“T'wo are better than one:

volatility forecasting using multiplicative

component GARCH-MIDAS models”

Online Appendix

Christian Conrad* and Onno Kleen'

August 17, 2019

Contents

[A_Proofs

B Additional Tabl

[C Additional Figures|

[D Simulations: Violation of Assumption 3|

E Simulat Th Diffusion Lim

[[*_Datal

|G Description of Benchmark Models|

[H Empirical Analysis: 95% Model Confidence Sets|

12

15

17

19

*Christian Conrad, Department of Economics, Heidelberg University, Bergheimer Strasse 58, 69115 Heidelberg, Germany,

Email: christian.conrad@awi.uni-heidelberg.de; Phone: +49 6221 54 3173.

fOnno Kleen (corresponding author), Department of Economics, Heidelberg University, Bergheimer Strasse 58, 69115

Heidelberg, Germany, Email: onno.kleen@awi.uni-heidelberg.de; Phone: +49 6221 54 2930.



A  Proofs

Proof of Proposition 1. The proof follows directly by applying the mutual independence of g;;, 7 and
Z;+ and by noting that Assumption 3 implies E[77]/E[r4]? > 1 if 7 is non-constant. 1

Proof of Proposition 2. First, note that under Assumptions 1, 2, and 3 the covariance Cov(e?, 5?7 i) exists
for every k € IN and is time-invariant. In the proof, we use that 7; and ¢; are independent covariance

stationary processes and that Z; are i.i.d. innovations.

Cov(e?, sf_k)

P C(e?) =
Var(e7) |/ Var(eZ ;)

. E[Ttthk]E[tht?gtfchE_k] - E[Tt]E[thk]
B Var(c?)

E[r:i7i 1)E[9: 2291127 ) — Blrerii] + Elrimi—t] — B[] E[r; 4]
B Var(c?)
B E[rmi_x] — E[Tt]2 (E[Qtzfgtszf_k] - E[gt]E[gt,k]) E[r:7¢_1]
N Var(c?) Var(c?)
_ Cov(7¢,Ty—k) Cov(9: 22, g—x Z¢_1,)(Cov (74, 74—) + E[17])
~ Var(¢?) Var(c?)
i Var(7y) e (ppVar(r,) + E[r¢]?) Var(g.Z?)

"Var(e2) ' "k Var(c?)

Proof of Proposition 8. Employing the assumptions used in the proof of Proposition 2 above, we conclude

similarly:

Cov(o?,0% )

Var(o7) |/ Var(o? )

E[TtTt—k]E[gtgt—k] - E[Tt]E[Tt—k]
Var(o?)
E[rimi k| Elgrgi—k| — Elrimi—i] + E[1e7i-k] — E[r4]E[7;—]
Var(o?)
_ E[rii ] — E[r] + (Elgge—i] — Elge]Elge—k]) Elr7e—]
Var(o?) Var(o7)

_ Cov(ry,7i-r) | Cov(gs, gi—1)(Cov(Te, T—k) + E[r2])
~ Var(o?) Var(o?)
_ . Var(ry) g (PEVar(Tt) + E[Tt]z) Var(g;)
= P Var(o?) 'k Var(o?)

Proof of Proposition 4. Eq. (16) follows directly from the mutual independence of g; ¢, 74, and Z; ;. Next,



eq. (17) is derived as

E[Ql%,t—&—lﬁ] =E [(1 +(a+7/2+ 8" o a1l — 1) 2]

=1+2(a+7v/2+B)" ! (E[g drel = 1) H(a+vy/2+ B)Q(k_l)(E[gitHu] -1)
-0
=1+ (a+v/2+ 5)2(k_1)(E[91,t+1] —1).

In the last step, we use that g 4,1 = g1,4+1. Now, consider the first property: As k — oo, E[gz’tﬂ‘t]
decreases monotonically towards one. Because the numerator decreases while the denominator is constant,
R? is decreasing in k. The limit follows readily from limy_ E[glz t1| J =1

For deriving the second property, note that eq. (16) is a rational function of linear polynomials
in E[r? +1) with negative intercepts and positive gradients. By taking the first derivative, the signs of
intercepts and gradients imply the rational function in E[T% 1) to be strictly increasing.
|

Proof of Lemma 1. Using eq. (4), we obtain

Var(g:me) _ E[g/]E[77] — E[r¢]?

Var(ef)  E[gf]E[r}]x — E[r]?

_ (A= (a+7/2+B))E[r]] — (1~ (a+7/2)°k — 2(a +7/2)8 — B*)E[r]”
(1= (a+7/2+ B))E[rHr — (1 = (a+7/2)%k — 2(a +7/2)8 — 5°)E[r,]*

R} =




B Additional Tables

Table B.1: Monte-Carlo parameter estimates of MS-GARCH-TVI.

w1 w2 o p1,1 p2,2
Panel A: Z, ; ; normally distributed
Monthly T+ 0.029 0.050 0.057 0.910 0.997 0.995
[0.024,0.034] [0.038,0.067] [0.053,0.062] [0.902,0.917] [0.992,0.999] [0.982,0.998]
Daily T+ 0.020 0.038 0.058 0.912 0.993 0.991
[0.016,0.024] [0.029,0.051] [0.054,0.063] [0.906,0.919] [0.986,0.997] [0.978,0.996]
Panel B: Z,, ; ; student-t distributed
Monthly T+¢ 0.028 0.066 0.052 0.914 0.993 0.980
[0.021,0.035]  [0.050,0.088]  [0.045,0.058]  [0.904,0.925]  [0.984,0.997]  [0.941,0.994]
Daily T+ 0.019 0.050 0.053 0.917 0.990 0.978

[0.015,0.024]  [0.038,0.066]  [0.046,0.059]  [0.907,0.925]

[0.980,0.995]

[0.946,0.990)

Notes: The table reports the median MS-GARCH-TVI parameter estimates and in brackets the corresponding
inter-quartile ranges across 2,000 Monte-Carlo simulations in which the true data-generating process is a GARCH-

MIDAS model, see description of Table 1.

Table B.2: Summary statistics of stock market returns and explanatory variables.

Variable Freq. Start Obs. Min. Max. Mean Median Sd. Skew. Kurt.
Stock market data

S&P 500 returns d 1971 11938 -22.90 10.96 0.03 0.04 1.06 -1.04 28.81
VRV d 2000 4600 0.13 8.84 0.87 0.72 0.60 3.22 21.93
RVol(22) d 1989 7390 0.23 5.54 0.95 0.80 0.56 2.97 17.46
Ezxplanatory variables

VIX d 1990 7135 0.58 5.09 1.22 1.10 0.49 2.08 10.63
NFCI w 1973 2470 -0.99 4.67 0.00 -0.33 1.00 1.94 6.53
NAI m 1971 568 -5.16 2.76 -0.00 0.06 1.00 -1.21 6.96
A IP m 1971 568 -4.43 2.38 0.18 0.22 0.72 -1.22 8.82
A Housing m 1971 568 -30.67 25.67 -0.07 -0.19 8.03 -0.03 3.77

Notes: The table presents summary statistics for the different variables, whereby the column “Freq.” indicates whether the data is
observed on a daily (d), weekly (w) or monthly (m) frequency. The column “Start” indicates the year of the first observation for each
variable. The data end in 2018:M4. The reported statistics include the number of observations (“Obs.”), the minimum (“Min.”) and
maximum (“Max.”), the mean and median, the standard deviation (“Sd.”), the skewness (“Skew.”) and the kurtosis (“Kurt.”). We

i=0"i—jt

define RVol(22);; = 4/1/22 221 r? Changes in industrial production and housing starts are measured in month-over-month

log differences, i.e. AXy =100 - (In(X¢) — In(X¢—1)).
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C Additional Figures

Figure C.1: Histograms of standardized GARCH-MIDAS parameter estimates.
(a) Monthly 7, (b) Daily 7¢
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Notes: Standardized empirical distributions of parameter estimates across 2000 simulations are reported. On the left, the
underlying data is generated by a GARCH-MIDAS model with monthly varying 7, on the right with daily varying 7, see
Section 3 for further details. The standard normal distribution is depicted in black.



Figure C.2: Time series of explanatory variables.
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Notes: Daily financial data for the 1990:M1 to 2018:M4 period and macroeconomic data for the 1971:M1 to 2018:M4
period. See Section 4.1 for definitions and Table@ for descriptive statistics of those variables.



Figure C.3:

RVol(22)

Selected weighting schemes for different lag lengths.
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Notes: We depict selected weighting schemes that are implied by full-sample estimates for additional lag lengths K compared
to those discussed in our empirical analysis.

Figure C.4: Weighting schemes for different explanatory variables.
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Notes: For each explanatory variable, the estimated Beta weighting scheme (see eq. (9)) based on full sample estimates is
depicted. For all variables except housing starts, we impose the restriction w; = 1. The corresponding parameters are reported

in Table 4.



Figure C.5: Estimated monthly conditional volatility components.
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Notes: The figure shows the monthly long-run volatility components /727 (blue, solid) and the monthly conditional volatilities \/gar7 ar
(red, dot-dashed) for all GARCH-MIDAS models. To ensure comparability across the seven models, all figures cover the 2000:M1 to
2018:M4 period. Circles correspond to realized volatilities. Volatility is measured on an annualized scale.



D Simulations: Violation of Assumption 3

In the following we present the results of two additional simulations. The simulations cover scenarios
in which Assumption 3 is violated. In this section, we consider daily explanatory variables (i.e. we set
I; = 1) because empirically a violation of Assumption 3 is more likely to occur for daily explanatory
variables than for low-frequency explanatory variables. Both simulations show that even if Assumption 3
is violated, our theoretical results still apply.

First, we consider a daily explanatory variable, X}, that is correlated with the daily innovations ZtE]

Recall that in our simulation the daily innovations are given by

1 N
thi Z,t7
P

ie. Z, "k N(0,1). As before, we model X; as an AR(1) process

X=Xt 1+&
but the innovation is now given by
§i/oe = pe g2t +4/1— Pg,zgn

where &, <y N(0,1), independent of Z; and p¢ ; € [~1,1]. In this setting, the correlation between the
daily innovations Z; and &, is pe ;. We set pg ; = —0.8. The negative correlation between innovations to
returns and innovations to X; mimic the fact that changes in returns and daily measures of risk (such as
the VIX index) are typically negatively correlated. Under our choice of ¢ = 0.98, the contemporaneous
correlation between Z; and X; is -0.16. Z; is also correlated with future X; but uncorrelated with past
X;.

In Table Panel A shows that on average the QML estimates are still close to the true param-
eter values and the asymptotic standard errors are accurate. Most importantly, Panel A of Figure [D.1
illustrates that our results regarding the R2 of a MZ regression still hold when X; and Z; are correlated.
Panel A of Table shows the corresponding MCS inclusion rates. Clearly, the correctly specified
GARCH-MIDAS model with K = 264 and the GARCH-MIDAS with misspecified lag-length still do very
well. In contrast, for forecast horizons of up to two months the forecast performance of the MS-GARCH-

TVI appears to deteriorate considerably.

Second, we consider the GARCH-MIDAS-RV model, i.e. we choose

Xt == RVO](QQ)t =

This choice corresponds to the GARCH-MIDAS-RV specification that is estimated in the empirical ap-

plication in Section 4. Again, Z; is correlated with the contemporaneous and future X; but uncorrelated

1Since I; = 1, we can drop the index i.



with lagged X;. The results for this specification are presented in Panels B of Table Figure and
Table Again, our previous findings regarding the Mincer-Zarnowitz R? and the MCS inclusion rates

are confirmed.

Table D.1: Monte-Carlo parameter estimates: X; and Z; dependent.

o B m 0 wo k—3
Panel A: innovations to X; correlated with Z;
GARCH-MIDAS (264) 0.000 -0.003 -0.001 0.008 0.890 -0.008
{0.008} {0.014} {0.064} {0.075} {5.675}
(0.008)  (0.014)  (0.063)  (0.075)  (7.741)
GARCH-MIDAS (66) 0.000 -0.003 0.002 -0.055 -3.185 -0.006
GARCH 0.003 0.003 0.034 — — 0.017
Panel B: X; given by RVol(22),
GARCH-MIDAS (264) -0.043 -0.034 0.370 -0.533 0.629 0.025
{0.013} {0.098} {0.599} {0.589} {2.432}
(0.013) (0.079) (0.329) (0.321) (4.555)
GARCH-MIDAS (66) -0.045 -0.026 1.067 -1.230 1.823 0.032
GARCH -0.052 0.087 1.373 — — 0.048

Notes: Modified version of Panel A in Table 1 for the case of a daily varying long-term
component but Assumption 3 being violated. In panel A, the true parameters are the
same as in Table 1. However, the innovations &, in the AR(1) process of X; are cor-

related with Zy, &,/0c = pe zZe + /1 - p? 4&.& "~ N(0,1). In Panel B, Assump-
tion 3 is violated by employing a rolling window of past realized volatilities as a covariate,

ie. Xy = RVol(22); = ,/% 2]2-1:0 rf_j. In this case, the GARCH-MIDAS parameters are
given by p =0, «a = 0.1, 8 =0.8, K =264, m = —1, § = 1.6, and w2 = 2.1.

Table D.2: Model confidence set inclusion rates: X; and Z; dependent.

1d 2w 1m 2m 3m
Panel A: innovations to X; correlated with Z;
GARCH-MIDAS (264) 0.953 0.896 0.867 0.802 0.755
GARCH-MIDAS (66) 0.848 0.786 0.832 0.882 0.874
MS-GARCH-TVI 0.362  0.100 0.135 0.471 0.757
GARCH 0.259  0.038 0.048 0.251  0.496
Panel B: X; given by RVol(22),
GARCH-MIDAS (264) 0.932  0.892 0.887 0.878 0.857
GARCH-MIDAS (66) 0.371  0.140 0.097 0.197 0.301
MS-GARCH-TVI 0.743  0.654 0.640 0.757  0.827
GARCH 0.152  0.048 0.046  0.098 0.138

Notes: Modified version of the upper panel of Table 2 for two cases in which
X¢ depends on (past values of) Z;. See notes of Table for a detailed

description of these two scenarios.
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Figure D.1: Mincer-Zarnowitz R%zk—evaluation based on RVi.j ++1—X; and Z; dependent.

(a) innovations to X; correlated with Z,
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detailed description of these two scenarios.
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E Simulation with Diffusion Limit

In this section, we present simulation results for a situation in which the short-term discrete-time GARCH
component (eq. (3)) has been replaced by its diffusion limit (see Nelson, 1990). In accordance with
Andersen and Bollerslev (1998, pp. 894-895 and footnote 18 in the main text), we simulate the continuous-

time data generating process using an Euler discretization scheme:

Es+At = In Ps+A,t —In Ps,t =V Ttgs—l-A,tAWP,s,t

with
Gosns = OA + Gy (1 _ A+ V 255\AW§75¢) ,

where Wps; and Wj,; are independent standard normal variables and the unit-variance GARCH-
consistent parameters are given by

0 = —log(a + )

and
A= 2toga+ 87 { (1= (@ 9)2) - (1=t (1= 5+ a+.5)")
-1
+6~log(a+/3)+2~log(a+ﬂ)2+4-(1—a—ﬁ)} .

We choose A such that we obtain 20 price changes per five-minute interval.

Tables and are the equivalent of Tables 1 and 2. Figures and are the equivalent of
Figures 4 and 5.

As expected, the parameter estimates in Table are close to the ones in Table 1. Only in the case
of a monthly 74 do we observe an increase in bias for wo. Moreover, we note that the excess kurtosis is
considerably higher, even in comparison to our results regarding student-¢ distributed intraday returns.
Figure [E.J makes it clear that we observe the same effect as in Figure 4. The same holds for Figure [E.2]
and the corresponding Figure 5 in the main text. Likewise, the MCS inclusion rates reported in Table
confirm the overall results of Table 2 qualitatively. However, the MS-GARCH-TVI and GARCH models
are less often excluded from the MCS.

Table E.1: Monte-Carlo parameter estimates with GARCH diffusion.

o B m 7 wo k—3
Monthly 7+ GARCH-MIDAS (36) -0.000 -0.007 -0.010 0.037 3.905  0.404
GARCH-MIDAS (12) -0.000 -0.006 -0.009 -0.029 0.396  0.406

GARCH-MIDAS (36, X) -0.000 -0.006 -0.009 -0.001 1.476  0.406
GARCH-MIDAS (12, X) -0.000 -0.005 -0.008 -0.076 -0.818 0.407

GARCH -0.000  0.001 0.005 — — 0.421
Daily ¢ M-GARCH (264) -0.000 -0.006 -0.005 0.010 1.008 0.410
GARCH-MIDAS (66) -0.000 -0.005 -0.003 -0.050 -3.281 0.412

GARCH-MIDAS (264, X) -0.000 -0.006 -0.005 0.003 0.369  0.411
GARCH-MIDAS (66, X) 0.000 -0.005 -0.002 -0.061 -3.448 0.414

GARCH 0.003 0.001 0.030 — — 0.442

Notes: Modified version of the upper panel of Table 1. The only difference is that the short-term
GARCH component is replaced by a consistent diffusion limit.

12



Table E.2: Model confidence set inclusion rates with GARCH diffusion.

1d 2w Im 2m 3m

Monthly 7+ GARCH-MIDAS (36) 0.919 0.864 0.845 0.823 0.811
GARCH-MIDAS (12) 0.918 0.873 0.854 0.846  0.837
GARCH-MIDAS ~(36, X) 0.874 0.784 0.757 0.742  0.720

M-GARCH (12, X) 0.852 0.784 0.746 0.734 0.715
MS-GARCH-TVI 0.875 0.842 0.815 0.775 0.744

GARCH 0.771  0.621 0.571 0.495 0477

Daily T+¢ GARCH-MIDAS (264) 0.966  0.944 0.927 0.860 0.809
GARCH-MIDAS (66) ~ 0.935 0915 0.916 0.907 0.880
GARCH-MIDAS (264, X) 0.932 0.875 0.833 0.801 0.764
GARCH-MIDAS (66, X) 0.905 0.860 0.841 0.848 0.855
MS-GARCH-TVI 0.741 0.615 0.561 0.699 0.839

GARCH 0.676  0.478 0.412 0.497 0.627

Notes: Modified version of the upper panel of Table 2. The only difference is that the
short-term GARCH component is replaced by a consistent diffusion limit.

Figure E.1: Mincer-Zarnowitz R*—monthly 7,—evaluation based on &} ,,, (with diffusion).
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1 8 15 22 8 15 22 8 15 22 8 15 22

Notes: Modified version of Figure 4. The only difference is that the short-term GARCH component is replaced by a consistent diffusion
limit.
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Figure E.2: Mincer-Zarnowitz R>—monthly and daily 7,—evaluation based on RV;. kt+1 (with diffusion).

(a) Monthly 7,

Full sample Low regime Normal regime High regime

GARCH-MIDAS (12) GARCH-MIDAS (12, X) >+ MS-GARCH-TVI
GARCH-MIDAS (36) GARCH-MIDAS (36, X) -—-&-— GARCH

(b) Daily 7,

Full sample Low regime Normal regime High regime
0.5 0.5 0.5
0.4 1 0.4 0.4 1
0.3 0.3

0.2 0.24 0.2

0.1+

0»0 T

0.0

GARCH-MIDAS (66) GARCH-MIDAS (66, X) % MS-GARCH-TVI
GARCH-MIDAS (264) GARCH-MIDAS (264, X) -=-&-— GARCH

Notes: Modified version of Figure 5. The only difference is that the short-term GARCH component is replaced by a consistent diffusion
limit.
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F Data

In this section, we provide detailed information on the data sources as well as on the data vintages that
have been used. Whenever possible, we use real-time vintage data sets as available in ALFREDH For
downloading the respective data sources, we have written the R-package alfred (Kleen, 2017)E| We make

use of the following time series:

e Realized volatility based on five-minute intraday returns which are provided by the Realized Library
of the Oxford-Man Institute of Quantitative Finance (Heber et al., 2009).

http:/ /realized.oxford-man.ox.ac.uk /data/download /

e The VIX index as a measure of option-implied volatility of S&P 500 returns (published by the
Chicago Board Options Exchange).
http://www.cboe.com/micro/vix /historical.aspx

e The Chicago Fed’s National Financial Conditions Index (NFCI), measuring the risk, liquidity and
leverage of money markets, debt and equity markets, and the traditional and shadow banking

system. The NFCI takes positive/negative values whenever financial conditions are tighter/looser

than on average.
https:/ /alfred.stlouisted.org/series?seid=NFCI
e The Chicago Fed National Activity Index (NAI) is a weighted average of 85 filtered and standardized

economic indicators. Whereas positive NAI values indicate an expanding US-economy above its

historical trend rate, negative values indicate the opposite.
https:/ /alfred.stlouisfed.org/series?seid=CFNAIL

e Industrial Production Index (IP), which is released by the Board of Governors of the Federal Reserve
System.
https://alfred.stlouisfed.org/series?seid=INDPRO

e New Privately Owned Housing Units Started (HOUST), which is published by the U.S. Bureau of
the Census.

https://alfred.stlouisfed.org/series?seid=HOUST

For the macroeconomic variables, we report the real-time data availability in Table

Zhttps:/ /alfred.stlouisfed.org
%https://cran.r-project.org/package=alfred
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Table F.1: Real-time data availability.

Variable Frequency = ALFRED ID First Vintage Release
NFCI weekly NFCI 2011-05-25
NAI monthly CFNAI 2011-05-23
Industrial production monthly INDPRO 1973-12-14
Housing starts monthly HOUST 1973-12-18

Note: For each macroeconomic variable, we report the real-time data availability
in the ALFRED data base.
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G Description of Benchmark Models

For the empirical implementation, we use the statistical computing environment R (R Core Team, 2018).
In the following, we present some details regarding the specification and estimation of the different models.

For all benchmark models we have that I; = 1 and, hence, the index ¢ can be dropped.

e Two Markov-Switching GARCH models (MS-GARCH-TVI and MS-GARCH-TVC): Our spec-
ification follows Haas et al. (2004). Returns are decomposed as e; = 7 x, +Z¢, where {X;} is a Markov

chain with a finite state space S = {1,2}. The conditional variance in state X; = k is given by

5i,t = wk + (g + ’Yk;]l{zt_1<0})5?—1 + 619&%,1571'
We employ two different specifications which nest the baseline GJR-GARCH model:

1. An MS-GARCH called MS-GARCH-TVT (time-varying intercept) in which only the intercept
is driven by the Markov chain while the ARCH/GARCH parameters are the same in both

equations. In the simulations we set v, = 0.

2. An MS-GARCH called MS-GARCH-TVC (time-varying coefficients) which models one regime
as a GJR-GARCH and another regime as a standard GARCH(1,1), i.e. v, = OEI

For estimation, we use the R-package MSGARCH, V2.3.EI In both specifications we assume the

innovations to be normally distributed which was numerically the most stable.

e As a generalization of the GARCH model, we employ the Realized GARCH model (Hansen et
al., 2012). Here, the conditional variance of the returns r; — uf¢ = \/o'CZEG  ZFG bt D(0,1)

at day t is modeled as
log 0% = WFY 4 ofi%10g RV™ + 1% 0g oY
and the realized measure RV;™ as

; 2
log RV, = €76 167G log 1% + yfiG 26 1y ((2]¢)" ~ 1) + ufi

with u/t¢ YN (0, \E9). The innovations Z/1¢ and ufi® are independent. The estimation of
the Realized GARCH model and the forecast computation by simulation is carried out using the
R-package rugarch, v1.4-0 (Ghalanos, 2018).

e The HEAVY model by Shephard and Sheppard (2010) is a joint model of returns and some realized
measure. We use the intraday realized variance, RV;™, as the realized measure. The conditional

variance equation of daily returns is given by

2 . _HVY _  HVY HVY prrint HVY _HVY
Var(e;|Fi-1) =: 0} =wi +ay T RV + 87 o

“Modeling both regimes as a GJR-GARCH turned out to be numerically unstable.
5Ardia, D., Bluteau, K., Boudt, K., Catania, L., Trottier, D.-A., 2017. Markov-Switching GARCH Models in R: The
MSGARCH Package. Journal of Statistical Software, forthcoming.
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and the realized measure equation by

E[RV;™|F,_] = . gRVITt _ WHVY | QHVY Ryrint | gHVY ] Rvmt

t - t =

We assume wi VY @WHVY VY VY gHVY > 0. gHVY [0/ 1); and ofVY + gHVY € [0,1). The
estimation is carried out by QML estimation. Note that both dynamic equations can be estimated
separately. Often, the conditional variance equation is estimated to be unit-root. We compute

iterative multi-step ahead forecasts, see Shephard and Sheppard (2010, eq. (11), p.205).

e We also consider a HAR specification that models realized variances directly (see Corsi, 2009).
We specify the HAR model in terms of the log of the realized variances. The model for forecasting

the k-period cumulative variance is given by

RV,.s. RVi_y. RV} _91.
log <t+klt+k> — by + by log RV; + by log (g“) + bs log (;;“) + Co

with RViyi1.44k = Zle RViy;. The HAR model is estimated by OLS. Realized variance forecasts

are obtained as follows:

RV, _4. RV, 9. 1
RV 1.4k =k - exp (bo + b1 log RV; + bs log < t5 4't> + bz log <;221t> + QVEH'(Ct,k)) ;

assuming the residuals (; ;, to be normally distributed.

e HAR with leverage (Corsi and Reno, 2012):

log <th;1t+k> bY + bi*log RV; + b5 log (RV; ) + 0% log <RV;_22”>

Tt—21:t
22

Tt—4:t

+ blevr + blev + blev + Clev

As in the case of the HAR model without leverage effect, we assume the residuals (3% lev t6 be normally

distributed in order to get closed-form expressions for the respective forecasts.

e The estimation of the GARCH-MIDAS models (see Section 2) has been carried out using
QMLE, see Engle et al. (2013), and can be replicated using the R-package mfGARCH, v0.1.8,
by Kleen (2018)[f]

Shttps://cran.r-project.org/package=mfGARCH
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H Empirical Analysis: 95% Model Confidence Sets

As a robustness check, the following Tables [H.1] and [H.2] replicate Tables 6 and 7 for a confidence level
of 95% instead of 90%.

Table H.1: QLIKE losses and 95% model confidence sets: full out-of-sample period.

Full sample

1d 2w 1m 2m 3m
RVol(22) 0.306 0.246 0.271 0.387 0.428
VIX 0.275 0.215 0.240 0.359 0.414
VRP 0.291 0.227 0.260 0.384 0.430
NFCI 0.324 0.248 0.264 0.363 0.393
NAI 0.343 0.266 0.283 0.391 0.424
A IP 0.345 0.267 0.285 0.395 0.438
A Housing 0.328 0.252 0.264 0.347 0.380
VIX and NFCI 0.274 0.213 0.236 0.349 0.399
VIX and NAI 0.275 0.215 0.241 0.358 0.409
VIX and A IP 0.274 0.214 0.239 0.355 0.409
VIX and A Housing 0.275 0.218 0.243 0.351 0.405
Avg. 0.317 0.246 0.264 0.364 0.400
GARCH 0.342 0.263 0.282 0.395 0.434
MS-GARCH-TVI 0.362 0.292 0.315 0.426 0.488
MS-GARCH-TVC 0.355 0.271 0.283 0.387 0.421
Real GARCH 0.260 0.206 0.233 0.356 0.390
HEAVY 0.277 0.238 0.299 0.539 0.662
HAR 0.254 0.210 0.243 0.368 0.419
HAR (lev.) 0.238 0.207 0.245 0.371 0.419
No-change 0.358 0.498 0.636 1.157 1.292
Notes: See Table 6 but for a confidence level of 95% instead of

90%.
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