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This appendix provides a detailed description of the data used in the empirical analysis; of

the setup of the econometric model, including the choice of priors and the estimation algorithm;

and of the computation of impulse responses and the implementation of the sign restrictions. We

demonstrate by conducting a Monte Carlo simulation exercise that our econometric model is able to

capture abrupt changes in a satisfactory manner, but show that the data favor a drifting-coe¢ cient

model by incorporating a mixture innovation model into our benchmark speci�cation. We then

provide evidence on the signi�cance of changes over time in the volatilities of the real price of crude

oil and world oil production and in the short-run price elasticities of oil supply and oil demand.

The main �ndings of the paper are shown to be robust to changes in the model speci�cation and to

di¤erent assumptions underlying the identi�cation of the structural shocks. Finally, some additional

results on the time-varying contribution of the structural shocks to the variances of the real price

of oil and world oil production are presented.

1 Data description

World oil production data measured in thousands of barrels of oil per day starting in January

1973 were obtained from the Energy Information Administration�s (EIA) Monthly Energy Review.

Monthly data for global production of crude oil for the period 1953M4 to 1972M12 were taken from

the weekly Oil & Gas Journal (issue of the �rst week of each month). For the period 1947M1 to

1953M3, monthly data were obtained by interpolation of yearly world oil production data by means

of the Litterman (1983) methodology with U.S. monthly oil production from the EIA used as an
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indicator variable.1 Annual oil production data were retrieved fromWorld Petroleum (1947�1954).
Quarterly data are averages of monthly observations.

The nominal U.S. re�ners�acquisition cost of imported crude oil was taken from the Monthly

Energy Review.2 Since this series is only available from January 1974, it was backcast until 1947Q1

with the quarterly growth rate of the producer price index (PPI) for crude oil obtained from the

Bureau of Labor Statistics (BLS) database (WPU0561). Data were converted to quarterly frequency

before backcasting by taking averages over months. Monthly seasonally adjusted data for the U.S.

consumer price index (CPIAUCSL: consumer price index for all urban consumers: all items, index

1982 � 1984 = 100) taken from the Federal Reserve Bank of St. Louis FRED database were used

to de�ate the nominal re�ners�acquisition cost for crude oil imports.

The index of world industrial production was taken from the United Nations Monthly Bulletin

of Statistics (MBS). The index numbers are reported on a quarterly basis and span the period

1947Q1 to 2008Q3. The index covers industrial activities in mining and quarrying; manufacturing;

and electricity, gas and water supply. The index indicates trends in global value added in constant

U.S. dollars. The measure of value added is the national accounts concept, which is de�ned as

gross output less the cost of materials, supplies, fuel and electricity consumed and services received.

Each series was compiled using the Laspeyres formula, i.e. indices are base-weighted arithmetic

means. The production series of individual countries are weighted by their value-added contribution,

generally measured at factor costs, to gross domestic product of the given industry during the

base year. For most countries the estimates of value added used as weights are derived from

the results of national industrial censuses (census of production) or similar inquiries. A new set

of weights is introduced every �ve years to account for structural changes in the composition of

production in each industry over time, and the index series are chain-linked by the technique of

splicing at overlapping years. These data in national currencies were converted into U.S. dollars

by means of o¢ cial or free-market exchange rates. The weights were most recently updated in

2000, which is also the base year for the index (2000 = 100). The index was constructed to

shift the whole series to this base. Since the majority of national indices have not been adjusted

for �uctuations due to seasonal factors, we applied the census X12 ARIMA procedure to the

reconstructed series in order to obtain a seasonally adjusted index for the entire period. Given

that according to the August 2009 issue of the MBS the world industrial production index will not

be updated until the implementation of ISIC Rev. 4, we extended the series from 2008Q3 to 2010Q4

1Since this part of the data is only needed for the training sample to initialize the priors based on the estimation

of a �xed-coe¢ cient VAR, the use of interpolated data as opposed to actual ones is of minor importance.
2The re�ners�acquisition cost of crude oil imports (IRAC) is a volume-weighted average price of all kinds of crude

oil imported into the U.S. over a speci�ed period. Since the U.S. imports more types of crude oil than any other

country, it may represent the best proxy for a true �world oil price�among all published crude oil prices. The IRAC

is also similar to the OPEC basket price.
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using the average quarterly growth rate of monthly industrial production of OECD countries and

six major non-member economies obtained from the OECD�s Main Economic Indicators (MEI)

database. The index of global real economic activity in industrial commodity markets introduced

in Kilian (2009) was retrieved for the period 1968M1 � 2011M4 from Lutz Kilian�s web page

(http://www-personal.umich.edu/~lkilian/reaupdate.txt). This monthly series was converted to

quarterly frequency by taking the average.

Daily data on the total number of WTI futures contracts (volume) traded on the New York

Mercantile Exchange (NYMEX) are available from the commercial provider Price-data.com (End

of Day Futures) from March 30, 1983 onwards. For each daily observation, the trading date and

the contract�s date of delivery are reported. For each futures contract, we calculated the number of

business days to delivery and kept only those observations that were fewer than 260 business days

(one year) to maturity. We sum the volume of all remaining observations recorded within the same

quarter, regardless of the date of delivery, to obtain a measure of total quarterly trading activity

in the oil futures market.

Annual data on global spare capacity of oil production for the period 1974 � 2010 were taken
from the August 2006 IMF World Economic Outlook and the June 2011 Department of Energy

Short-Term Energy Outlook. Spare capacity refers to production capacity that can be brought

online within 30 days and sustained for 90 days. Global capacity utilization rates were calcu-

lated as a percentage of total potential annual world oil production, which is the sum of ac-

tual oil production taken from the Annual Energy Review and available spare capacity. Monthly

data on worldwide rig counts starting in January 1975 were obtained from Baker & Hughes Inc.

(http://investor.shareholder.com/bhi/rig_counts/rc_index.cfm).

2 A Bayesian SVAR with time-varying parameters and stochastic

volatility

Model setup. The observation equation of our state space model is

yt = X
0
t�t + ut (1)

where yt is a 3� 1 vector of observations of the dependent variables, Xt is a matrix including lags
(p = 4) of all of the dependent variables and a constant term, and �t is a 3(3p+1)�1 vector of states
that contains the time-varying parameters. The ut of the measurement equation are heteroscedastic

disturbance terms that follow a normal distribution with a zero mean and a time-varying covariance

matrix 
t which can be decomposed in the following way: 
t = A�1t Ht
�
A�1t

�0
. At is a lower

triangular matrix that models the contemporaneous interactions among the endogenous variables,
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and Ht is a diagonal matrix that contains the stochastic volatilities:

At =

2664
1 0 0

a21;t 1 0

a31;t a32;t 1

3775 Ht =

2664
h1;t 0 0

0 h2;t 0

0 0 h3;t

3775 (2)

Let �t be the vector of non-zero and non-one elements of the matrix At (stacked by rows), �t =

[a21;t; a31;t; a32;t]
0, and ht be the vector containing the diagonal elements of Ht, ht = [h1;t; h2;t; h3;t]

0.

As in Primiceri (2005), the three driving processes of the system are postulated to evolve as follows:

�t = �t�1 + �t �t � N (0; Q) (3)

�t = �t�1 + �t �t � N(0; S) (4)

lnhi;t = lnhi;t�1 + �i�i;t �i;t � N(0; 1) (5)

The time-varying parameters �t and �t are modeled as driftless random walks.3 The elements

of the vector of volatilities ht are assumed to evolve as geometric random walks independent of

each other.4 The error terms of the transition equations are independent of each other and of the

innovations in the observation equation. In addition, we impose a block-diagonal structure for S

of the following form:

S � V ar (�t) = V ar

0BB@
2664
�21;t

�31;t

�32;t

3775
1CCA =

"
S1 01x2

02x1 S2

#
(6)

which implies independence across the blocks of S with S1 � V ar
�
�21;t

�
and S2 � V ar

��
�31;t; �32;t

�0�
so that the covariance states can be estimated equation by equation.

Prior distributions and initial values. The priors of the regression coe¢ cients, the covariances

and the log volatilities, p (�0), p (�0) and p (lnh0) respectively, are assumed to be normally distrib-

uted, independent of each other and independent of the hyperparameters which are the elements of

Q, S and �2i for i = 1; 2; 3. The priors are calibrated on the point estimates of a constant-coe¢ cient

VAR(4) estimated over the period 1947Q2-1972Q2.

3As pointed out by Primiceri (2005), the random walk assumption has the desirable property of focusing on

permanent parameter shifts and of reducing the number of parameters to be estimated.
4Stochastic volatility models are typically used to infer values for unobservable conditional volatilities. The main

advantage of modeling the heteroscedastic structure of the innovation variances by a stochastic volatility model as

opposed to the more common GARCH speci�cation lies in its parsimony and in the independence of the conditional

variance and the conditional mean. Put di¤erently, changes in the dependent variable are driven by two di¤erent

random variables since the conditional mean and the conditional variance evolve separately. Implicit in the random

walk assumption is the view that the volatilities evolve smoothly.
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We set �0 � N
hb�OLS ; bPOLSi where b�OLS corresponds to the OLS point estimates of the training

sample and bPOLS to four times the covariance matrix bV �b�OLS�. With regard to the prior speci�ca-
tion of �0 and h0, we follow Primiceri (2005) and Benati and Mumtaz (2007). Let P = AD1=2 be the

Choleski factor of the time-invariant variance-covariance matrix b�OLS of the reduced-form innova-

tions from the estimation of the �xed-coe¢ cient VAR(4) where A is a lower triangular matrix with

ones on the diagonal, and D1=2 denotes a diagonal matrix whose elements are the standard devia-

tions of the residuals. Then the prior for the log volatilities is set to lnh0 � N (ln�0; 10� I3) where
�0 is a vector that contains the diagonal elements of D

1=2 squared, and the variance-covariance

matrix is arbitrarily set to ten times the identity matrix to make the prior only weakly informative.

The prior for the contemporaneous interrelations is set as �0 � N
he�0; eV (e�0)i, where the prior

mean for �0 is obtained by taking the inverse of A and stacking the elements below the diagonal

row by row in a vector in the following way: e�0 = [e�0;21; e�0;31; e�0;32]0. The covariance matrix,eV (e�0), is assumed to be diagonal with each diagonal element set to ten times the absolute value
of the corresponding element in e�0. While this scaling is obviously arbitrary, it accounts for the
relative magnitude of the elements in e�0 as noted by Benati and Mumtaz (2007).

With regard to the hyperparameters, we make the following assumptions along the lines of

Benati and Mumtaz (2007). We postulate that Q follows an inverse-Wishart distribution: Q �
IW

�
Q
�1
; T0

�
, where T0 is the prior degrees of freedom and is set equal to the length of the

training sample, which is su¢ ciently long (25 years of quarterly data) to guarantee a proper prior.

Following Primiceri (2005), we adopt a relatively conservative prior for the time variation in the

parameters by setting the scale matrix to Q = (0:01)2 � bV �b�OLS� multiplied by the prior degrees
of freedom. This is a weakly informative prior, and the particular choice for its starting value

is not expected to in�uence the results substantially since the prior is dominated by the sample

information as time progresses. We have experimented with di¤erent initial conditions that induce

di¤erent amounts of time variation in the coe¢ cients to test whether our results are sensitive to the

choice of the prior speci�cation. We follow Cogley and Sargent (2005) in setting the prior degrees

of freedom alternatively to the minimum value allowed for the prior to be proper, T0 = dim (�t)+1,

together with a di¤erent value of the scale matrix, Q = 3:5e�4 � bV �b�OLS�, which together put as
little weight as possible on our prior belief about the drift in �t. We have also investigated the

opposite assumption by choosing Q = 0:01�bV �b�OLS�, which allows for a substantial amount of time
variation in the parameters. Our results are not a¤ected by these di¤erent choices for the initial

values of this prior. The two blocks of S are postulated to follow inverse-Wishart distributions,

with the prior degrees of freedom set equal to the minimum value required for the prior to be

proper: S1 � IW
�
S
�1
1 ; 2

�
and S2 � IW

�
S
�1
2 ; 3

�
. As for the scale matrices, they are calibrated

on the absolute values of the respective elements in e�0 as in Benati and Mumtaz (2007). Given the
univariate feature of the law of motion of the stochastic volatilities, the variances of the innovations
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to the univariate stochastic volatility equations are drawn from an inverse-Gamma distribution as

in Cogley and Sargent (2005): �2i � IG
�
10�4

2 ; 12

�
.

MCMC algorithm (Metropolis within Gibbs sampler): Simulating the posterior dis-

tribution. Since sampling from the joint posterior is complicated, we simulate the posterior

distribution by sequentially drawing from the conditional posteriors of the four blocks of parame-

ters: the coe¢ cients �T , the simultaneous relations AT , the variances HT , where the superscript T

refers to the whole sample, and the hyperparameters �the elements of Q, S, and �2i for i = 1; 2; 3

�collectively referred to as M . Posteriors for each block of the Gibbs sampler are conditional on

the observed data Y T and the rest of the parameters drawn at previous steps.

Step 1: Drawing coe¢ cient states

Conditional on AT , HT , M , and Y T , the measurement equation is linear and has Gaussian

innovations with known variance. Therefore, the conditional posterior is a product of Gaussian

densities, and �T can be drawn using a standard simulation smoother (see Carter and Kohn 1994;

Cogley and Sargent 2005) that produces a trajectory of parameters:

p
�
�T j Y T ; AT ;HT

�
= p

�
�T j Y T ; AT ;HT

� T�1Q
t=1
p
�
�t j �t+1; Y T ; AT ;HT

�
From the terminal state of the forward Kalman �lter, the backward recursions produce the

required smoothed draws which take the information of the whole sample into account. More

speci�cally, the last iteration of the �lter provides the conditional mean �T jT and conditional vari-

ance PT jT of the posterior distribution. A draw from this distribution provides the input for the

backward recursion at T � 1 and so on until the beginning of the sample according to:

�tjt+1 = �tjt + PtjtP
�1
t+1jt (�t+1 � �t)

Ptjt+1 = Ptjt � PtjtP�1t+1jtPtjt

Step 2: Drawing covariance states

Similarly, the posterior of AT conditional on �T , HT , and Y T is a product of normal densities

and can be calculated by applying the same algorithm as in step 1 as a consequence of the block

diagonal structure of the variance-covariance matrix S. More speci�cally, a system of unrelated

regressions based on the following relation: Atut = "t, where "t are orthogonalized innovations with

known time-varying variance Ht and ut = yt �X 0
t�t are observable residuals, can be estimated to

recover AT according to the following transformed equations where the residuals are independent
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standard normal:

u1;t = "1;t�
h
� 1
2

2;t u2;t

�
= ��2;1

�
h
� 1
2

2;t u1;t

�
+

�
h
� 1
2

2;t "2;t

�
�
h
� 1
2

3;t u3;t

�
= ��3;1

�
h
� 1
2

3;t u1;t

�
� �3;2

�
h
� 1
2

3;t u2;t

�
+

�
h
� 1
2

3;t "3;t

�
Step 3: Drawing volatility states

Conditional on �T , AT , and Y T , the orthogonalized innovations "t � At (yt �X 0
t�t), with

V ar ("t) = Ht, are observable. However, drawing from the conditional posterior of HT is more

involved because the conditional state-space representation for lnhi;t is not Gaussian. The log-

normal prior on the volatility parameters is common in the stochastic volatility literature, but such

a prior is not conjugate. Following Cogley and Sargent (2005, Appendix B.2.5) and Benati and

Mumtaz (2007), we apply the univariate algorithm developed by Jacquier, Polson, and Rossi (1994)

that draws the volatility states hi;t one at a time.

Step 4: Drawing hyperparameters

The hyperparameters M of the model can be drawn directly from their respective posterior

distributions since the disturbance terms of the transition equations are observable given �T , AT ,

HT and Y T .

We perform 50; 000 iterations of the Gibbs sampler but keep only every 10th draw in order

to mitigate the autocorrelation among the draws. After an initial "burn-in" period of 50; 000

iterations, the sequence of draws of the four blocks from their respective conditional posteriors

converges to a sample from the joint posterior distribution p
�
�T ; AT ;HT ;M j Y T

�
. Following

Primiceri (2005) and Benati and Mumtaz (2007), we ascertain that our Markov chain has converged

to the ergodic distribution by computing the draws�ine¢ ciency factors which are the inverse of the

relative numerical e¢ ciency measure (RNE) introduced by Geweke (1992),

RNE = (2�)�1
1

S(0)

Z �

��
S(!)d! (7)

where S(!) is the spectral density of the retained draws from the Gibbs sampling replications for

each set of parameters at frequency !.5 Figure 1A displays the ine¢ ciency factors for the states and

the hyperparameters of the model which are all far below the value of 20 designated as an upper

bound by Primiceri (2005). Thus, the autocorrelation across draws is modest for all elements,

providing evidence of convergence to the ergodic distribution. In total, we have 5; 000 simulated

values from the Gibbs chain on which we base our structural analysis.

5See Benati and Mumtaz (2007) for details on the implementation.
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3 Impulse responses and sign restrictions

Here we describe the Monte Carlo integration procedure we use to compute the path of impulse

response functions to our three structural shocks. In the spirit of Koop, Pesaran, and Potter

(1996) we compute the generalized impulse responses as the di¤erence between two conditional

expectations with and without exogenous shocks:

IRFt+k = E [yt+k j "t; !t]� E [yt+k j !t] (8)

where yt+k contains the forecasts of the endogenous variables at horizon k, !t represents the current

information set, and "t is a vector of current disturbance terms. At each point in time, the informa-

tion set upon which we condition the forecasts contains the actual values of the lagged endogenous

variables and a random draw of the model parameters and hyperparameters. More speci�cally,

in order to calculate the conditional expectations, we simulate the model in the following way.

We randomly draw one possible state of the economy at time t from the Gibbs sampler output

represented by the time-varying lagged coe¢ cients and the elements of the variance-covariance

matrix. Starting from this random draw from the joint posterior including hyperparameters, we

stochastically simulate the future paths of the coe¢ cient vector as well as the components of the

variance-covariance matrix based on the transition laws for up to 20 quarters into the future. By

projecting the evolution of the system into the future in this way, we account for all of the potential

sources of uncertainty deriving from the additive innovations, variations in the lagged coe¢ cients

and changes in the contemporaneous relations among the variables in the system.

To obtain the time-varying structural impact matrix B0;t, we implement the procedure proposed

by Rubio-Ramírez, Waggoner, and Zha (2010). Given the current state of the economy, let 
t =

PtDtP
0
t be the eigenvalue-eigenvector decomposition of the VAR�s time-varying covariance matrix 
t

at time t. Draw an N �N matrix, K, from the N (0; 1) distribution, take the QR decomposition of

K, where R is a diagonal matrix whose elements are normalized to be positive, and Q is a matrix

whose columns are orthogonal to each other, and compute the time-varying structural impact

matrix as B0;t = PtD
1
2
t Q

0. Given this contemporaneous impact matrix, we compute the reduced-

form innovations based on the relationship ut = B0;t"t, where "t contains three structural shocks

obtained by drawing from a standard normal distribution. Impulse responses are then computed

by comparing the e¤ects of a shock on the evolution of the endogenous variables to the benchmark

case without a shock, where in the former case the shock is set to "i;t + 1, while in the latter we

only consider "i;t. The reason for this is to allow the system to be hit by other disturbances during

the propagation of the shocks of interest. From the set of impulse responses derived in this way,

we select only those impulse responses that on impact satisfy the whole set of sign restrictions, i.e.

jointly display the e¤ects on the endogenous variables associated with the structural shocks we wish

to identify; all others are discarded. Within this loop, we also compute from all accepted draws
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of the impulse responses the implied price elasticities of oil supply and oil demand as the ratio of

the impact responses of oil production and of the real oil price after demand-side and supply-side

shocks respectively. We repeat this procedure until 100 iterations ful�l the sign restrictions and then

calculate the mean responses of our three endogenous variables over these accepted simulations as

well as the average price elasticities. For each point in time, we randomly draw 500 current states

of the economy which provide the distribution of impulse responses and impact elasticities taking

into account possible developments in the structure of the economy. In a second step, following

Kilian and Murphy (2010, 2011), we select only those impulse responses and corresponding elasticity

estimates that jointly satisfy the upper bound on the oil supply elasticity of 0.6 and the lower bound

on the oil demand elasticity of -0.8. This results in a set of admissible structural models that can

change in size at each point in time.

4 Evidence on the nature of parameter evolution

4.1 A Monte Carlo study

To explore whether our econometric model with smooth transitions is well suited to capture abrupt

changes in the data, we carry out a Monte Carlo exercise based on simulated data where the

underlying data-generating process is characterized by a one-time break. Given that our benchmark

model is too complex to be amenable to a Monte Carlo study, we assess the performance of its

main building blocks by conducting two separate experiments. We generate data from (1) an AR(1)

model with one exogenous regressor that features a one-o¤ regime shift in its coe¢ cients, and (2) a

bivariate version of our benchmark VAR(4) model with an abrupt break in the variance. These two

simpler models provide a parsimonious way to assess the appropriateness of modeling structural

change in a smoothly evolving way as opposed to a regime switch.

4.1.1 A regression model with a break in the coe¢ cients

To illustrate the e¤ects of incorrectly assuming a smooth process for the evolution of the coe¢ cients,

we simulate data from the following stationary AR(1) model with one exogenous regressor, written

in demeaned form:

yt = �iyt�1 + �ixt�1 + �t �t � N(0; 1) (9)

where we set �1 = 0:2 and �1 = 0:5 for the �rst half of the sample and �2 = 0:6 and �2 = 1:5 for

the second half of the sample. For each sample generated with this parameterization, we estimate

a model that postulates that the coe¢ cient vector � = [� �]0 evolves smoothly according to a

driftless random walk process:

�t = �t�1 + �t �t � N(0; Q) (10)
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We estimate the state-space model in equations (9) and (10) by Bayesian methods described in

Kim and Nelson (1999). The unrestricted prior for the initial state is Gaussian:

�0 � N(b�OLS ; 4 � bV (b�OLS)) (11)

where b�OLS and bV (b�OLS) are the OLS point estimate and asymptotic variance based on a training
sample as in our benchmark model. For the variance �2 in the observation equation, we postulate

an inverse-gamma distribution:

�2 � IG
�
�

2
;
�

2

�
(12)

with scale parameter � = 0:01 and degrees-of-freedom parameter � = 2. The prior for Q is assumed

to be inverse Wishart:

Q � IW
�
Q
�1
; �
�

(13)

where Q = 0:01 � � and � = 3. The starting values for the coe¢ cients are set to the OLS estimates,
�0 = 1, and Q0 = 0:1 � I2 where I2 is a 2 � 2 identity matrix. The time-varying coe¢ cients are
drawn using the Carter and Kohn (1994) algorithm outlined above. We constrain �t to be less

than one in absolute value at all dates t. The �rst 2; 000 draws in the Gibbs simulation process

are discarded to ensure convergence. The posterior mean of b�t is computed based on the remaining
1; 000 generated values. To evaluate how well this model can pick up the break imposed in the

data-generating process, we also obtain an estimate of b�dummyt from a model that includes a dummy

variable that takes a value of 0 before the break and 1 thereafter. In this way, we can construct

error bands that capture the parameter uncertainty in estimating the true model.

We construct sample sizes of T1 = 200 and T2 = 600 after discarding the �rst 1; 000 periods to

remove the in�uence of the initial values. A sample size of 200 can be considered the equivalent of

the typical sample length for quarterly time series available for the post-WWII period, and 600 is

representative of such a dataset at monthly frequency. There are T=2 data points on each side of

the break date. We carry out 1; 000 Monte Carlo replications for each model and sample size.

Figure 2A reports the mean of the estimates for the exogenous coe¢ cient and for the AR

coe¢ cient for the smooth-transition model and for the discrete-break model together with the 68%

and 90% posterior credible sets for the two sample sizes. The estimation results show that the

dri�ting coe¢ cient model locates the break in a satisfactory manner and moves relatively swiftly

to the new regime.

4.1.2 A bivariate VAR model with a break in the variance

In the second experiment, the data-generating process is a bivariate VAR(4) model similar to

equation (1) in the main text:

yt = X
0
t� + "t (14)
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where yt denotes a vector of variables; Xt is a matrix including four lags of yt and a constant; � is

a coe¢ cient matrix, and "t � N(0;
i), i = 1; 2 with the following variance-covariance matrices for
two subperiods:


1 =

"
20 5

5 30

#

2 =

"
1:5 �4
�4 300

#
(15)

To obtain a realistic parameterization for 
1 and 
2, we take guidance from the estimation

of a bivariate VAR model for oil production and the real price of oil over two subsamples. The

data generated from this model mimic a speci�c feature of the observed oil production and oil

price series, namely a considerable decrease in oil production volatility and an increase in oil price

volatility after the break in the variance. Figure 3A, panel A illustrates this behavior in one such

random sample. The length of each sample generated from this model is 750, and the initial 500

periods are removed to yield a sample similar in size to that used in the empirical analysis.

For each sample, we estimate the time-varying VAR model with stochastic volatility presented

in section 2. We retain the same priors as in the benchmark model and obtain initial values from the

estimation of a constant-coe¢ cient VAR(4) over a twenty��ve�year training sample. This leaves

us with 150 observations for the actual estimation, and the regime switch occurs at t = 68. Given

the greater complexity of this model, we can only perform 250 Monte Carlo replications, and the

results should consequently be viewed as suggestive. It should, however, be su¢ cient to examine

the speed of transition from one regime to the other, which is the main feature of interest.

Figure 3A, panel B displays the time pro�le of the average of the variance estimates over the

Monte Carlo simulations together with both the 16th and 84th and the 5th and 95th percentiles

of the posterior distribution. The results indicate that our approach has the power to detect the

regime shift to a satisfactory degree even in a relatively short sample.

4.2 Additional statistical evidence for the TVP model

To provide additional evidence on the question of whether any parameter changes have been gradual

or abrupt, we incorporate into our time-varying model a mixture innovation model along the lines

suggested by Koop, Leon-Gonzalez, and Strachan (2009) that allows estimating the number of

breakpoints in a data-driven way. Such a model nests the two extreme cases of models with few

(possibly large) breaks and those with many (possibly small) breaks and lets the data characterize

the nature of time variation in the parameters. Speci�cally, instead of imposing a break every period

as in our benchmark model, we modify the three transition equations by introducing the mixture

innovation variables K1t, K2t and K3t for t = 1; :::; T where the associated transition probabilities

p1, p2 and p3 endogenously determine the probability of change in each set of parameters at any
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given point in time:

�t = �t�1 +K1t�t �t � N (0; Q) (16)

�t = �t�1 +K2t�t �t � N(0; S) (17)

lnhi;t = lnhi;t�1 +K3t�i�i;t �i;t � N(0; 1) (18)

Following Koop et al. (2009), we use Beta priors for the transition probabilities. For details on

the inclusion of the mixture innovation model into the MCMC algorithm, the reader is referred to

the Technical Appendix of Koop et al. (2009).

The metric for judging whether our smoothly-evolving model receives support from the data is

the posterior mean of the transition probabilities for each set of time-varying parameters. Table 1A

summarizes the results for alternative choices of the prior hyperparameters � and � which re�ect

di¤erent a priori beliefs about the probability of change.6 Starting with a prior that assigns a 50%

probability that a break occurs at time t, we gradually reduce the likelihood of a break every period

by tightening the prior, i.e. we move towards models with infrequent parameter changes (once a

year and every 3 years) and more informative priors (smaller standard deviations).

Table 1A: Transition probabilities

Prior assumptions for Beta B(�; �) E(p1 j Y T ) E(p2 j Y T ) E(p3 j Y T )
� = 1;� = 1 (E(p) = 0:5; SD = 0:29) 0.93 (0.06) 0.97 (0.02) 0.96 (0.03)

� = 1;� = 3 (E(p) = 0:25; SD = 0:19) 0.73 (0.11) 0.93 (0.04) 0.94 (0.03)

� = 1;� = 10 (E(p) = 0:09; SD = 0:08) 0.34 (0.09) 0.81 (0.06) 0.86 (0.04)

The results indicate that there is a very high posterior probability for changes in all three

sets of model parameters at each point in time even in cases where the prior information suggests

infrequent breaks. This shows that the data clearly favor a model that allows for a gradual and

continuous evolution of all parameters as opposed to a Markov-switching structure, for example.

5 Further analysis

5.1 Evidence for time variation in the estimated model

In assessing the relative importance of time variation over the sample, we follow the approach

proposed by Cogley, Primiceri, and Sargent (2010) who examine the joint posterior distribution of

the object of interest across selected pairs of time periods presented in a scatterplot. Shifts of this

6We do not rely on the marginal likelihood, which is a common metric for Bayesian model comparison, because this

measure tends to be more sensitive to prior information than posteriors, especially in models with high-dimensional

parameter spaces (see, e.g., Koop et al. 2009).
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distribution away from the 45-degree line are indicative of a systematic change over time. Figure

4A reports the joint posterior distribution of the estimated standard deviations of the real price of

crude oil and world oil production shown in Figure 1, panel B in the paper for pairs of oil market

episodes. As can be seen from the graphs, a considerable fraction of the pairwise posterior draws of

standard deviations of the real oil price are located above the threshold for most combinations of

dates, which suggests a systematic increase in oil price volatility over time. There is strong evidence

for a systematic decrease in the standard deviation of global oil production with the majority of

draws from the joint distribution lying below the 45-degree line as time progresses. Figure 5A

displays the joint posterior distribution of the estimated short-run price elasticities of oil supply

derived using the aggregate demand shock and the other oil demand shock as well as the short-run

price elasticities of oil demand for representative dates. When pairs of dates pertain to periods that

are not too far apart (e.g. 1976Q1 vs. 1979Q3 and 1990Q3 vs. 2009Q1), the points of their joint

distribution are almost equally spread out across the dividing line, which implies that the estimated

elasticities are similar for those dates. Marked di¤erences arise for combinations of episodes early

in the sample with those later in the sample, in which case the joint outcomes of the posterior

draws are clustered far below or far above the 45-degree line. This provides compelling evidence

that the decline in short-run price elasticities is a signi�cant feature of the data.

5.2 Robustness analysis

5.2.1 Alternative model speci�cation

For the reasons outlined in the main text, we re-estimate the time-varying VAR model with the

real re�ners�acquisition cost of oil imports expressed in log deviations from its mean instead of �rst

di¤erences and with the quarterly averages of the monthly global real activity indicator constructed

in Kilian (2009) expressed in deviations from a linear deterministic trend instead of world industrial

production growth to assess whether our �ndings are sensitive to this change in speci�cation. Given

that the real activity measure only starts in January 1968, we only use 5 years of data as a training

sample, while everything else remains the same.

Figure 6A displays the time-varying median responses of world oil production and the real price

of imported crude oil to one-standard deviation structural shocks on impact over the period 1974Q1

to 2010Q4 together with 68% and 95% posterior credible sets and the full set of admissible models.

For ease of comparison, the dotted lines depict the median estimates obtained with the baseline

model. The results from this alternative speci�cation paint much the same picture of a gradual

decline in the responsiveness of oil production and an increase in the e¤ect on the real oil price after

all three identi�ed shocks. Figure 7A presents the corresponding median estimates for the short-run

price elasticities of oil supply and oil demand with the 68% and 95% posterior credible sets and the
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entire range of elasticity estimates. Again, the dotted lines refer to the median impact elasticities

derived from the benchmark speci�cation. Apart from minor di¤erences limited to speci�c episodes,

the evolution of the elasticities exhibits a remarkably similar pattern. Consistent with our baseline

results, we observe a substantial decline in both the oil supply and oil demand elasticities over the

sample period.

5.2.2 Alternative identi�cation scheme

As discussed in the main text, we investigate the robustness of our results to a sluggish response of

world industrial production to the other oil demand shock by imposing a zero restriction on impact

while keeping all other sign restrictions in place. This amounts to the identi�cation assumptions

presented in Table 2A.

Table 2A: Identi�cation restrictions

Qoil Poil Yworld

Negative oil supply shock � + �
Positive aggregate demand shock + + +

Other positive oil demand shock + + 0

To implement a single zero restriction, we perform a determinstic rotation of the time-varying

contemporaneous impact matrix B0;t along the lines suggested by Baumeister and Benati (2010).

More speci�cally, we de�ne a rotation matrix RM as

RM =

2664
1 0 0

0 c �s
0 s c

3775
with RM �RM 0 = I3 where I3 is a 3�3 identity matrix, c = B0;t(3; 3)=

p
B0;t(3; 2)2 +B0;t(3; 3)2,

and s = �B0;t(3; 2)=
p
B0;t(3; 2)2 +B0;t(3; 3)2, where B0;t(i; j) denotes the (i; j) entry in the candi-

date impact matrix B0;t at time t such that we obtain a new impact matrix B0;t = B0;t �RM that

has a zero in the (3; 2) position. The rest of the algorithm is executed as described in section 3,

and only those draws that jointly satisfy the sign restrictions, the zero restriction and the boundary

restrictions are kept.

Figure 8A shows the time pro�le of the median impact responses of oil production and the

real oil price after all three structural shocks along with the 68% and 95% posterior credible

sets and the minimum and maximum responses. Applying this alternative identi�cation strategy

to the time-varying VAR model in section 3.1 in the main paper yields the same evolutionary

pattern as in the benchmark case. While the median price responses are essentially identical across
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identi�cation schemes, minor di¤erences arise for oil production, with the responses becoming

slightly stronger after an aggregate demand shock and weaker after the other oil demand shock.

Figure 9A portrays the evolution of the range of elasticity estimates over time together with the

median impact elasticities of oil supply and oil demand. As before, the median elasticities closely

track the dotted lines that represent the baseline model, showing that our main conclusions are not

sensitive to the modi�ed identi�cation assumptions regarding the other oil demand shock.

5.3 Additional results

Since the real price of crude oil is determined by the interaction of di¤erent driving forces, it is

of interest to provide additional evidence on the relative contribution of di¤erent types of struc-

tural shocks to the variability of oil market variables by means of a variance decomposition. This

decomposition has been computed in the frequency domain following Benati and Mumtaz (2007)

and Canova and Gambetti (2009). Figure 10A presents the time-varying percentage of the median

forecast error variance of the real price of crude oil and world oil production that is accounted for

by the three identi�ed structural shocks together with the 68% and 95% posterior credible sets.

The decomposition reveals that other oil demand shocks account for approximately 20 percent of

the variance of the real price of oil, a contribution that experiences only moderate variations over

time. In contrast, other oil demand shocks explain an increasing fraction of movements in oil pro-

duction in the early part of the sample, reaching a peak of 50 percent around 1990, after which

their contribution declines steadily and is currently �uctuating around 20 percent. The opposite is

true for shocks to global real activity. While the contribution of aggregate demand shocks to the

variability in world oil production has remained relatively stable over time �with the exception of

the most recent temporary spike as a result of the �nancial crisis�these shocks are responsible for

a substantial share of the volatility in the real oil price, a share that has increased notably since

the early 1990s to between 60 and 80 percent. Taken together the demand-side shocks explain

more than half of the variability in the real price of oil during the latter sample period, indicating

that oil supply disturbances no longer explain the bulk of oil price �uctuations. In fact, oil supply

disruptions currently contribute roughly 20 percent to the volatility of the real oil price, while

their share was considerably higher in earlier periods. The fraction of the overall variance of oil

production explained by supply-side shocks �uctuated between 20 and 60 percent in the early part

of the sample, but has stabilized since the late 1980s at around 45 percent. While the evolutions of

the variance shares are suggestive of changes over time, the posterior intervals surrounding these

estimates overlap for most periods.
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Figure 1A: Assessing the convergence of the Markov chain: inefficiency factors for the draws from the ergodic distribution for the  
                  states and the hyperparameters. 

1000 2000 3000 4000 5000 6000
0

0.005

0.01

0.015

0.02
Time-varying coefficients: theta

100 200 300 400 500 600 700
0

0.002

0.004

0.006

0.008

0.01
Elements of Q

1 2 3
0

0.2

0.4

0.6

0.8

1
Elements of sigma

1 2 3 4
0

0.01

0.02
Elements of S

50 100 150 200 250 300 350 400 450
0

0.005

0.01

0.015
Contemporaneous relations: A

50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8
Stochastic volatilities: H



                                                                        Panel A 

 
                                                                        Panel B 

 
 
Figure 2A: Mean, 68% and 90% posterior credible sets of coefficient estimates from a  
                   smooth-transition model (solid line and shaded areas) and a discrete-break 
                   model (dashed and dotted lines) for 1,000 Monte Carlo replications. 
                   Panel A: Sample size T=200. 
                   Panel B: Sample size T=600. 
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Figure 3A: Panel A: Random sample generated from bivariate VAR(4) model with break 
                                  in variance at t=168 (vertical line). 
                   Panel B: Mean, 68% and 90% posterior credible sets of variance estimates for 
                                  250 Monte Carlo replications. 
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         Figure 4A: Joint posterior distribution of the estimated volatilities of the real price  
                           of crude oil and world oil production for selected pairs of episodes. 
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Figure 5A: Joint posterior distribution of estimated short-run price elasticities of oil supply derived with aggregate demand (1st row) 
                  and other oil demand (2nd row), and of oil demand (3rd row) for selected pairs of dates. 
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Figure 6A: Time-varying median impact impulse responses (thick solid lines) of world oil 
                   production and the real price of crude oil after oil supply shocks (1st row), other  
                   oil demand shocks (2nd row) and aggregate demand shocks (3rd row) for an  
                   alternative model specification (with real oil price in levels and Kilian’s (2009)  
                   global real economic activity measure) where the dark and light shaded areas   
                   indicate respectively 68% and 95% posterior credible sets and the thin black lines  
                   indicate the full set of admissible models. The dotted red lines indicate the median  
                   responses obtained with the benchmark model. 
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Figure 7A: Median short-run price elasticities of oil supply and oil demand (bold solid lines) for 
                   an alternative model specification (with real oil prices in levels and Kilian’s (2009) 
                   global real economic activity measure) together with the 68% and 95% posterior 
                   credible sets (dark and light shaded areas) and the range of admissible models (thin  
                   solid lines). The dotted red lines indicate the median elasticities obtained with the  
                   benchmark model. 
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Figure 8A: Time-varying median impact impulse responses (thick solid lines) of world oil 
                   production and the real price of crude oil after oil supply shocks (1st row), other 
                   oil demand shocks (2nd row) and aggregate demand shocks (3rd row) for different 
                   identification assumptions (zero impact restriction on world industrial production  
                   after other oil demand shocks) where the dark and light shaded areas indicate  
                   respectively 68% and 95% posterior credible sets and the thin black lines indicate 
                   the full set of admissible models. The dotted red lines indicate the median responses  
                   obtained with the benchmark model. 
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Figure 9A: Median short-run price elasticities of oil supply and oil demand (bold solid lines) 
                   for different identification assumptions (zero impact restriction on world industrial  
                   production after other oil demand shocks) together with the 68% and 95% posterior  
                   credible sets (dark and light shaded areas) and the range of admissible models (thin  
                   black lines). The dotted red lines indicate the median elasticities obtained with the  
                   benchmark model. 
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Figure 10A: Contribution of oil supply shocks, other oil demand shocks and aggregate demand shocks to the variance of the  
                     real price of crude oil and world oil production where the dark and light shaded areas indicate respectively 68%  
                     and 95% posterior credible sets and the solid line is the median. 

1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1
Oil supply shock

1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1
Other oil demand shock

1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1
Aggregate demand shock

1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1
Oil supply shock

1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1
Other oil demand shock

1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1
Aggregate demand shock

REAL PRICE OF OIL WORLD OIL PRODUCTION


