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1 Introduction and overview

Program GAP is a program developed by the Joint Research of European Commis-

sion on request of DG-ECFIN, following the guidelines of Werner Roeger that is

gratefully acknowledged. The aim of the program is to decompose a macroeconomic

quantity such that GDP or unemployment into long-term and short-term compo-

nents, the short-term one being identified with output gap or unemployment gap,

according to the input series. The program is based on Kuttner (1994) bivariate

model that involves a Phillips-curve regression. Program GAP can be downloaded at

www.jrc.cec.eu.int/uasa, following the links Area of Activities - Time Series Analy-

sis - Projects - Gap - Further Information. The program is delivered together with

an Excel interface and with a help file for the interface that can be found in the

Help worksheet. We strongly suggest users to read the disclaimer in the “About”

worksheet before running the program.

The model implemented in Program GAP is somewhat atypical. While most sta-

tistical decompositions are univariate, Kuttner’s model associates to a classical de-

composition a regression whose regressors include unobserved quantities such that the

gap and its lags. This document describes the statistical procedures that have been

used, including the references. The implementation is based on state-space models,

with the model parameters estimated by exact maximum likelihood. It involves run-

ning the Kalman recursions with de Jong’s diffuse initialisation (de Jong, 1991), and

a smoother that produces the unobserved quantities.

Section 2 describes the general model specification. A summary table is given

for a fast overview of the possibilities offered. Section 3 discusses model parameter

estimation using state-space methods. The procedure used for obtaining standard

deviations is also detailed together with the diagnostics that Program GAP reports.

An example is developed for helping reader’s comprehension. Section 4 presents the

de Jong’s diffuse Kalman filter that solves for initialisation problem for non-stationary

systems. Finally, Section 5 explains the smoothing mechanism for unobserved com-

ponent estimates. All references are grouped at the end of this document.
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2 General model specification

The most general model that can be specified is a bivariate model like in Kuttner

(1994) with an extension that allows for exogenous regressors and for autoregressive

terms in the Phillips curve equation. Generally the variables considered are either

unemployment or GDP and inflation but in the discussion here we refer to them sim-

ply as first and second variable. The first equation is specified similarly to regression

models with ArIMa errors (see Fuller, 1996):

X1t =
M1∑

i=1

α1iZ1it + X̃1t, (1)

where Z1·t is a vector of M1 ≤ 3 exogenous variables. The remainder of this regression,

X̃1t, is described as made up of a long term component or trend, XN
1t , and of a short

term component or cycle, XS
1t, according to:

X̃1t = XN
1t + XS

1t. (2)

The dynamic behavior of the short-term component is described by an Ar(2) model

as in: (
1− φ1L− φ2L

2
)
XS

1t = aS
t , (3)

where aS
t is a white noise innovation with variance VS. Trivially, if the Ar parameters

are restricted to be null, then the short-term component becomes a white noise. The

trend or long-term component can be specified as a second order random walk:

(1− L) XN
1t = µ1t−1 + aN

t , (4)

where the slope is such that:

(1− L) µ1t = aµ
t . (5)

Both aN
t , and aµ

t , are white noise innovations with variances VN and Vµ. Notice that

a null variance for the slope innovations, Vµ = 0, implies that (4) and (5) reduces to

a random walk plus drift and the trend becomes integrated of order 1 instead of 2.

Also, in the second-order random walk plus noise model, setting to zero the variance

of the innovations in the trend level, i.e. VN = 0, and considering a simple white

noise for the short term component, i.e. φ1 = φ2 = 0, yields the I(2)-trend plus

noise model that is implicit in Hodrick-Prescott detrending (see Harvey and Jaeger,
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1993), with inverse signal to noise ratio given by VS/Vµ (see Hodrick and Prescott,

1997). Program Gap offers all these specifications. Discussions of univariate models

for measuring gaps can be found for instance in Watson (1986) and in Clark (1987).

When exogenous variables are used, these are then assigned to the long-term com-

ponent so that the final decomposition is:

X1t = XNF
1t + XS

1t, (6)

where the final trend is such that:

XNF
1t =

M1∑

i=1

α1iZ1it + XN
1t . (7)

Similarly to the model put forward by Kuttner (1994), series 1 is related to a sta-

tionary transformation of the second series, typically change in inflation, according

to:

X2t = µ2 +
M2∑

i=1

α2iZ2it + γ (1− L)d X1t−1 +
r∑

i=0

βiX
S
1t−i +

+
p∑

i=1

φ∗i X2t−i +
q∑

i=0

θia
π
t−i, (8)

where µ2 is the intercept, Z2·t is a vector of M2 ≤ 10 exogenous variables, d is the

order of integration of the first series, r is the number of lags for which the short-

term component of the series is supposed to have an impact on the change in inflation

constrained to lie between 0 and 4, p is the number of autoregressive terms constrained

to be less or equal to 2, q is the number of moving average terms with 3 as maximum

and θ0 = 1. Finally the innovation aπ
t is a white noise with variance Vπ that can be

correlated with aS
t but only when β0 = 0. That correlation is denoted by ρ.

Program Gap allows users to enter restrictions on any of these parameters. Prac-

titioners should be aware of several features:

1. In equation (8), the endogenous variable X2t should be covariance stationary.

Most often a preliminary stationary transformation is needed, so for instance

changes in inflation are generally considered instead of inflation.
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2. If XS
1t is included in (8), the innovations aπ

t and this regressor must be or-

thogonal. Thus Program Gap imposes ρ = 0. Not doing so would lead to an

inconsistent parameter estimator.

3. If VS = 0, Program Gap estimates no cycle, so the parameters in (8) are not

identified. In this case they are automatically set to 0.

4. If a second-order random walk is specified for the first series trend, then in (8)

the lagged first series is differenced twice, i.e. d = 2, in order to make the

regressor stationary.

As mentioned in point 2, in some cases it can happen that the estimation yields

a 0-innovation variance for the short-term component of the first series. In this case

the cycle is estimated as 0, so no series decomposition is actually performed. In order

to overcome this problem, Program Gap offers the possibility to specify a canonical

model (see Pierce, 1978; Hillmer and Tiao, 1982) for the trend component in equation

(4)-(5). Let us assume that a random walk plus drift is the model describing the long-

term movements. It can be seen that the associated pseudo-spectrum, say gp (ω), is

such that

gp (ω) =
VN

2− 2 cos (ω)
,

where ω ∈ [0, π] is a frequency expressed in radians (see Harvey, 1989, pp.64-65).

Since gp (π) = VN/4, movements at frequency π or with periodicity 2 do contribute

to the overall variance of the trend component. Yet, since the decomposition is

into long-term and short-term components, all movements with periodicity 2 should

belong to the short-term component while the trend should be free of short-term

fluctuations. This is imposed in the so-called canonical specification. That decom-

position is achieved by removing from the trend spectrum its minimum, which is

gp (π) in the case of a random walk, and by assigning it to the cycle spectrum. The

models obtained for the new decomposition are then such that the trend model is

non-invertible:

(1− L) XN
1t = µ1 + (1 + L) aN

t ,
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and the Ar(2) model for the cycle becomes an ArMa(2,2) model:

(
1− φ1L− φ2L

2
)
XS

1t =
(
1 + θS

1 L + θS
2 L2

)
aS

t .

Because such a canonical specification maximises the cycle innovation variance in the

series decomposition, it can be helpful for overcoming the problem of a 0-innovation

variance. That specification is only allowed when the trend is specified as a random

walk plus drift. (Vµ = 0). If used, the order of the Ma term in the second equation is

restricted to be less or equal to 1. For a discussion of the properties of the canonical

decomposition, see Maravall and Planas (1999).

Table 1 displayed in next page summarises all the specifications offered by Program

Gap.
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Table 1 Program GAP: options for model specification

First series decomposition . Bivariate

. Univariate

. Hodrick-Prescott filter

First equation

Trend . Second-order random walk

. I(2)

. Random walk plus drift

. Canonical IMa(1,1) plus drift

Cycle . Ar(2)

. Ar(1)

. White noise

. ArMa(2,2) (if canonical

IMa(1,1) is used for trend)

Exogenous regressors . From 0 to 3

Second equation - Phillips curve

Autoregressive terms . Ar(2)

. Ar(1)

. No Ar term

Moving average terms . From 0 to 3

First series terms . Diffrenced series with 1 lag

. From 0 to 4 lags on cycle

Exogenous regressors . Intercept

. From 0 to 10

Innovatrions . Orthogonal

. Cross-correlated with first

series innovations

8



3 Model parameter estimation

Let Λ denote the vector of all unknown parameters in model (1)-(8):

Λ = (φ1, φ2, µN , µπ, γ, β0, β1, ..., β4, θ1, θ2, θ3, θ
S
1 , θS

2 ,

VN , VS, ρ, Vπ, α1,1, ..., α1,3, α2,1, α2,2, ..., α2,10, φ
∗
1, φ

∗
2)
′.

While the vector Λ has dimension 35, because of several mutual exclusions it never

happens that 35 parameters need to be estimated. The exclusions are:

• either µN = 0 or Vµ = 0 or both, but they cannot be both different from zero;

• βj = 0 for j = 0, 1, ..., 4 if VS = 0;

• ρ = 0 if β0 6= 0 and β0 = 0 if ρ 6= 0;

• θ2 = θ3 = 0 if canonical trend is considered.

The maximum number of parameters that can be estimated is thus 31.

Let Xt and Zt denote the vectors of observations and of exogenous variables,

respectively, so Xt = (X1t,X2t)
′ and Zt = (Z1t,Z2t)

′, for the dates t = 1, 2, ..., T .

We also denote by Xtand Zt the vectors of observations and of exogenous up to time

t. Because the first series is integrated of order d = 1, 2, the likelihood function is

defined conditionally on the first d observations according to:

p
(
Xd+1, ...,XT

∣∣∣Λ,Xd,ZT
)

=
T∏

t=d+1

f
(
Xt

∣∣∣Λ,Xt−1,ZT
)
, (9)

where f (·) is the normal pdf. Model parameters estimates are obtained by max-

imising the log of (9). For evaluating the log-likelihood, we cast the model into

a state-space format (see Harvey, 1989, pp.100-166; Hamilton, 1994, pp 372-408).

State-space models are defined by a measurement equation like

Xt = Hξt + CZt + ut, (10)

where Xt is an observed vector of dimension k×1, ξt is the state vector with dimension

n × 1, H a matrix of dimension k × n, ut a vector of innovations with covariance
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matrix R, Zt a vector of r exogenous variables and C is a k × r matrix. The model

is completed by a transition equation for the state vector such that

ξt+1 = Fξt + vt+1, (11)

where F is a n×n transition matrix and vt is a vector of innovations with covariance

matrix Q. In the case of model (1)-(8) the matrices C, F, H,Q, and R are constant,

but this is not a requirement in state space models.

Let us consider for instance model (1)-(7) with the equation (8) for the second

series simplified as in:

X2t = β0X
S
1t + aπ

t + θ1a
π
t−1

and ρ = 0. If the state variable is chosen to be such that ξt = (XN
1t, µ1t,X

S
1t,X

S
1t−1, a

π
t ,

aπ
t−1)

′, then it is easily seen that , vt = (aN
t , aµ

t , a
S
t ,0, aπ

t ,0), ut = (0,0), R = 02×2,

and the matrices F,H, and Q, are given by:

F =




1 1 0 0 0 0

0 1 0 0 0 0

0 0 φ1 φ2 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0




, H =

[
1 0 1 0 0 0

0 0 β0 0 1 θ1

]
,

Q =




VN 0 0 0 0 0

Vµ 0 0 0 0

VS 0 0 0

0 0 0

Vπ 0

0




In the state space framework, evaluation of the log-likelihood can be computed

as follows. Normality is assumed for convenience; shouldn’t it hold the conditional

expectation operators should be interpreted as linear projections and maximum like-

lihood estimator as quasi-maximum likelihood estimator. It can be seen that for all

dates, the computation of f
(
Xt

∣∣∣Λ,Xt−1,ZT
)
, in (9) only involves the innovation

vector Xt − E
[
Xt

∣∣∣Xt−1,ZT
]
, where Xt|t−1 = E

[
Xt

∣∣∣Xt−1,ZT
]
, denotes expec-

tation of Xt conditional on Xt−1, and ZT, and the innovation covariance matrix
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V ar
[
Xt −Xt|t−1

]
. Writing ξt|t−1 = E

[
ξt

∣∣∣Xt−1,ZT
]
, from (10) it is easily seen that

Xt|t−1 = Hξt|t−1 + CZt, and that the innovation covariance matrix verifies

V ar
[
Xt −Xt|t−1

]
= HPt|t−1H′ + R

where Pt|t−1 = Var
[
ξt − ξt|t−1

]
. The problem is thus to find ξt|t−1 and Pt|t−1 for

all t = d + 1, ..., T . By now, the initial condition ξd+1|d and its covariance matrix

Pd+1|d are taken as given; they will be discussed in the next section. From (10)-(11)

and under the normality hypothesis, the joint distribution of the state vector ξt and

of the observation Xt conditional on the past observations and on the exogenous

variables is given by:

ξt

Xt

∣∣∣Xt−1,ZT ∼ N

(
ξt|t−1

Hξt|t−1 + CZt
,

[
Pt|t−1 Pt|t−1H′

HPt|t−1H′ + R

])
. (12)

The properties of the normal distribution (see Harvey, 1989, p.165) then imply:

ξt|t = ξt|t−1 + Pt|t−1H′ (HPt|t−1H′ + R
)−1 (

Xt −Hξt|t−1 −CZt

)
(13)

Pt|t = Pt|t−1 −Pt|t−1H′ (HPt|t−1H′ + R
)−1

HPt|t−1 . (14)

Finally, equation (11) implies:

ξt+1|t = Fξt|t (15)

Pt+1|t = FPt|tF+Q (16)

Equations (13)-(16) make up the well-known Kalman recursions (see Harvey, 1989,

pp.104-112; Hamilton, 1994, pp.377-380). Running (13)-(16) for all t = d + 1, ..., T

gives a straightforward evaluation of the log-likelihood. For instance, the contribution

at time t to −2 times the log-likelihood is:

−2 log f
(
Xt

∣∣∣Λ,Xt−1,ZT
)

= c + log
(∣∣∣HPt|t−1H′ + R

∣∣∣
)

+

+
(
Xt −Hξt|t−1 −CZt

)′ (
HPt|t−1H′ + R

)−1 (
Xt −Hξt|t−1 −CZt

)

All quantities in this last expression can produced by the Kalman recursions as pre-

viously described. Maximisation of the log-likelihood is performed by the E04UCF
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routine of the Mark 19 Fortran NAG library. It uses a Newton-Raphson technique

for isolating a maximum (see for instance Hamilton, 1994, p.138). Another rou-

tine based on a simulated annealing algorithm (see Kirkpatrick et al., 1983) is also

proposed mainly for double-checking the results. Differently from Newton-Raphson

techniques, simulated annealing does not use first derivative and hence it has the

appealing feature of looking for a global optimum. Yet the price to pay is a much

longer computing time, and for this reason we suggest its use only for performing

checks in difficult cases.

Standard deviations for parameter estimates are obtained using the textbook result

(see for instance Hamilton, p. 143) that the asymptotic distribution of the maximum

likelihood estimates is well approximated by Λ̂ ∼ N
(
Λ, (T=)−1

)
, where = the in-

formation matrix. Program Gap estimates the information matrix using the second

derivatives of the log-likelihood at the maximum:

=̂ = − 1

T

∂2 log L

∂Λ∂Λ′
∣∣∣
Λ=Λ̂

(17)

Sometimes it can happen that =̂ comes out as non-positive definite. In this case,

Program Gap switches to the outer product of gradient estimate defined by:

=̂ =
1

T

T∑

t=d+1

∂ log f
(
Xt

∣∣∣Λ,Xt−1,ZT
)

∂Λ′
∣∣∣
Λ=Λ̂

×
∂ log f

(
Xt

∣∣∣Λ,Xt−1,ZT
)

∂Λ

∣∣∣
Λ=Λ̂

(18)

Finally, for model (1)-(8) to give a statistically acceptable description of the series

first two moments, the residuals Xt−Xt|t−1 must have white noise properties. This

is checked by the Ljung-Box statistics (see Ljung and Box, 1979) that is computed

according to:

Q (m) = (T − d) (T − d− 2)
m∑

k=1

r (k)2

T − d− k
,

where r (k) is the lag-k residuals autocorrelation and T − d is the number of effective

residuals . Program Gap checks the first four autocorrelations, so m = 4 in the

expression above.
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4 Initialising the state covariance matrix with the

diffuse Kalman filter

The diffuse Kalman filter serves at the exact initialisation of the Kalman filter when

the state vector contains non-stationary elements. It has been introduced by de Jong

(1991); a good description can be read in Durbin and Koopman (2001, pp 115-120).

The description that we develop below is actually based on Durbin and Koopman’s

book. Let the initial state vector be

ξ1 = a + Aδ + Bη0; η0 ∼ N (0,Q0) , (19)

where a is a k×n vector that is known, δ is a d×1 vector of unknowns and A and B

are respectively n×d and n× (n−d) matrices with columns are those of the identity

matrix. The matrix A is such that the i-th row of A loads if the i-th element of the

state is non stationary and is made up of zero’s otherwise. On the contrary, the i-th

row of B loads the innovation η0 if the i-th element of the state is stationary and

is made up of zero’s otherwise. Hence they verify A′B = 0d×(n−d). The vector a is

made up of zero’s except for the entries of the state vector that are constant, if any.

Let us denote by P∗,δ the matrix made up of the unconditional covariances of state

assuming δ is known. It is easily seen that P∗,δ = BQ0B
′. Conditional on δ the

expectation of is:

ξ1|δ = E [ξ1 |δ ] = a + Aδ, (20)

with associated covariance matrix P1|δ = Var [ξ1 |δ ] = P∗,δ. Running the Kalman

recursion (13) it is easily seen that the output will be:

ξ1|1,δ = a + Aδ + P1|δ H
′ (HP1|δ H

′ + R
)−1

(X1 −CZ1 −Ha−HAδ) , (21)

and

ξ2|1,δ = Fξ1|1,δ

= a2 + A2δ, (22)

where a2 and A2 are obtained by simple re-ordering of the terms in (21). In general,

we will write:

ξt|t−1,δ = at + Atδ, (23)
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and similarly, if the starting condition would be known, the innovation would be

obtained as:

υt|δ = Xt −CZt −Hξt|t−1,δ = υa,t + VA,tδ. (24)

The covariance matrix associated with (23) and its update that are obtained by

running (14) and (16) with P∗,δ as starting value will be denoted Pt|t−1,δ and Pt|t,δ ,

respectively. Again, for a given δ, the variance of (24) will be denoted by ft|δ . It is

given by:

ft|δ = HPt|t−1,δ H
′ + R. (25)

Notice that all quantities involved in (23)-(24) can be obtained by running the Kalman

filter (13)-(16) of the augmented state (at,At) that becomes a matrix with initial

state (a,A) and initial covariance matrix P∗,δ for each column of the state matrix,

while at every time t the observation Xt in (13)-(16) becomes a vector (Xt,01×d)′.

The diffuse Kalman filter initialisation states that δ is a random variable such that

δ ∼ N (0,kId), with k → ∞. The problem is to find ξt+1|t = Eδ

[
ξt+1|t,δ

]
and its

covariance matrix in that case. Let δ̂ = E [δ |Xt ] . Since

ξt+1|t = Eδ

[
ξt+1|t,δ

]
= at+1 + At+1δ̂, (26)

and

Pt+1|t = E
[(

ξt+1|t − ξt+1

) (
ξt+1|t − ξt+1

)′]

= E
[(

at+1 + At+1δ̂ − ξt+1

) (
at+1 + At+1δ̂ − ξt+1

)′]

= Pt+1|t,δ + At+1Var
(
δ̂
)
A′

t+1. (27)

The problem turns out to be that of finding δ̂ and its variance. Writing

log p
(
δ

∣∣∣Xt
)

= log p (δ) + log
(
Xt |δ

)
− log p

(
Xt

)

= −1

2
δδ′ +

t∑

j=1

log p
(
υj|δ

)
− log p

(
Xt

)
,

and using (24) and (25) in this last expression yields:

log p
(
δ

∣∣∣Xt
)

= −1

2
δδ′ − b′tδ −

1

2
δSA,t + c, (28)
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where c denotes terms independent of δ and bt and SA,t are given by

bt =
t∑

j=1

V ′
A,jf

−1
j|δ υa,j

SA,t =
t∑

j=1

V ′
A,jf

−1
j|δ VA,j. (29)

Normality implies that δ̂ maximises log p (δ |Xt ). Solving the first-order conditions

on (28) yields

δ̂ = −
(
SA,t +

1

k
Id

)−1

bt. (30)

Evaluating minus the Hessian matrix at the maximum likelihood estimator and in-

verting gives the covariance matrix

V ar
(
δ̂
)

=
(
SA,t +

1

k
Id

)−1

. (31)

Finally, taking k → ∞ in (30) and (31) and plugging the results into (26) and (27)

yields

ξt+1|t = at+1 −At+1S
−1
A,tbt, (32)

and

Pt+1|t = Pt+1|δ + At+1S
−1
A,tA

′
t+1. (33)

Equations (32)-(33) made up de Jong’s diffuse Kalman Filter. All quantities can be

computed using the augmented Kalman filter, as previously explained, and using (29)

for intermediate values. Because SA,t is singular as long as t < d, the expressions

(32)-(33) can be evaluated only at t = d. The diffuse Kalman filter directly yields

ξt+1|t and Pt+1|t . This means for instance that the first d innovations do not exist.

Once ξt+1|t and Pt+1|t are available, the augmented Kalman recursions that were

necessary for computing (23)-(25) and (29) in the previous steps are collapsed and

the usual recursions (13)-(16) are used.
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Other procedures exist for initialising the Kalman filter when the state vector is

not stationary. An alternative to de Jong’s approach is to write analytically the

initial state covariance as a function of k, to work out Pd|d (k) using the Kalman

recursions and to derive its limit as k goes to infinity. It is the analytical counterpart

of the algorithm described above. Yet, for a model with more than 30 parameters

this analytical approach is untractable.

A third approach puts large numbers into the initial state covariance matrix for

infinite variances and run the usual recursions. Although it is still commonly used,

most textbook recommend against it because of the numerical instability it creates.

For that reason we discarded it.

5 Smoothing the unobserved components

For casting model (1)-(8) into a state space format, it is necessary to include in the

state vector the unobservable components XN
1t and XS

1t. For instance in the illustra-

tion given at the beginning of chapter 2, the state vector is ξt = (XN
1t, µ1t,X

S
1t,X

S
1t−1,

aπ
t , aπ

t−1)
′. Running the Kalman recursions yields the projections XN

1t|t and XS
1t|t , but

in general knowledge of the future helps in determining current unobserved quantities.

Trivially, the current trend of an economy is better known if information about the

future is available. Updating the state concurrent estimate ξt|tusing the information

available at time t + 1, . . . , T is known as smoothing. How the incoming information

affects the concurrent estimates can be understood from

ξt

ξt+1

∣∣∣Xt,ZT ∼ N

(
ξt|t

ξt+1|t
,

[
Pt|t FPt|t

Pt+1|t

])
,

where all the entries are produced by the Kalman recursions (13)-(16). The properties

of normal distribution imply that

E
[
ξt

∣∣∣ξt+1,X
t,ZT

]
= ξt|t + FPt|tP

−1
t+1|t

(
ξt+1 − ξt+1|t

)
. (34)

Because ξt is uncorrelated to the innovations vt+2, ...,vT in the transition equation

(11) and to the innovations ut+1, ...,uT in the measurement equation (10), it fol-

16



lows that E [ξt|ξt+1,X
t,Z] = E

[
ξt|ξt+1,X

T,Z
]
. According to the law of iterated

expectations

E
[
ξt

∣∣∣XT,ZT
]

= E
[
E

[
ξt

∣∣∣ξt+1,X
T,ZT

]]

and

E
[
ξt

∣∣∣XT,ZT
]

= ξt|t + FPt|tP
−1
t+1|t

(
ξt+1|T − ξt+1|t

)
. (35)

Because ξt|t and ξt+1|T − ξt+1|t belong to orthogonal information sets, the associated

covariance matrix is:

V ar
[
ξt

∣∣∣XT,ZT
]

= Pt|t + FPt|tP
−1
t+1|t

(
Pt+1|T −Pt+1|t

)
P−1

t+1|tPt|tF
′ (36)

The state vector can thus be smoothed at all dates by starting the recursions (35)-

(36) at t = T − 1. Program Gap implements the fixed-point smoother algorithm

described in Harvey (1989, pp 151-153).
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