overlap between

the primary sample and the auxiliary sample. In case 1, we take ωp = ωa = 1. Alternatively,

in case 2, we take ωp = ωa = 0.3. In case 1, there is much overlap, which means in practice

that the distribution of X does not differ too much in both samples. In case 2, there is little
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overlap, implying that the distribution of X in both samples differs a lot. Finally, we assume

that Y and D are generated according to the following data generating process:

For the primary sample we generate data according to

Y = 0.5D + U, (8)

and the endogenous variable D in the auxiliary sample is generated by

D = 0.5Z + θXZ + V, (9)

where Z is distributed as N(0, 1) and (U, V ) are distributed independently of (Z,X) as

(
U

V

)
∼ N

(
0

0

)
,

(
1 0.5

0.5 1

)
. (10)

For each simulation, we generated an i.i.d. sample of size N0 = 1000 of (Y, Z,X) from the

population (the primary sample) and an i.i.d. sample of size N1 = 1000 of (D,Z,X) from the

population (the auxiliary sample). We then merge the two samples. With θ = 0, the setting

is simplified to the classical two sample models. With θ 6= 0, we simulate misspecification.

Table A1 presents the results for four different scenarios. In scenario 1 the model is

correctly specified, the overlap is good (ωp = ωa = 1) and there is no misspecification

(θ = 0). All four methods (see the first four rows) perform well with a very small bias and

a small Root Mean Squared Error (RMSE). However, as expected, the two-step estimator

performs worse than the other three methods on efficiency. The two-step-TSTSLS does not

use the information of all data points, which results in a larger RMSE. In scenario 2, the

overlap is good, but the model is misspecified (θ = 0.3). The IPT estimator performs best

with the smallest bias and RMSE. We next turn to situations where the overlap in the

distribution of X in both samples is poor. In scenario 3, we take (θ = 0) (i.e., the model

is correctly specified), while in scenario 4, we assume that both the model is misspecified
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(θ = 0.3) and the overlap is poor. In scenario 3, the two-step-TSTSLS estimator performs

best on the bias, but the RMSE (like the IPT estimator) is less efficient. In scenario 4, all

estimators are biased, but the two-step-TSTSLS estimator performs best.

Table A1. Monte Carlo Results

(1) (2) (3) (4)

N Asym. Bias Std dev. RMSE

Scenario 1: Good overlap and correct specification
TSIV 1000 0.005 0.080 0.080
TSTSLS 1000 0.004 0.080 0.080
IPT 1000 0.006 0.084 0.084
TWO-STEP-TSTSLS 1000 0.006 0.085 0.085

Scenario 2: Good overlap and incorrect specification
TSIV 1000 0.060 0.054 0.081
TSTSLS 1000 0.059 0.054 0.080
IPT 1000 0.003 0.054 0.054
TWO-STEP-TSTSLS 1000 0.028 0.053 0.060

Scenario 3: Bad overlap and correct specification
TSIV 1000 0.002 0.084 0.084
TSTSLS 1000 0.001 0.084 0.084
IPT 1000 -0.862 26.666 26.666
TWO-STEP-TSTSLS 1000 0.016 0.117 0.119

Scenario 4: Bad overlap and incorrect specification
TSIV 1000 0.202 0.065 0.212
TSTSLS 1000 0.200 0.064 0.210
IPT 1000 0.108 1.910 1.912
TWO-STEP-TSTSLS 1000 0.088 0.078 0.117

In a second set of simulations, we vary the trade-off between efficiency (RMSE) and

bias when the model is misspecified with a varying degree of misspecification. For these

simulations we fix the overlap parameter ωp = 0.3 (bad overlap). We subsequently take 1,000

repeated simulations under four scenarios where we vary the degree of misspecification, i.e.

we vary θ. In scenario 1, we take θ = 0, i.e. the model is specified correctly. This scenario

is equal to the scenario 3 of Table A1. In scenario 2 to 4, we gradually increase the degree

of misspecification, with steps of 0.1, i.e. we take θ = 0.1, 0.2, 0.3 for scenarios 2, 3, 4,

respectively. We report the results of these simulations in Table A2.
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In scenario 1 The bias of the TSIV, TSTSLS and the two-step-TSTSLS are similar

and outperform the IPT estimator. However, the two-step-TSTSLS (and the IPT) is less

efficient than the TSIV and TSTSLS estimators. When we gradually increase the degree

of misspecification (scenarios 2 to 4), the performance of the TSIV, the TSTSLS and the

IPT estimators deteriorate quickly. The two-step-TSTSLS estimator performs very well in

comparison with the other estimators. The IV estimate can be understood as the ratio of

the intention to treat estimate and the first stage estimate. Therefore, misspecifications in

the first stage regression translate in relatively large biases. Similarly, misspecifications in

the first stage will increase the bias of the TSTSLS. The two-step-TSTSLS is robust against

misspecifications and therefore we suggest that this method can be used as a robustness

check in empirical applications.

Table A2. Additional Monte Carlo Results

(1) (2) (3) (4)

N Asym. Bias Std dev. RMSE

Scenario 1: Bad overlap and correct specification (θ = 0.0)
TSIV 1000 0.002 0.084 0.084
TSTSLS 1000 0.001 0.084 0.084
IPT 1000 -0.862 26.666 26.666
TWO-STEP-TSTSLS 1000 0.016 0.117 0.119

Scenario 2: Bad overlap and incorrect specification (θ = 0.1)
TSIV 1000 0.080 0.071 0.107
TSTSLS 1000 0.079 0.071 0.106
IPT 1000 0.492 3.905 3.934
TWO-STEP-TSTSLS 1000 0.045 0.095 0.105

Scenario 3: Bad overlap and incorrect specification (θ = 0.2)
TSIV 1000 0.150 0.068 0.165
TSTSLS 1000 0.148 0.068 0.163
IPT 1000 0.419 10.174 10.178
TWO-STEP-TSTSLS 1000 0.071 0.085 0.111

Scenario 4: Bad overlap and incorrect specification (θ = 0.3)
TSIV 1000 0.202 0.065 0.212
TSTSLS 1000 0.200 0.064 0.210
IPT 1000 0.108 1.910 1.912
TWO-STEP-TSTSLS 1000 0.088 0.078 0.117
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Appendix B Additional Figures and Tables

Figure B1. Cohort Loss in CFPS
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Notes: The figure compares the relative survivor birth cohort sizes in our data set
(CFPS-2010, the solid line) with the relative cohort sizes in Meng, Qian, and Yared
(2015) (Census1990, the dashed line).
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Table B1. Effects on Separate Components

(1) (2) (3) (4)

Components

Metabolic High blood
syndrome (index) Diabetes pressure Obesity

Panel A: Female

Hunger before age 5 0.38*** 0.034 0.089* 0.058
(0.15) (0.021) (0.052) (0.039)

Mother literate 0.0011 -0.0023
(0.0054) (0.0069)

Age 0.041 0.12*
(0.038) (0.070)

Age squared(/100) -0.039 -0.12*
(0.037) (0.069)

Observations 2517 2517 2517 2517

Panel B : Male

Hunger before age 5 0.032 -0.031 -0.038 0.13
(3.93) (0.059) (0.30) (0.093)

Mother literate -0.0062 0.022**
(0.0044) (0.011)

Age -0.0031 0.064
(0.041) (0.096)

Age squared(/100) 0.0017 -0.059
(0.040) (0.094)

Observations 2612 2612 2612 2612

Notes: Each coefficient is from a separate regression. All regressions use the log(EDR) as the instru-
mental variable. The sample contains all individuals born between 1957 and 1962 in three waves of
CFPS. Three components, diabetes, hypertension, and obesity, are dummy indicators constructed from
CFPS. Standard errors clustered by province based on matched bootstrap (Abadie and Spiess, 2019)
with 999 replications appear in parentheses. *, **, *** indicates significance at the 10%, 5% and 1%
level respectively.
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Table B2. Reduced-form Estimates at Age 0-5

(1) (2) (3) (4)

Metabolic syndrome (index)

Female Female Male Male

log(EDR) 0.033*** 0.034*** 0.0021 0.0032
(0.013) (0.012) (0.013) (0.013)

Mother literate 0.033 0.030
(0.030) (0.028)

Age 0.43*** 0.14
(0.16) (0.087)

Age squared(/100) -0.40** -0.13
(0.16) (0.084)

Observations 2517 2517 2612 2612

Notes: The results are based on reduced-form estimates from separate regressions. All regressions
use the (matched) primary sample of individuals born between 1957 and 1962 from three waves of the
China Family Panel Survey (CFPS). Standard errors clustered by province based on bootstrap with
999 replications appear in parentheses. *, **, *** indicates significance at the 10%, 5% and 1% level,
respectively.
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Table B3. Effects of Hunger at Age 0-5

(1) (2) (3) (4)

Metabolic syndrome (index)

Female Female Male Male

Panel A: log(EDR) as the instrumental variable

Hunger before age 5 0.38*** 0.40*** 0.032 0.048
(0.14) (0.14) (0.46) (0.36)

Mother literate 0.025 0.032
(0.030) (0.032)

Age 0.65* 0.13
(0.35) (0.21)

Age squared(/100) -0.61* -0.12
(0.34) (0.21)

Observations 2517 2517 2612 2612

Panel B: EDR as the instrumental variable

Hunger before age 5 0.40 0.43 0.031 0.060
(0.41) (0.39) (2.57) (0.55)

Mother literate 0.024 0.032
(0.035) (0.034)

Age 0.68 0.13
(0.57) (0.31)

Age squared(/100) -0.65 -0.12
(0.56) (0.31)

Observations 2517 2517 2612 2612

Notes: The results are based on TSIV estimates from separate regressions. All regressions are based
on the (matched) primary sample of individuals born between 1957 and 1962 from three waves of the
China Family Panel Survey (CFPS). Panel A uses the log(EDR) as the instrumental variable. Panel B
uses the EDR as the instrumental variable. Standard errors clustered by province based on matched
bootstrap (Abadie and Spiess, 2019) with 999 replications appear in parentheses. *, **, *** indicates
significance at the 10%, 5% and 1% level, respectively.
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Table B4. OLS Estimates at Age 0-5

(1) (2) (3) (4)

Metabolic syndrome (index)

Female Female Male Male

Panel A: Matched recall

Hunger before age 5 -0.0017 -0.00034 0.055* 0.057
(0.037) (0.035) (0.033) (0.035)

Mother literate 0.032 0.032
(0.029) (0.028)

Age 0.41*** 0.13
(0.15) (0.089)

Age squared(/100) -0.38*** -0.12
(0.15) (0.087)

Observations 2517 2517 2612 2612

Panel B: Own recall

Hunger before age 5 -0.022 -0.039 -0.019 -0.023
(0.079) (0.074) (0.040) (0.042)

Mother literate 0.032 0.029
(0.029) (0.027)

Age 0.41** 0.13
(0.16) (0.083)

Age squared(/100) -0.38** -0.12
(0.16) (0.080)

Observations 2517 2517 2612 2612

Notes: The results are based on simple OLS regressions. All regressions use the (matched) primary
sample of individuals born between 1957 and 1962 from three waves of the China Family Panel Survey
(CFPS). Standard errors clustered by province based on bootstrap with 999 replications appear in
parentheses. *, **, *** indicates significance at the 10%, 5% and 1% level, respectively.
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Table B5. Effects of Hunger at Age 0-5

(1) (2) (3) (4)

Hospital Visits

Female Female Male Male

Hunger before age 5 0.21 0.21 0.077 0.078
(0.14) (0.16) (0.18) (0.38)

Mother literate 0.0033 -0.025*
(0.017) (0.014)

Age 0.19 0.11
(0.23) (0.18)

Age squared(/100) -0.18 -0.11
(0.22) (0.17)

Observations 2517 2517 2612 2612

Notes: The results are based on simple OLS regressions. All regressions use the (matched) primary
sample of individuals born between 1957 and 1962 from three waves of the China Family Panel Survey
(CFPS). Standard errors clustered by province based on matched bootstrap (Abadie and Spiess, 2019)
with 999 replications appear in parentheses. *, **, *** indicates significance at the 10%, 5% and 1%
level, respectively.

Table B6. Metabolic Syndrome and Hospital Visits

(1) (2) (3) (4)

Hospital Visits

Female Female Male Male

Metabolic syndrome(index) 0.069*** 0.070*** 0.027 0.028
(0.020) (0.019) (0.027) (0.027)

Mother literate 0.012 -0.027*
(0.018) (0.015)

Age 0.049 0.13*
(0.12) (0.072)

Age squared(/100) -0.044 -0.12*
(0.11) (0.068)

Observations 2517 2517 2612 2612

Notes: The results are based on simple OLS regressions. All regressions use the (matched) primary
sample of individuals born between 1957 and 1962 from three waves of the China Family Panel Survey
(CFPS). Standard errors clustered by province based on bootstrap with 999 replications appear in
parentheses. *, **, *** indicates significance at the 10%, 5% and 1% level, respectively.
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