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July 18, 2018

1 Summary

This document serves as the supplementary material for the article “Flexible Estimation of Demand

Systems: A Copula Approach.”

Section 2 describes our estimation methodology and the specifications that we use in detail. Section

3 conducts an empirical analysis of the data that guides the selection of the specifications that are used

in our meta-analysis. Section 4 discusses an alternative measure of model fitness. Finally, Section 5

presents our replication of the results in Chang and Serletis (2014)

2 Methodology

This section describes the methodology that we use for estimating Deaton and Muellbauer’s (1980)

Almost Ideal Demand System (AIDS), Banks et al.’s (1997) Quadratic AIDS (QUAIDS), and Barnett’s

(1983) Minflex Laurent (ML) models to demand systems and their implied elasticities. The specification

of the conditional means models, and the methodology for imposing regularity on their estimates is

the same that Chang and Serletis (2014) used, with minor adjustments to parameter normalizations
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to aid numerical procedures. We summarize the conditional mean model specifications and regularity

impositions from Chang and Serletis (2014), but the reader should refer to the original article for a

more complete account.

We extend the estimation procedure in Chang and Serletis (2014) to allow for a more flexible

specification of the budget share residuals, whose likelihood is maximized.

2.1 Maximum likelihood estimation

Chang and Serletis (2014) use the following specification to estimate all the models for household h:

sh = g(ph, yh, ϑ) + uh, h = 1, . . . ,H. (2.1)

where H is the total number of households, sh = (sh;1, sh;2, sh;3)′ is the observed budget share vec-

tor for household h, ph = (ph;1, ph;2, ph;3)′ is the price vector it is exposed to, and yh is its total

expenditure on the three goods. The shares’ conditional means are obtained through each model

g(·, ·, ϑ) = (g1(·, ·, ϑ), g2(·, ·, ϑ), g3(·, ·, ϑ))′ (AIDS, QUAIDS, and ML) and uh is a stochastic zero-mean

vector of errors which they assume to follow a trivariate normal distribution.

Since
∑3

i=1 sh;i = 1, and because of the multivariate normality assumption, they proceed to estimate

ϑ in (2.1) after arbitrarily dropping the last equation in the system (see Barten, 1969) using nonlinear

full-information maximum likelihood.

We extend this methodology to allow for non-normally distributed errors, considering the empirical

distributions of budget shares (see Figure 1 in the main text) and the disconnection between the

normality assumption and the distribution of the residuals that it produces (see Figure 2). To achieve

this, we use copula functions to construct more flexible joint residual distributions.

Since all shares add up to one, we select only two goods to be directly modeled. As Chang and

Serletis (2014), we select Good 1 (gasoline) and Good 2 (local transportation) to be directly modeled

in our estimation.

We model the marginal distributions of Good 1 and Good 2’s budget shares as F1(sh;1|g1(ph, yh, ϑ), ψ1)

and F2(sh;2|g2(ph, yh, ϑ), ψ2), where ψ1 and ψ2 correspond to the marginals’ specific unknown param-

eters. We relate these marginal distributions to the joint distribution, F1;2(·, ·), through a copula

function, C(·, ·; θ), i.e.,

F1;2(sh;1, sh;1) = C(F1(sh;1|g1(ph, yhϑ), ψ1), F2(sh;2|g2(ph, yh, ϑ), ψ2); θ), (2.2)

where θ represents the specific copula’s dependence parameter. As discussed in Section 3, we consider

the Normal and Skewed Normal distributions for the marginals F1(·|·, ψ1) and F2(·|·, ψ2), and the

Normal, Frank, Clayton, and Gumbel copulas for C(·, ·; θ). To allow for different dependence structures,

specially to model negative dependence through the Gumbel and Frank copulas, for each choice of

copula C we evaluate F1;2 as in (2.2) and the following rotation as well:
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Figure 1: Specification alternatives.
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F1;2(sh;1, sh;1) = C(F1(sh;1 − g1(ph, yhϑ)|ψ1), 1− F2(sh;2 − g2(ph, yh, ϑ)|ψ2); θ)

= C∗(F1(sh;1|g1(ph, yhϑ), ψ1), F2(sh;2|g2(ph, yh, ϑ), ψ2); θ)
(2.3)

Copulas C∗ are therefore obtained by rotating the second good in the Normal, Frank, Clayton,

and Gumbel copulas. With this in mind, a total of 1681 specifications for each type of household are

estimated using the copula R package. Figure 1 presents all the specification alternatives which we

consider. Note that the models considered by Chang and Serletis (2014) are obtained using Normal -

Normal marginals and the Normal copula.

Given a full parameter vector {ϑ∗, ψ∗1, ψ∗2, θ∗}, we first obtain the estimated budget share means through

the selected demand system model for each household h:

s∗h = {s∗h;1, s
∗
h;2} = {g1(ph, yh, ϑ

∗), g2(ph, yh, ϑ
∗)}. (2.4)

We then obtain u∗h = {u∗h;1, u
∗
h;2} = {sh;1 − s∗h;1, sh;2 − s∗h;2} for each household. The log-likelihood

of each household’s budget allocation is calculated through these residuals based on (2.2), assuming

g(ph, yh, ϑ
∗) is the conditional mean of budget shares. The marginals of residuals are therefore restricted

to have zero means. We compute each household’s residuals’ log-density and add them up to obtain

our total log-likelihood, which we maximize:

`(ϑ∗, ψ∗1, ψ
∗
2, θ
∗) =

H∑
h=1

ln c(u∗h;1, u
∗
h;2|ϑ∗, ψ∗1, ψ∗2, θ∗) (2.5)

where c(·) is the density function associated with model (2.2). We construct and evaluate c(·) using

the copula package in the R statistical language.

1Specifications that use the Normal copula are invariant to our rotation. The number of specifications is therefore

3 × 2 × 4 × (3 × 2 + 1) = 168.
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2.2 Normalizations and restrictions

We now discuss the normalizations adopted for parameter estimation and the way in which restrictions

for local and global curvature imposition are implemented.

2.2.1 AIDS and QUAIDS models

The AIDS and QUAIDS models are estimated with the following parameter normalizations and re-

strictions:

3∑
i=1

αi = 1;

3∑
i=1

βi = 0;

3∑
i=1

λi = 0;

3∑
i=1

γi,j = 0∀j; γi,j = γj,i ∀i, j, (2.6)

where λi = 0∀i in the case of AIDS. This restrictions are included in our implementation by omitting

α3, β3, λ3, γ2,1, γ3,1, γ3,2 and γ3,3 as parameters in the optimization procedure. We optimize over the

rest of parameters (8 for AIDS and 10 for QUAIDS) and obtain the omitted parameters using (2.6) in

every iteration, allowing us to evaluate the objective function.

Ryan and Wales (1998) derive a simple way of restricting the models so that curvature is satisfied at

the point p1 = p2 = p3 = y = 1. The procedure consists of expressing γ as a function of an upper

triangular matrix κ and the rest of the parameters, in a way which ensures that the Slutsky matrix

is negative semi-definite at the aforementioned point. The transformation is specified in equations (9)

and (13) in Chang and Serletis (2014). The number of free parameters in κ is the same as that of γ

for the unrestricted case.

For the restricted models, we again optimize over the free parameters (κ replaces γ), obtaining an

estimated γ, and estimates of all the omitted parameters at every iteration. We use the delta method

with numerical derivatives to obtain standard errors for estimates of γ.

2.2.2 ML model

The ML model has three different sets of parameters: a 3×1 vector a, and two 3×3 symmetric matrices

A and B. The following restrictions are imposed:

bi,i = 0∀i; ai,j ∗ bi,j = 0∀i, j. (2.7)

Sign restrictions are also necessary: in the base case, the off-diagonal elements of A and B need to be

non-negative, and in order to impose global curvature, all parameters have to be non-negative. Chang

and Serletis (2014) impose these restrictions by replacing restricted parameters with their squares in

the model’s equations. We also adopt this strategy.

It is important to decide which parameters are 0 in the ai,j ∗ bi,j = 0∀i, j restriction. Following

Chang and Serletis (2014), we set A1,2 = A2,1 = A2,3 = A3,2 = B1,3 = B3,1 = 0. This, along with the

4



symmetry restriction implies that the 9 parameters left for estimation are a1, a2, a3, A1,1, A1,3, A2,2,

A3,3, B1,2, and B2,3.

The ML share equation is homogeneous of degree 0 in its parameters, that is: all parameters can be

multiplied by a constant without modifying the predicted shares. To fix the scale, Chang and Serletis

(2014) impose the following normalization:

2

3∑
i=1

ai +

3∑
i=1

3∑
j=1

Ai,j −
3∑
i=1

3∑
j=1

Bi,j = 1, (2.8)

where restricted parameters are replaced by their squares. The authors seem to leave B2,3 out of the

estimation (as they do not report it) and recover it at every iteration from (2.8). We opt against this

strategy, as for some parameter values (2.8) can produce negative implied values for B2,3, which needs

to be non-negative. This would require us to restrict the feasible ‘free’ parameter values, complicating

our problem.

We instead drop the normalization in (2.8) and adopt the following strategy. At every loop of our

optimization scheme (see Subsection 2.3 below) we rescale the parameter vector so that the sum of all

values in a, A and B is 1. The parameter a1 is fixed on the value implied by this normalization for the

rest of the loop.

2.3 Optimization

Maximization of the log-likelihood function expressed in (2.5) is not trivial. This section describes the

strategy and numerical methods we used in order to arrive at the estimates that we report.

We used the estimates from the replication section of this study (Tables 5, 6, and 7) as starting

values for the demand systems’ model parameters ϑ. We denote these particular values as ϑ0. These

models were estimated using the mle2 function in the bbmle package in R. Estimation converged from

arbitrary starting points for AIDS and QUAIDS models. For ML models, we used the CRS (controlled

random search) method from the R package nloptr to find starting points.

Initial values for ψ1, ψ2 and θ are obtained maximizing the log-likelihood in (2.5) with ϑ fixed on

ϑ0 using nloptr’s DIRECT-L. Starting values for this optimization are arbitrary (but feasible). With

these values, we can construct a full initial parameter vector {ϑ0, ψ1;0, ψ2;0, θ0}.
After constructing an initial value, we initiate an estimation loop in which we alternate optimization

methods trying to improve our estimates. The loop was designed considering that using a single method

often resulted in local optimums and ill-defined variance covariance matrices. Estimation stops if a well

defined covariance matrix is obtained or after a maximum of ten iterations. The nth iteration consists

of the following steps:

1. Maximize `(·) using nloptr, with {ϑn−1, ψ1;n−1, ψ2;n−1, θn−1} as starting values. If n = 1 use the
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Table 1: Specifications that did not converge per model and copula

Copula AIDS AIDS(R) QUAIDS QUAIDS(R) ML ML(R) Total

N Ratio N Ratio N Ratio N Ratio N Ratio N Ratio N Ratio

Normal 12 0.000 12 0 12 0.167 12 0.42 12 0.25 12 0.33 72 0.19

Frank 24 0.042 24 0 24 0.125 24 0.21 24 0.21 24 0.50 144 0.18

Clayton 24 0.000 24 0 24 0.083 24 0.21 24 0.42 24 0.38 144 0.18

Gumbel 24 0.083 24 0 24 0.083 24 0.21 24 0.29 24 0.29 144 0.16

Total 84 0.036 84 0 84 0.107 84 0.24 84 0.30 84 0.38 504 0.18

Note: (a) Columns N mark the total number of specifications that were estimated for a given cop-

ula-demand model combination. Columns “Ratio” specify the fraction of those models that did not

converge. (b) (R) marks demand models with curvature impositions. (c) The Normal copula always

has half of the number of specifications as others, as it is not modified by the rotation.

method SBPLX, else use COBYLA.

2. Maximize `(·) using mle2, which also computes the estimates’ covariance matrix. The initial

values are the results of step 1. The method BFGS is always used, but as it is based on a numerical

gradient it can fail, halting with an error. In this cases, switch to the Nelder-Mead method, also

supported by mle2. Denote the estimates obtained in this step by {ϑn, ψ1;n, ψ2;n, θn}.

3. Check if the Hessian matrix computed by mle2 in step 2 has no missing entries, is finite and

invertible. Finally check that all entries in the diagonal of the implied covariance matrix are

non-negative. If these conditions hold, exit the loop taking {ϑn, ψ1;n, ψ2;n, θn} as the final result.

If the conditions do not hold and n < 10 go to step 1 of iteration n+ 1.

This algorithm allows us to obtain well defined estimates of most of the specifications that we

consider. Table 1 presents a descriptive analysis of the models that did not converge, disaggregated

by demand system model and copula. Of all the considered specifications, 18% did not converge. No

particular copula had significantly higher rates of convergence than others. The most problematic

demand system to estimate was the ML, with more than 30% of estimations failing to converge.

2.4 Regularity checks

Table 2 presents the percentage of models that attained regularity out of those that converged for every

demand model-copula combination. Regularity is defined as not having violations of positivity, mono-

tonicity, or curvature. Only 45% of specifications that converged attained regularity. The restricted

ML model dominates in this respect, as curvature can be imposed globally. However, for the AIDS

models, more than 50% of specifications have no violations. Copulas do not seem to have a big effect,

but the Frank copula has the lowest percentage of regularity violations.
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Table 2: Specifications that attain each regularity condition per model and copula

Copula AIDS AIDS(R) QUAIDS QUAIDS(R) ML ML(R) Total

N Ratio N Ratio N Ratio N Ratio N Ratio N Ratio N Ratio

Regularity

Normal 12 0.67 12 0.92 10 0 7 0.000 9 0.000 8 1 58 0.47

Frank 23 0.61 24 0.79 21 0 19 0.000 19 0.105 12 1 118 0.40

Clayton 24 0.67 24 1.00 22 0 19 0.000 14 0.143 15 1 118 0.48

Gumbel 22 0.68 24 1.00 22 0 19 0.053 17 0.000 17 1 121 0.47

Total 81 0.65 84 0.93 75 0 64 0.016 59 0.068 52 1 415 0.45

Positivity

Normal 12 1 12 1.00 10 1.00 7 1.00 9 0.67 8 1 58 0.95

Frank 23 1 24 0.83 21 0.71 19 0.95 19 0.89 12 1 118 0.89

Clayton 24 1 24 1.00 22 0.82 19 1.00 14 0.79 15 1 118 0.94

Gumbel 22 1 24 1.00 22 0.77 19 0.89 17 0.76 17 1 121 0.91

Total 81 1 84 0.95 75 0.80 64 0.95 59 0.80 52 1 415 0.92

Monotonicity

Normal 12 1 12 1.00 10 1.00 7 1.00 9 0.67 8 1 58 0.95

Frank 23 1 24 0.83 21 0.71 19 0.95 19 0.89 12 1 118 0.89

Clayton 24 1 24 1.00 22 0.82 19 1.00 14 0.79 15 1 118 0.94

Gumbel 22 1 24 1.00 22 0.77 19 0.89 17 0.76 17 1 121 0.91

Total 81 1 84 0.95 75 0.80 64 0.95 59 0.80 52 1 415 0.92

Curvature

Normal 12 0.67 12 0.92 10 0 7 0.000 9 0.000 8 1 58 0.47

Frank 23 0.61 24 0.96 21 0 19 0.000 19 0.105 12 1 118 0.43

Clayton 24 0.67 24 1.00 22 0 19 0.000 14 0.143 15 1 118 0.48

Gumbel 22 0.68 24 1.00 22 0 19 0.105 17 0.000 17 1 121 0.48

Total 81 0.65 84 0.98 75 0 64 0.031 59 0.068 52 1 415 0.47

Note: (a) Regularity checks that the estimates comply with Positivity, Monotonicity and Curvature.

(b) Columns N mark the total number of specifications that converged for a given copula-demand

model combination. Columns “Ratio” specify the fraction of those models that attained regularity

(no violations of positivity, monotonicity, or curvature). (c) (R) marks demand models with curvature

impositions.
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The following section presents the methodology that we use to check regularity conditions.

Positivity

We check positivity by evaluating whether for household h:

gj(ph, yh, ϑ̂) ≥ 0 for j ∈ {1, 2, 3}.

We count the number of households for which this condition is not satisfied in every database (using

the final estimated parameters) and report it in our tables.

Monotonicity

Chang and Serletis (2014) present explicit expressions for the indirect utility functions of all the models.

We implement these functions and check monotonicity by evaluating whether for household h:

∂h(ph, yh, ϑ̂)/∂ph;j < 0 for j ∈ {1, 2, 3},

where h(·) is the indirect utility function, ph is a price vector and yh is the household’s total expenditure.

We check the condition for every household using R’s numDeriv package to compute the derivative.

We report the number of violations for every database.

Curvature

Ryan and Wales (1998) report that curvature conditions are equivalent to the requirement that the

Slutsky matrix of the demand system be symmetric and negative semi-definite. We now provide the

derivation of the expression that we use for the Slutsky matrix.

The models (AIDS, QUAIDS and ML) give us expressions for budget shares depending on prices

and wealth gj(p, y, ϑ) for j ∈ {1, 2, 3}. We use this expression to compute the Marshallian demand for

each good xj(p, y, ϑ):

xj(p, y, ϑ) =
gj(p, y, ϑ)× y

pj
. (2.9)

To use the Slutsky equation, we first compute the derivatives of the Marshalian demand in (2.9)

with respect to prices and wealth as follows.

∂xj
∂pk

(p, y, ϑ) =
y

p2
j

[
pj ∗

∂gj
∂pk

(p, y, ϑ)− gj(p, y, ϑ) ∗ δi,j
]

, (2.10)

∂xj
∂y

(p, y, ϑ) =
1

pj

[
∂gj
∂y

(p, y, ϑ) ∗ y + gj(p, y, ϑ)

]
, (2.11)
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where δi,j = 1 when i = j and δi,j = 0 otherwise. We program analytical implementations of

∂gj/∂pk and ∂gj/∂y in order to improve precision and considering that we will need them later on to

compute elasticities.

We then use Slutsky’s equation to compute the Slutsky matrix S(p, y, ϑ):

[S(p, y, ϑ)]j,k =
∂xj
∂pk

(p, y, ϑ) +
∂xj
∂y

(p, y, ϑ) ∗ xk(p, y, ϑ). (2.12)

We check whether S(ph, yh, ϑ̂) is symmetric and negative semi-definite for every household h and

report the number of violations to this condition. The application of (2.12) may cause numerical errors

that can make S(ph, yh, ϑ̂) non-symmetric. Therefore, we consider as symmetric any matrix for which

the maximum entry of |S − ST | is under 10−10. For matrices which satisfy this condition, we replace

S = (S + ST )/2 to make them strictly symmetric before checking positive semi-definiteness.

2.5 Elasticities

We compute the income elasticity ηj,y for good j and the Marshallian elasticities ηj,k of good j on the

price of good k using the same formulas as Chang and Serletis (2014):

ηj,y = 1 +
y

gj

∂gj
∂y

, (2.13)

ηj,k =
pk
gj

∂gj
∂pk
− δj,k. (2.14)

We compute standard errors for elasticities using the delta method (with numerical derivatives) and

use them to report z-test p-values.

3 Model selection

This section discusses different empirical characteristics of the marginal and joint distributions of the

budget shares of Goods 1 and 2. These characteristics guide the choice of the possible specifications

that we allow in our meta-analysis.

A first feature of the data that must be noted is the skewed distribution of the budget shares of

local transportation (see Figure 1 in the main text). The distribution has a mean that is close to zero

and is skewed to the right for all types of households. The conditional mean models do not account

for this distribution. Figure 2 displays box-plots for the estimated residuals (uh in (2.1)) for the AIDS,

QUAIDS, and M.L models estimated under the trivariate normality assumption for each household

type. The box plots show that the residual associated with Good 2 has a non-symmetric distribution

regardless of the model that is used for conditional means.
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Figure 2: Budget share residuals from estimation under normality.
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Note: (a) The graph depicts our own estimated residuals for the specifications used by Chang and Serletis

(2014) assuming normality. (b) Restricted indicates the instances where local curvature is imposed for AIDS

and QUAIDS models, and global curvature for Minflex Laurent models.
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Figure 3: Log-likelihood of estimated marginal distributions.
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Note: (a) Each distribution was fitted to budget shares of each good using the maximum likelihood method.

The reported value is the attained maximum.
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To evaluate the possibility of allowing for skewness in marginal distributions of budget shares, we

compare the fit of Normal and Skewed Normal marginals to the budget share data for each good

and dataset. Figure 3 presents the log-likelihood of the observed budget shares under Normal and

Skewed Normal marginals fitted using the maximum likelihood method. Allowing for skewness does

not significantly improve the fit of the distributions to Good 1’s budget shares, but it does for Good

2’s. We nevertheless allow for the four possible combinations of these marginals, considering that this

descriptive exercise used observed budget shares, and we are modeling unobserved residuals.

We now study the dependence between the budget shares of Goods 1 and 2. We first use the

transformation estimator with log-quadratic local likelihood in Geenens et al. (2017) to illustrate the

density of the bivariate relationship. Figure 4 presents contour plots this non-parametric copula density

estimator, using normal marginals and with Good 2’s budget share rotated. The contours show that

there is a low degree of dependence and that there is no evident high asymmetry.

Table 3: Spearman’s ρ and Kendall’s τ for budget shares of Goods 1 and 2

Dataset Kendall’s τ Spearman’s ρ

Single member households -0.21 -0.32

Married couples without children -0.22 -0.32

Married couples with one child -0.19 -0.28

Note: (a) The dependence measures were calculated on a non-parametric copula estimated for the rank trans-

formations of each pair of budget shares for each household type.

Table 3 presents Kendal’s τ and Spearman’s ρ for the budget shares of Goods 1 and 2. As can

be seen from the coefficients, there is negative dependence between the budget shares for all types of

households. This is partially explained by the fact that all budget share must add up to one. We

therefore must allow for negative dependence when constructing our copula specification.

Another important characteristic of multivariate modeling is tail dependence, which refers to in-

creases in dependence for extreme outcomes. This characteristic is measured through the lower and

upper tail dependence coefficients λL and λU , defined as

λL(X,Y ) = lim
v→0+

P [F−1
1 (X) < v, F−1

2 (Y ) < v]

v

λU (X,Y ) = lim
v→1−

P [F−1
1 (X) > v, F−1

2 (Y ) > v]

1− v

(3.1)

where F1 and F2 are the CDFs of the random variables of interest X and Y (see Trivedi and Zimmer,

2007, Section 2.4.4). Table 4 presents estimates of the tail dependence coefficients. The CDFs were ob-

tained as simple rank transformations, and the coefficients were estimated through the non-parametric
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Figure 4: Contour plots of kernel copula density estimators of Goods 1 and 2 budget shares.
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Note: (a) The symbol * denotes that Good 2’s share was rotated by multiplying by −1 before applying the rank

transformation. (b) Copula density estimators are obtained by applying rank transformations to the budget

shares of Goods 1 and 2 and then adjusting the transformation estimator with log-quadratic local likelihood

estimation proposed by Geenens et al. (2017) and implemented in the R package kdecopula. (c) Contours are

represented using standard normal marginals for each good’s budget shares.
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Table 4: Tail dependence coefficients

Dataset λL(s1, s2) λU (s1, s2) λL(s1,−s2) λU (s1,−s2)

Single member households 0.00 0.00 0.08 0.09

Married couples without children 0.00 0.00 0.12 0.10

Married couples with one child 0.00 0.00 0.08 0.12

Note: (a) λL denotes the lower and λU the upper tail dependence coefficients. (b) Tail dependence coefficients are

computed on raw budget share data for each pair of goods and household type. (c) The coefficients are computed

for the budget share of a good and the negative of other as budget shares must be negatively dependent.

methods proposed by Schmid and Schmidt (2007) and implemented in the R package copula. As the

dependence between good shares was shown to be negative (see Table 3), there is no tail dependence

between them: if the share of Good 1 is unusually high, it would be less likely for the share of Good 2 to

be high too, as they must add up to one. However, when the share of Good 2 is rotated by multiplying

by −1, mild tail dependence appears in both the right and left tails.

This unconditional analysis of budget shares conveys limited information about the conditional

residuals that we need to model through marginals and copulas. However, the analysis characterizes

important features that at least a subset of models in our meta-analysis need to allow for: negative

dependence and both left and right tail dependence. To test different specifications, we consider the

Normal, Frank, Clayton, and Gumbel copulas. This set includes elliptic, archimedean, symmetric,

and non-symmetric copulas that allow for no tail dependence, left tail dependence, and right tail

dependence. The Clayton and Gumbel copulas do not allow for negative dependence (see Trivedi and

Zimmer, 2007). To address this issue we allow for the rotation in (2.3).

4 Copula distance fitness measure

This section analyses how our tested specifications perform at capturing the bivariate relationship

between Goods 1 and 2’s budget shares. With this purpose, we use an alternative fitness measure that

is only concerned with how close the parametric estimate of the copula in (2.2) is to a non-parametric

estimate of the empirically observed data. This measure is suggested by Trivedi and Zimmer (2007,

Section 4.3, p.65) for copula selection.

For every specification whose estimation converges, we have a parametric copula Cp(·, ·) (either

Normal, Frank, Clayton, Gumbel, or their rotations), an estimated dependence parameter θ̂, parametric

marginals Fi and their parameters ψ̂i (i = 1, 2); and estimated residuals ûh;i for i = 1, 2 and h = 1, ...,H.

We will compare the parametric copula with a non-parametric estimator of the copula in the joint

shares’ CDF.
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The empirical non-parametric counterpart of Cp(·, ·) is computed as in Equation 4.9 of Trivedi and

Zimmer (2007, Section 4.3, p.65)

Ce(u1, u2) =
1

H

H∑
h=1

1{ûh,1 ≤ u1} × 1{ûh,2 ≤ u2}. (4.1)

where 1{·} represents the indicator function, which takes the value of one when its argument is true

and zero otherwise. We compute the mean squared distance between Cp and Ce at all our pseudo-

observations as in Equation 4.10 of Trivedi and Zimmer (2007, Section 4.3, p.66):

Distance =
1

H

H∑
h=1

(Ce(ûh,1, ûh,2)− Cp(F1(sh;1|g1(ph, yhϑ̂), ψ̂1), F2(sh;2|g2(ph, yhϑ̂), ψ̂2); θ̂))2. (4.2)

To analyze if there is a discernible relationship between gasoline’s estimated own-price elasticity and

the accuracy of modeling of the relationship between good shares, Figures 5 and 6 reproduce Figures 2

and 3 from the main text, using the Copula Distance in (4.2) as an alternative fitness measure to the

BIC.

Figure 5 does not display a clear divide in fitness as it happened with its BIC counterpart. The

improvement with respect to CS’s original estimates under this metric are also much smaller than with

the BIC. Nevertheless, improvements can be made and the best model for every dataset again has a

skewed normal marginal distribution for Good 2. No particular copula seems to do significantly better

than the others under this metric.

As in the main text, Figure 6 restricts Figure 5 to those specifications that use a Skewed Normal

marginal for Good 2, and marks different models for the conditional mean of shares with different

colors. As in the last plot, there is not a model or copula which does clearly better than the others.

5 Chang and Serletis’ (2014) Replicated tables

This section presents our own replications of each table in Chang and Serletis (2014) and compares

them to the original results.

5.1 AIDS model

Table 5 displays the estimation results for the Almost Ideal Demand System (AIDS) model (Deaton

and Muellbauer, 1980), both with and without local curvature imposed, for each of the three data sets.

We report the number of violation for every regularity condition. We also check whether curvature is

satisfied at y = p1 = p2 = p3 = 1, to evaluate if our imposition of curvature achieves its goal.

Our parameter estimates differ from those reported by Chang and Serletis (2014). The greatest

differences are found in α0 and α. This can be due to a common issue, described by Deaton and
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Figure 5: Gasoline Own-Price Elasticities vs Copula Distance.

Single Married - no children Married - 1 child

1 2 3 1 2 3 2 4

-1.0

-0.8

-0.6

Normalized Copula distance
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n
-P

ri
ce

E
la
st
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it
y Good 2
Marginal

Norm

S.Norm

Copula

Normal

Frank

Clayton

Gumbel

Note: (a) Elasticities are computed at sample mean prices and total expenditures. (b) Only models with no

regularity violations are reported. (c) Elasticities corresponding to the models with the lowest Copula Distance

are marked with a black square, and those with the lowest BIC are market with a black circle. (d) Crosses

mark own replicated estimates of the models in CS (restricted AIDS and ML for single-member households, and

restricted ML for the two other data sets). (e) The x-axis is normalized dividing the fitness measures by the

absolute value of the best (lowest) Copula Distance of CS’s specifications for each dataset. (f) Restricted models

(local curvature imposed for AIDS and QUAIDS, and global curvature imposed for ML) are marked with “(R)”.
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Figure 6: Gasoline Own-Price Elasticities vs Copula Distance with Skewed Normal Marginals for Good

2.

Single Married - no children Married - 1 child

1 2 3 1 2 3 2 4

-1.0

-0.8

-0.6

Normalized Copula distance

G
oo

d
1
O
w
n-
P
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E
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Copula

Normal

Frank

Clayton

Gumbel

Model

AIDS

AIDS(R)

QUAIDS(R)

ML

ML(R)

Note: (a) This figure is analogous to Figure 5 but it focuses on specifications that have a Skewed Normal

distribution as the marginal of Good 2’s budget share residuals. (b) Elasticities are computed at sample mean

prices and total expenditures. (c) Only models with no regularity violations are reported. (d) Elasticities

corresponding to the models with the lowest Copula Distance are marked with a black square, and those with

the lowest BIC are market with a black circle. (e) Crosses mark own replicated estimates of the models in CS

(restricted AIDS and ML for single-member households, and restricted ML for the two other data sets). (f) The

x-axis is normalized dividing the fitness measures by the absolute value of the best (lowest) Copula Distance of

CS’s specifications for each dataset. (g) Restricted models (local curvature imposed for AIDS and QUAIDS, and

global curvature imposed for ML) are marked with “(R)”.
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Muellbauer (1980) (Section D) in the original formulation of the AIDS model: these parameters are

practically hard to identify when individual prices are closely collinear. This is applicable to our case,

as the cross correlations of good prices are above 0.9 for every possible pair of goods and all datasets.

The estimates of γ sometimes have similar values but are often different. It is important to note

that none of the AIDS parameter estimates reported by Chang and Serletis (2014) for any database

is significant at a 5% level except β1 and β2. Our estimates for these parameters (β1 and β2) closely

match theirs when local curvature is not imposed. However, imposing this restriction considerably

modifies β1 in our results, which does not happen in their estimations.

Our regularity checks for unrestricted estimations are very similar to those reported in the paper:

there are no positivity or monotonicity violations, and curvature is not satisfied except for single

member households, for which there are no violations. In our case, imposing local curvature eliminates

violations for all databases: this is another difference, as in their estimations curvature violations are

reduced to less than half, but still occur.

We also verify that curvature is not satisfied at the point of approximation (y = p = 1) in the

unrestricted models but it is when imposed.

5.2 QUAIDS model

Table 6 presents our parameter estimates and regularity checks for the Quadratic Almost Ideal Demand

System (QUAIDS) model (Banks et al., 1997). One notices that our estimates differ from those reported

by Chang and Serletis (2014). They are close only in the sense that log-likelihood values are similar

and that β1 and λ1 are always significant.

Regularity checks are also have different results: the unrestricted model generates violations of both

the positivity and monotonicity conditions for single member households, but has a very low number

of curvature violations. Imposing local curvature further reduces violations and makes positivity and

monotonicity conditions be satisfied. For married households (with and without children) curvature

conditions are violated by every observation in unrestricted estimations, and imposing local curvature

does little to change this. On the other hand, the estimates from Chang and Serletis (2014) report

no positivity or monotonicity violations. Their estimated curvature violations are also greatly reduced

when local curvature is imposed.

5.3 ML model

We now present our results for the ML model (Barnett, 1983). Since we take a different approach

and normalization than the ones used by Chang and Serletis (2014) (see Section 2), our parameter

estimates are not comparable. Our estimates and regularity checks are displayed in Table 7.

None of our estimates produce positivity or monotonicity violations. However, unrestricted models

have high numbers of curvature violations. These violations are corrected when global curvature is
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imposed. No element of B is found to be significantly different from 0 using any database, with or

without global curvature imposed. This is consistent with Chang and Serletis (2014), as the only

element of B that they explicitly report (B1,2) displays the same behavior.

5.4 Elasticities

Chang and Serletis (2014) report elasticities only for model-database combinations that produce no

regularity violations, which in their case are the unrestricted AIDS model for single households and

the restricted ML model with all household types. For comparison, we present our estimates for the

same model-database combinations in Table 8.

The unrestricted AIDS elasticities for single member households precisely match those reported by

Chang and Serletis (2014). The ML estimates have differences under 5 × 10−2 for single and married

without children households. Differences are greater for households with one child, especially for ηi,2.

References

Banks J, Blundell R, Lewbel A. 1997. Quadratic engel curves and consumer demand. The Review of

Economics and Statistics 79: 527–539.

Barnett WA. 1983. New indices of money supply and the flexible laurent demand system. Journal of

Business and Economic Statistics 1: 7–23. ISSN 07350015.

Barten AP. 1969. Maximum likelihood estimation of a complete system of demand equations. European

Economic Review 1: 7–73.

Chang D, Serletis A. 2014. The demand for gasoline: Evidence from household survey data. Journal

of Applied Econometrics 29: 291–313.

Deaton A, Muellbauer J. 1980. An almost ideal demand system. The American Economic Review 70:

312–326.

Geenens G, Charpentier A, Paindaveine D. 2017. Probit transformation for nonparametric kernel

estimation of the copula density. Bernoulli 23: 1848–1873.

URL https://doi.org/10.3150/15-BEJ798

Ryan DL, Wales TJ. 1998. A simple method for imposing local curvature in some flexible consumer-

demand systems. Journal of Business & Economic Statistics 16: 331–338.

Schmid F, Schmidt R. 2007. Multivariate conditional versions of spearman’s rho and related measures

of tail dependence. Journal of Multivariate Analysis 98: 1123 – 1140. ISSN 0047-259X.

URL http://www.sciencedirect.com/science/article/pii/S0047259X06000662

19

https://doi.org/10.3150/15-BEJ798
http://www.sciencedirect.com/science/article/pii/S0047259X06000662


Trivedi PK, Zimmer DM. 2007. Copula modeling: An introduction for practitioners. Foundations and

Trends(R) in Econometrics 1: 1–111.

20



T
ab

le
5:

A
ID

S
m

o
d

el
p

ar
am

et
er

es
ti

m
at

es

S
in

g
le

M
em

b
er

s
M

a
rr

ie
d

C
o
u

p
le

s
M

a
rr

ie
d

C
o
u

p
le

s
w

it
h

o
n

e
C

h
il

d

P
a
ra

m
et

er
U

n
re

st
ri

ct
ed

L
o
ca

l
C

u
rv

a
tu

re
Im

p
o
se

d
U

n
re

st
ri

ct
ed

L
o
ca

l
C

u
rv

a
tu

re
Im

p
o
se

d
U

n
re

st
ri

ct
ed

L
o
ca

l
C

u
rv

a
tu

re
Im

p
o
se

d

α
0

0
.6
7
5
∗∗
∗

1
.2
3
5
∗∗
∗

0
.4
9
2
∗∗
∗

1
.2
0
5
∗∗
∗

0
.7
5
9
∗∗
∗

6
.7
0
6
∗∗
∗

(0
.0

0
3
)

(0
.0

0
1
)

(0
.0

0
4
)

(0
.0

0
1
)

(0
.0

0
3
)

(0
.0

0
0
)

α
1

0
.9
2
9
∗∗
∗

0
.7
7
0
∗∗
∗

1
.1
2
2
∗∗
∗

0
.7
9
0
∗∗
∗

1
.2
2
6
∗∗
∗

0
.6
4
8
∗∗
∗

(0
.0

5
7
)

(0
.0

3
8
)

(0
.0

5
5
)

(0
.0

3
3
)

(0
.0

3
9
)

(0
.0

0
7
)

α
2

0
.2
9
7
∗∗
∗

0
.2
7
4
∗∗
∗

0
.2
8
5
∗∗
∗

0
.2
5
2
∗∗
∗

0
.2
7
5
∗∗
∗

0
.1
3
1
∗∗
∗

(0
.0

3
1
)

(0
.0

2
8
)

(0
.0

2
7
)

(0
.0

2
5
)

(0
.0

2
0
)

(0
.0

0
5
)

γ
1
,1

0
.0

6
2

0
.0

1
7

0
.0

2
3

−
0
.0

1
7

−
0
.0

5
1

−
0
.0
7
8
∗∗
∗

(0
.0

4
2
)

(0
.0

3
6
)

(0
.0

3
4
)

(0
.0

3
0
)

(0
.0

2
6
)

(0
.0

2
3
)

γ
1
,2

−
0
.0

3
3

−
0
.0

3
8

−
0
.0
3
9
∗

−
0
.0
5
2
∗∗

−
0
.0
5
4
∗∗
∗

−
0
.0
6
5
∗∗
∗

(0
.0

2
2
)

(0
.0

2
2
)

(0
.0

1
6
)

(0
.0

1
6
)

(0
.0

1
3
)

(0
.0

1
2
)

γ
2
,2

−
0
.0

5
8

−
0
.1
3
3
∗

0
.1
3
9
∗∗

−
0
.0

1
0

0
.1
4
4
∗∗
∗

−
0
.0

0
6

(0
.0

6
5
)

(0
.0

5
5
)

(0
.0

4
4
)

(0
.0

3
1
)

(0
.0

3
4
)

(0
.0

2
4
)

β
1

−
0
.0
6
4
∗∗
∗

−
0
.0
4
4
∗∗
∗

−
0
.0
8
0
∗∗
∗

−
0
.0
3
9
∗∗
∗

−
0
.0
8
7
∗∗
∗

−
0
.0
4
2
∗∗
∗

(0
.0

0
8
)

(0
.0

0
6
)

(0
.0

0
7
)

(0
.0

0
5
)

(0
.0

0
5
)

(0
.0

0
3
)

β
2

−
0
.0
2
9
∗∗
∗

−
0
.0
2
7
∗∗
∗

−
0
.0
2
7
∗∗
∗

−
0
.0
2
4
∗∗
∗

−
0
.0
2
4
∗∗
∗

−
0
.0
2
1
∗∗
∗

(0
.0

0
4
)

(0
.0

0
4
)

(0
.0

0
4
)

(0
.0

0
4
)

(0
.0

0
3
)

(0
.0

0
3
)

P
o
si

ti
v
it

y
v
io

la
ti

o
n

s
0

0
0

0
0

0

M
o
n

o
to

n
ic

it
y

v
io

la
ti

o
n

s
0

0
0

0
0

0

C
u

rv
a
tu

re
v
io

la
ti

o
n

s
0

0
3
3
2
6

0
6
1
4
1

0

L
o
g
-l

ik
el

ih
o
o
d

1
6
8
2
.0

6
9

1
6
7
5
.5

1
4

2
9
5
1
.9

9
7

2
9
1
9
.0

3
1

5
1
5
5
.3

0
2

5
0
8
5
.1

5
6

N
u

m
.

o
b

se
rv

a
ti

o
n

s
2
2
1
8

2
2
1
8

3
3
2
6

3
3
2
6

6
1
4
1

6
1
4
1

C
u

rv
a
tu

re
a
t
p

=
1
,
y

=
1

0
1

0
1

0
1

N
o
te

:
(a

)
T

h
is

ta
b

le
re

p
li
ca

te
s

re
su

lt
s

in
T

a
b

le
II

in
C

h
a
n

g
a
n

d
S

er
le

ti
s

(2
0
1
4
,

p
.

3
0
5
).

(b
)

N
u

m
b

er
s

in
p

a
re

n
th

es
es

a
re
p
-v

a
lu

es
.

(c
)

L
o
ca

l
cu

rv
a
tu

re
is

im
p

o
se

d
a
t

th
e

re
fe

re
n

ce

p
o
in

t
p
∗

=
y

=
1

(a
ll

p
ri

ce
s

a
n

d
to

ta
l

ex
p

en
d

it
u

re
eq

u
a
l

to
o
n

e)
.

(d
)

S
ta

rs
fo

ll
o
w

th
e

k
ey

:
∗∗
∗
p
<

0
.0

0
1
,
∗∗
p
<

0
.0

1
,
∗
p
<

0
.0

5
.

(e
)

C
h

a
n

g
a
n

d
S

er
le

ti
s

(2
0
1
4
)

d
o

n
o
t

re
p

o
rt

re
st

ri
ct

ed
m

o
d

el
es

ti
m

a
te

s
fo

r
si

n
g
le

m
em

b
er

h
o
u

se
h

o
ld

s.
(f

)
W

e
p

re
se

n
t

a
n

a
d

d
it

io
n

a
l

ro
w

ch
ec

k
in

g
w

h
et

h
er

cu
rv

a
tu

re
is

sa
ti

sfi
ed

a
t

th
e

re
fe

re
n

ce
p

o
in

t.

21



T
ab

le
6:

Q
U

A
ID

S
m

o
d
el

p
ar

am
et

er
es

ti
m

at
es

S
in

g
le

M
em

b
er

s
M

a
rr

ie
d

C
o
u

p
le

s
M

a
rr

ie
d

C
o
u

p
le

s
w

it
h

o
n

e
C

h
il

d

P
a
ra

m
et

er
U

n
re

st
ri

ct
ed

L
o
ca

l
C

u
rv

a
tu

re
Im

p
o
se

d
U

n
re

st
ri

ct
ed

L
o
ca

l
C

u
rv

a
tu

re
Im

p
o
se

d
U

n
re

st
ri

ct
ed

L
o
ca

l
C

u
rv

a
tu

re
Im

p
o
se

d

α
0

1
.1
3
8
∗∗
∗

1
.6
3
7
∗∗
∗

1
.9
8
2
∗∗
∗

0
.1
1
4
∗∗
∗

0
.3
7
6
∗∗
∗

1
.9
7
7
∗∗
∗

(0
.0

2
1
)

(0
.0

1
4
)

(0
.0

1
9
)

(0
.0

1
1
)

(0
.0

1
4
)

(0
.0

0
8
)

α
1

−
0
.3
8
4
∗∗
∗

0
.2
4
8
∗∗
∗

−
0
.0

5
3

−
0
.0

5
6

−
0
.2
0
5
∗∗
∗

0
.3
0
6
∗∗
∗

(0
.0

6
0
)

(0
.0

3
1
)

(0
.0

8
3
)

(0
.0

6
7
)

(0
.0

3
9
)

(0
.0

3
3
)

α
2

0
.1

6
1

0
.3
6
5
∗∗

0
.0

9
7

0
.1
7
7
∗

0
.3
4
3
∗

0
.2
8
8
∗∗
∗

(0
.1

6
1
)

(0
.1

2
5
)

(0
.1

3
0
)

(0
.0

7
7
)

(0
.1

5
4
)

(0
.0

7
5
)

γ
1
,1

−
0
.3
4
4
∗∗
∗

−
0
.0

1
3

−
0
.2
0
4
∗∗
∗

−
0
.1
9
3
∗∗
∗

−
0
.4
1
6
∗∗
∗

−
0
.1
4
4
∗∗
∗

(0
.0

5
6
)

(0
.0

5
0
)

(0
.0

5
9
)

(0
.0

4
7
)

(0
.0

3
0
)

(0
.0

3
4
)

γ
1
,2

−
0
.0

4
0

0
.0

0
5

−
0
.0

5
2

−
0
.0

3
1

0
.0

0
5

−
0
.0

1
9

(0
.0

6
5
)

(0
.0

3
0
)

(0
.0

4
3
)

(0
.0

2
2
)

(0
.0

5
1
)

(0
.0

1
9
)

γ
2
,2

−
0
.0

5
7

−
0
.0

6
5

0
.1
3
9
∗∗

0
.1
0
7
∗

0
.1
4
1
∗∗
∗

0
.1
2
8
∗∗
∗

(0
.0

6
5
)

(0
.0

6
7
)

(0
.0

4
5
)

(0
.0

4
2
)

(0
.0

3
6
)

(0
.0

3
2
)

β
1

0
.3
5
6
∗∗
∗

0
.1
5
7
∗∗
∗

0
.2
8
5
∗∗
∗

0
.2
3
9
∗∗
∗

0
.3
0
5
∗∗
∗

0
.1
8
6
∗∗
∗

(0
.0

1
7
)

(0
.0

1
4
)

(0
.0

2
8
)

(0
.0

1
6
)

(0
.0

0
7
)

(0
.0

1
2
)

β
2

0
.0

1
0

−
0
.0

6
3

0
.0

2
4

0
.0

0
3

−
0
.0

4
1

−
0
.0

3
9

(0
.0

5
2
)

(0
.0

4
3
)

(0
.0

4
5
)

(0
.0

2
0
)

(0
.0

4
0
)

(0
.0

2
5
)

λ
1

−
0
.0
3
4
∗∗
∗

−
0
.0
1
9
∗∗
∗

−
0
.0
3
1
∗∗
∗

−
0
.0
2
1
∗∗
∗

−
0
.0
2
6
∗∗
∗

−
0
.0
2
3
∗∗
∗

(0
.0

0
1
)

(0
.0

0
2
)

(0
.0

0
3
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

0
1
)

λ
2

−
0
.0

0
3

0
.0

0
3

−
0
.0

0
4

−
0
.0

0
2

0
.0

0
1

0
.0

0
1

(0
.0

0
4
)

(0
.0

0
4
)

(0
.0

0
4
)

(0
.0

0
1
)

(0
.0

0
3
)

(0
.0

0
2
)

P
o
si

ti
v
it

y
v
io

la
ti

o
n

s
1

0
0

0
0

0

M
o
n

o
to

n
ic

it
y

v
io

la
ti

o
n

s
1

0
0

0
0

0

C
u

rv
a
tu

re
v
io

la
ti

o
n

s
3
7

2
3
3
2
6

3
3
2
4

6
1
4
1

6
1
4
1

L
o
g
-l

ik
el

ih
o
o
d

1
6
9
1
.5

3
0

1
6
8
9
.5

1
8

2
9
6
7
.9

5
6

2
9
6
4
.5

8
0

5
1
8
4
.8

7
5

5
1
8
1
.5

6
0

N
u

m
.

o
b

se
rv

a
ti

o
n

s
2
2
1
8

2
2
1
8

3
3
2
6

3
3
2
6

6
1
4
1

6
1
4
1

C
u

rv
a
tu

re
a
t
p

=
1
,
y

=
1

0
1

0
1

0
1

N
o
te

:
(a

)
T

h
is

ta
b

le
re

p
li
ca

te
s

re
su

lt
s

in
T

a
b

le
II

I
in

C
h

a
n

g
a
n

d
S

er
le

ti
s

(2
0
1
4
,

p
.

3
0
6
).

(b
)

N
u

m
b

er
s

in
p

a
re

n
th

es
es

a
re
p
-v

a
lu

es
.

(c
)

L
o
ca

l
cu

rv
a
tu

re
is

im
p

o
se

d
a
t

th
e

re
fe

re
n

ce

p
o
in

t
p
∗

=
y

=
1

(a
ll

p
ri

ce
s

a
n

d
to

ta
l

ex
p

en
d

it
u

re
eq

u
a
l

to
o
n

e)
.

(d
)

S
ta

rs
fo

ll
o
w

th
e

k
ey

:
∗∗
∗
p
<

0
.0

0
1
,
∗∗
p
<

0
.0

1
,
∗
p
<

0
.0

5
.

(e
)

W
e

p
re

se
n
t

a
n

a
d

d
it

io
n

a
l

ro
w

ch
ec

k
in

g

w
h

et
h

er
cu

rv
a
tu

re
is

sa
ti

sfi
ed

a
t

th
e

re
fe

re
n

ce
p

o
in

t.

22



T
ab

le
7:

M
L

m
o
d

el
p

ar
am

et
er

es
ti

m
at

es

S
in

g
le

M
em

b
er

s
M

a
rr

ie
d

C
o
u

p
le

s
M

a
rr

ie
d

C
o
u

p
le

s
w

it
h

o
n

e
C

h
il
d

P
a
ra

m
et

er
U

n
re

st
ri

ct
ed

G
lo

b
a
l

C
u

rv
a
tu

re
Im

p
o
se

d
U

n
re

st
ri

ct
ed

G
lo

b
a
l

C
u

rv
a
tu

re
Im

p
o
se

d
U

n
re

st
ri

ct
ed

G
lo

b
a
l

C
u

rv
a
tu

re
Im

p
o
se

d

a
2

−
0
.0
0
1
∗∗
∗

−
0
.0

0
0

−
0
.0
0
1
∗∗
∗

−
0
.0

0
0

−
0
.0
0
1
∗∗
∗

0
.0

0
0

(0
.0

0
0
)

(0
.0

1
0
)

(0
.0

0
0
)

(0
.0

0
6
)

(0
.0

0
0
)

(0
.0

0
4
)

a
3

0
.0
0
7
∗∗
∗

−
0
.1
2
2
∗∗
∗

0
.0
0
4
∗∗
∗

0
.1
0
7
∗∗
∗

0
.0
0
2
∗∗
∗

−
0
.0
9
0
∗∗
∗

(0
.0

0
1
)

(0
.0

0
6
)

(0
.0

0
0
)

(0
.0

0
1
)

(0
.0

0
0
)

(0
.0

0
1
)

A
1
,1

0
.3
7
4
∗∗
∗

−
0
.7
9
7
∗∗
∗

0
.3
9
5
∗∗
∗

−
0
.8
6
3
∗∗
∗

0
.3
5
5
∗∗
∗

−
0
.9
0
3
∗∗
∗

(0
.0

0
8
)

(0
.0

3
8
)

(0
.0

0
3
)

(0
.0

0
2
)

(0
.0

0
3
)

(0
.0

0
1
)

A
1
,3

0
.5
2
1
∗∗
∗

−
0
.2
9
4
∗∗
∗

0
.5
3
3
∗∗
∗

0
.2
1
9
∗∗
∗

0
.6
0
9
∗∗
∗

−
0
.1
2
7
∗∗
∗

(0
.0

1
6
)

(0
.0

6
8
)

(0
.0

1
3
)

(0
.0

0
0
)

(0
.0

0
7
)

(0
.0

0
0
)

A
3
,3

−
0
.0
9
2
∗∗
∗

0
.0
0
0
∗∗

−
0
.1
0
9
∗∗
∗

0
.0
0
0
∗∗
∗

−
0
.2
3
5
∗∗
∗

0
.0
0
0
∗∗
∗

(0
.0

2
1
)

(0
.0

0
0
)

(0
.0

1
3
)

(0
.0

0
0
)

(0
.0

0
7
)

(0
.0

0
0
)

A
2
,2

0
.1
7
2
∗∗
∗

0
.4
1
7
∗∗
∗

0
.1
4
7
∗∗
∗

0
.3
8
3
∗∗
∗

0
.1
4
1
∗∗
∗

0
.3
8
0
∗∗
∗

(0
.0

1
6
)

(0
.0

0
8
)

(0
.0

1
0
)

(0
.0

0
4
)

(0
.0

0
7
)

(0
.0

0
3
)

B
1
,2

0
.0

0
0

−
0
.0

0
0

0
.0
0
0
∗

0
.0

0
0

−
0
.0

0
0

−
0
.0

0
0

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

B
2
,3

0
.0

0
0

−
0
.0

0
0

−
0
.0

0
0

−
0
.0

0
0

−
0
.0

0
0

−
0
.0

0
0

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

P
o
si

ti
v
it

y
v
io

la
ti

o
n

s
0

0
0

0
1

0

M
o
n

o
to

n
ic

it
y

v
io

la
ti

o
n

s
0

0
0

0
1

0

C
u

rv
a
tu

re
v
io

la
ti

o
n

s
2
2
1
5

0
3
3
2
6

0
6
1
4
1

0

L
o
g
-l

ik
el

ih
o
o
d

1
6
8
2
.8

3
4

1
6
7
7
.6

2
9

2
9
5
8
.8

8
0

2
9
4
4
.8

5
0

5
1
8
1
.8

0
7

5
1
3
1
.8

0
9

N
u

m
.

o
b

se
rv

a
ti

o
n

s
2
2
1
8

2
2
1
8

3
3
2
6

3
3
2
6

6
1
4
1

6
1
4
1

N
o
te

:
(a

)
T

h
is

ta
b

le
re

p
li
ca

te
s

re
su

lt
s

in
T

a
b

le
IV

in
C

h
a
n

g
a
n

d
S

er
le

ti
s

(2
0
1
4
,

p
.

3
0
7
).

(b
)

W
e

a
d

o
p

t
a

d
iff

er
en

t
p

a
ra

m
et

er
st

a
n

d
a
rd

iz
a
ti

o
n

sc
h

em
e

fr
o
m

th
e

o
n

e
u

se
d

b
y

C
h

a
n

g

a
n

d
S

er
le

ti
s

(2
0
1
4
)

(s
ee

S
ec

ti
o
n

2
),

th
er

ef
o
re

p
a
ra

m
et

er
v
a
lu

es
a
re

n
o
t

d
ir

ec
tl

y
co

m
p

a
ra

b
le

.
(c

)
N

u
m

b
er

s
in

p
a
re

n
th

es
es

a
re
p
-v

a
lu

es
.

(d
)

S
ta

rs
fo

ll
o
w

th
e

k
ey

:
∗∗
∗
p
<

0
.0

0
1
,

∗∗
p
<

0
.0

1
,
∗
p
<

0
.0

5
.

23



T
ab

le
8
:

E
la

st
ic

it
ie

s
(O

n
ly

th
os

e
re

p
or

te
d

in
C

h
an

g
an

d
S

er
le

ti
s,

20
14

)

G
o
o
d

M
o
d

el
E

la
st

ic
it

ie
s

In
co

m
e

O
w

n
a
n

d
cr

o
ss

p
ri

ce

(i
)

C
u

rv
.

Im
p

o
s.

η i
η i

,1
η i

,2
η i

,3

A
.
S
in
gl
e
m
em

be
rs

(2
2
1
8
o
bs
er
va
ti
o
n
s)

(1
)

A
ID

S
7

0
.8

6
9

(0
.0

0
0
)

-0
.7

5
0

(0
.0

0
0
)

-0
.0

2
9

(0
.5

2
4
)

-0
.0

9
0

(0
.2

6
3
)

M
.

L
au

re
n
t

3
0
.8

5
2

(0
.0

0
0
)

-0
.5

7
6

(0
.0

0
0
)

-0
.0

9
1

(0
.0

0
0
)

-0
.1

8
5

(0
.0

0
0
)

(2
)

A
ID

S
7

0
.6

7
8

(0
.0

0
0
)

-0
.0

6
4

(0
.7

9
6
)

-1
.5

4
9

(0
.0

3
2
)

0
.9

3
5

(0
.2

0
8
)

M
.

L
au

re
n
t

3
0
.7

7
7

(0
.0

0
0
)

-0
.4

5
3

(0
.0

0
0
)

-0
.0

9
1

(0
.0

0
0
)

-0
.2

3
3

(0
.0

0
0
)

(3
)

A
ID

S
7

1
.2

2
1

(0
.0

0
0
)

-0
.2

7
6

(0
.0

0
3
)

0
.1

5
1

(0
.3

4
1
)

-1
.0

9
5

(0
.0

0
0
)

M
.

L
au

re
n
t

3
1
.2

2
1

(0
.0

0
0
)

-0
.3

9
7

(0
.0

0
0
)

-0
.0

9
1

(0
.0

0
0
)

-0
.7

3
3

(0
.0

0
0
)

B
.
M
a
rr
ie
d
co
u
p
le
s
(3
3
2
6
o
bs
er
va
ti
o
n
s)

(1
)

M
.

L
au

re
n
t

3
0
.8

2
6

(0
.0

0
0
)

-0
.5

5
7

(0
.0

0
0
)

-0
.0

8
1

(0
.0

0
0
)

-0
.1

8
9

(0
.0

0
0
)

(2
)

M
.

L
au

re
n
t

3
0
.7

9
7

(0
.0

0
0
)

-0
.5

0
1

(0
.0

0
0
)

-0
.0

8
1

(0
.0

0
0
)

-0
.2

1
6

(0
.0

0
0
)

(3
)

M
.

L
au

re
n
t

3
1
.2

6
3

(0
.0

0
0
)

-0
.4

6
7

(0
.0

0
0
)

-0
.0

8
1

(0
.0

0
0
)

-0
.7

1
6

(0
.0

0
0
)

C
.
M
a
rr
ie
d
co
u
p
le
s
w
it
h
o
n
e
ch
il
d
(6
1
4
1
o
bs
er
va
ti
o
n
s)

(1
)

M
.

L
au

re
n
t

3
0
.8

3
3

(0
.0

0
0
)

-0
.5

7
6

(0
.0

0
0
)

-0
.0

8
9

(0
.0

0
0
)

-0
.1

6
8

(0
.0

0
0
)

(2
)

M
.

L
au

re
n
t

3
0
.8

3
3

(0
.0

0
0
)

-0
.5

6
6

(0
.0

0
0
)

-0
.0

8
9

(0
.0

0
0
)

-0
.1

7
7

(0
.0

0
0
)

(3
)

M
.

L
au

re
n
t

3
1
.3

1
8

(0
.0

0
0
)

-0
.5

5
2

(0
.0

0
0
)

-0
.0

8
9

(0
.0

0
0
)

-0
.6

7
7

(0
.0

0
0
)

N
o
te

:
(a

)
T

h
is

ta
b

le
re

p
li

ca
te

s
re

su
lt

s
in

T
ab

le
V

in
C

h
a
n

g
a
n

d
S

er
le

ti
s

(2
0
1
4
,

p
.

3
0
9
),

w
h

ic
h

re
p

o
rt

s
el

a
st

ic
it

ie
s

o
f

th
e

m
o
d

el
s

th
ey

fo
u

n
d

to
p

ro
d

u
ce

n
o

re
gu

la
ri

ty
v
io

la
ti

on
s.

(b
)

N
u
m

b
er

s
in

p
ar

en
th

es
es

a
re
p
-v

a
lu

es
.

(c
)

‘C
u

rv
.

Im
p

o
s.

’
d

en
o
te

s
w

h
et

h
er

cu
rv

a
tu

re
is

im
p

o
se

d
in

th
e

re
p

o
rt

ed
es

ti
m

a
ti

o
n

or
n

ot
.

24


	Summary
	Methodology
	Maximum likelihood estimation
	Normalizations and restrictions
	AIDS and QUAIDS models
	ML model

	Optimization
	Regularity checks
	Elasticities

	Model selection
	Copula distance fitness measure
	Chang and Serletis' (2014) Replicated tables
	AIDS model
	QUAIDS model
	ML model
	Elasticities


