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1 Summary of Contents

This online material contains several sections. We provide more technical details on the implementation

of the PMCMC algorithms. We also provide examples that highlight some of the advantages of PMCMC

compared to common Gibbs sampling approaches and intuitively justify applying PMCMC in practice. The

last section provides additional figures and results regarding the AR-trend-bound model of Chan et al. (2013).

Papers cited in this supplementary material are not necessarily listed in the references in the paper itself.

2 Stochastic Volatility in Mean Model

In order to provide an intuitive illustration of our PMCMC techniques, we consider the following stochastic

volatility in mean (SVM) model, see also Chan (2015)

yt = µ +λ exp(ht)+ εt , εt ∼ N (0,exp(ht)) (2.1)

ht = µh +φh (ht−1−µh)+ ε
h
t , ε

h
t ∼ N

(
0,σ2

h
)
, (2.2)

for t = 1, ...T , where yt denotes the underlying series of interest, E
[
εtε

h
t
]
= 0 and |φh|< 1. The interesting

feature of this model is that contrary to the plain SV model, Gibbs sampling estimation of (2.1)-(2.2) is

nontrivial since ht appears in both the conditional mean and the conditional variance. Thus, well-known

methods such as Kim et al. (1998) cannot be used to draw h1:T ∼ p(h1:T | θ ,y1:T ). Within a Gibbs sampling
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scheme, one can typically draw h1:T ∼ p(h1:T | θ ,y1:T ) using an AR-MH procedure, see for instance Chan

(2015). Conditional on h1:T , sampling the volatility parameters, µh, φh and σ2
h is relatively easy, see Kim

et al. (1998). Finally, we can draw µ,λ ∼ p(µ,λ | h1:T ,y1:T ) in one-block as regression parameters of a

linear Gaussian model. One of the main advantages of PMCMC is that it requires limited design effort

from the practitioner’s part, especially if one is interested in making changes in a particular model. For

instance, compared to the plain SV model, modifying the model to incorporate SVM effects requires minor

changes. Specifically, we only need to augment the measurement equation in the particle filter (PF) to include

λ exp(ht). Otherwise, we maintain the same sampling and propagation steps as for the plain SV model1.

We refer the reader to Creal (2012) for a very good introduction to particle filtering. On the other hand,

making the same modification using common Gibbs sampling requires more programming effort, see Chan

(2015). In Section 2.1, we show that handling bounded processes is also straightforward using PMCMC.

Furthermore, for all of the models that we consider, the integrated likelihood at iteration i, p
(
y1:T | θ (i)

)
, is

automatically available as byproduct of our estimation procedure. Therefore, we can use it to compute the

marginal likelihoods, ML, and compare models using Bayes factors, BF. Below, we briefly outline how to

estimate (2.1)-(2.2) using PG-AS and PMMH. We then compare our posterior output with output from the

AR-MH procedure of Chan (2015) using simulated data2.

We collect the model parameters, µ , λ , µh, φh, σ2
h , in θ , and let i denote PMCMC iteration number i out

of the total N iterations. Our PMCMC sampling steps of (2.1)-(2.2) are as follows:

• Particle Gibbs (with ancestor sampling, PG-AS)

In PG, we act as if we are operating within a Gibbs sampling scheme. However, there is one major differ-

ence, namely, that we draw h1:T ∼ p(h1:T | θ ,y1:T ) using the conditional particle filter. Conditional on h1:T ,

drawing θ ∼ p(θ | h1:T ,y1:T ) can be performed using standard Gibbs techniques. However, PG can suffer

from a serious drawback, which is that the underlying mixing can be very poor when there is path degeneracy

in the SMC sampler3. In this paper, in order to avoid any such issues, we choose to use the particle Gibbs

with ancestor sampling (PG-AS) approach of Lindsten et al. (2014). PG-AS is able to alleviate the path

degeneracy problem in a very computationally easy way. Specifically, the original PG kernel is modified

1Furthermore, we can also easily replace the Gaussian density with a Student-t density in order to account for heavy tails.
2In order to estimate (2.1)-(2.2) using AR-MH, we modify the codes available at Joshua Chan’s website http://people.anu.

edu.au/joshua.chan/.
3As mentioned in the main text, this problem can also be addressed by adding a backward simulation step to the PG sampler,

yielding a method denoted as PG with backward simulation, see Whiteley et al. (2010).
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using a so-called “ancestor sampling” step. This way the same effect as backward sampling is achieved, but

without the need to run an explicit backward pass. The steps of our PG-AS sampler are as follows:

1. At iteration i, let h(i−1)
1:T be a fixed reference trajectory of h1:T sampled at iteration i− 1 of PG-AS.

Sample h(i)1:T | θ (i−1),y1:T using the conditional particle filter with ancestor sampling, CPF-AS, see

Lindsten et al. (2014) for more details4.

2. Sample θ (i) | h(i)1:T ,y1:T using standard Gibbs techniques.

3. Set i = i+1 and goto 1.

• Particle marginal Metropolis-Hastings, PMMH

Contrary to PG-AS, the PMMH algorithm directly targets p(θ ,h1:T | y1:T ). Thus, we can sample θ and h1:T

all-at-once5. Let θ (i−1) and p
(
y1:T | θ (i−1)

)
denote the parameter vector and likelihood value at iteration

i−1. Our PMMH algorithm is as follows:

1. At iteration i, sample a candidate, θ ∗ ∼ q
(
θ ∗ | θ (i−1)

)
. Run a PF using θ ∗ and the data, y1:T .

2. Sample a candidate, h∗1:T given a realization of the weighted samples, {w( j)
T ,h( j)

1:T}M
j=1, where M is the

number of particles, see page 276 of Andrieu et al. (2010) for more details. Let p(y1:T | θ ∗) denote

the corresponding integrated likelihood estimate using θ ∗.

3. Let p(θ) denote the prior density of θ . With probability

1 ∧
p(y1:T | θ ∗) p(θ ∗)q

(
θ (i−1) | θ ∗

)
p
(
y1:T | θ (i−1)

)
p
(
θ (i−1)

)
q
(
θ ∗ | θ (i−1)

) , (2.3)

set θ (i) = θ ∗, h(i)1:T = h∗1:T , and p
(
y1:T | θ (i)

)
= p(y1:T | θ ∗); otherwise set θ (i) = θ (i−1), h(i)1:T = h(i−1)

1:T

and p
(
y1:T | θ (i)

)
= p

(
y1:T | θ (i−1)

)
.

4. Set i = i+1 and goto 1.

4Specifically, in PG-AS, we sample a new value for the Mth index variable, a(M)
t , where a( j)

t is the jth index variable and M is
the number of particles. On the other hand, in the PG algorithm of Andrieu et al. (2010), we set a(M)

t = M. Even though this is a
small modification, improvements in mixing can be quite considerable, see Lindsten et al. (2014) for more details. Furthermore, it is
important to note that we are actually drawing h1:T ∼ p

(
h1:T ,a

(M)
1:T | θ ,y1:T

)
. Thus, from a technical point of view, we are not draw-

ing from the true conditional posterior, p(h1:T | θ ,y1:T ), but from a very close approximation, p
(

h1:T ,a
(M)
1:T | θ ,y1:T

)
. However, in

order to ease the notation burden and avoid unnecessary confusions for the reader, we use the notation h1:T ∼ p(h1:T | θ ,y1:T ).
5We can also sample θ element-by-element within the PMMH framework, see for instance Flury and Shephard (2011). However,

this will increase the computation time drastically as we need to run the particle filter twice for each block.
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2.1 Simulation example

We simulate T = 500 observations from (2.1)-(2.2). We first generate h1:T through the volatility parameters,

and then generate y1:T using µ , λ and h1:T . The true value of θ is set to (0.1,−0.05,0.5,0.98,0.02)
′6. We

set the number of particles, M, to 100 for PG-AS, 1000 for PMMH and take 20000 draws from the joint

posterior, p(h1:T ,θ | y1:T ), after a burn-in of 50007.

For the PMMH algorithm, we initially specify the covariance matrix for the MH increments as4µ(i) =

0.1ξ
(i)
1 ,4λ (i) = 0.1ξ

(i)
2 ,4µ

(i)
h = 0.1ξ

(i)
3 ,4φ

(i)
h = 0.01ξ

(i)
4 and4σ

2(i)
h = 0.01ξ

(i)
5 , i = 1, ...,50, where ξk ∼

N (0,1), k = 1, ...,5. Thereafter, we update Σ(i) using the covariance of {θ (n−1)}i−1
n=1, i.e. Σ(i) = dsΣ

(i−1)+ Iξ ,

where we set ds = 0.40. Throughout this paper, we achieve MH acceptance ratios around 30% to 40%,

which are also in accordance with Flury and Shephard (2011). We suggest choosing M as follows: A good

indication of when we reach a sufficient number of particles (in the sense of achieving a likelihood estimate

that is not too jittery) is when the rate with which the MH acceptance ratio increases with M starts to slow

down and improvements become only marginal. For instance, in Figure 1, we estimate (2.1)-(2.2) with

M = 10, 100, 500, 1000 and compare results. Clearly M = 10 is not sufficient as the MH acceptance ratio

is almost zero. Furthermore, the inefficiency factors of h1:T , the autocorrelation functions (ACF) of the

posterior draws of ψ =
(
µh,φh,σ

2
h

)′
show very high autocorrelation and thus poor mixing. For M = 100, we

obtain a MH acceptance ratio of 10% and the ACFs of ψ decrease. However, the likelihood function can still

be too jittery in some periods, which means that there is a chance that the algorithm gets stuck at a particular

point. For instance, in panel (b) of Figure 1, we see that the chain gets stuck for a while towards N = 8000.

For M = 500 and M = 1000, we obtain almost identical results. For instance, we obtain a MH acceptance

ratio of 34% (38%) for M = 500 (M = 1000). The inefficiency factors of h1:T are only marginally lower,

and the ACFs of ψ show that the Markov chain is very well-mixing8.

We plot posterior estimates of exp(ht/2), t = 1, ...,T , using the aforementioned methods in panels (a),

(c) and (e) of Figure 2. Obviously, we obtain almost identical posterior results for AR-MH and PMCMC.

We also obtain very similar posterior parameter estimates, see Table 1. In panel (e) of Figure 2, we report

6We choose the same starting values, θ0, for all of the samplers. Furthermore, we use Matlab’s setGlobalStream feature to
ensure that we are basically using the same seeding when we take draws for different samplers.

7In general, we find that PG-AS works very well for M ≥ 10. We simply set M = 100 to have a decent number of particles,
well-mixing posterior draws and reasonable computation time. For instance, compared to M = 100, PG-AS estimation of (2.1)-(2.2)
using M = 1000 takes almost three times as long.

8Ideally, we would prefer higher MH acceptance ratios. However, we refer the reader to Table 3 of Flury and Shephard (2011),
where even for a linear model in which MH can be performed using exact likelihood through the Kalman filter, the authors obtain
MH acceptance ratios of around 40%.
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the inefficiency factors of h1:T for each algorithm. Evidently, AR-MH and PG-AS produce similar results,

whereas the inefficiency factors of h1:T associated with PMMH are marginally higher. However, this is

understandable as in PMMH, we update (h1:T ,θ) all-at-once, whereas for the other methods h1:T and θ are

sampled sequentially. In panels (d) and (f) of Figure 2, we report the ACFs of the posterior draws of φh and

σ2
h after the burn-in period. Overall, AR-MH and PMCMC are very capable of producing posterior draws of

these parameters that are not highly autocorrelated.

3 Unobserved Components Model with SV Effects, US Inflation

PMCMC techniques are also very flexible if we want to simultaneously generate several, possibly bounded

latent states from their respective conditional posteriors. We consider the following well-known unobserved

components model with SV effects for US quarterly inflation

yt = τt + εt , εt ∼ N (0,exp(ht)) (3.1)

τt = τt−1 + ε
τ
t , ε

τ
t ∼ N

(
0,σ2

τ

)
(3.2)

ht = µh +φh (ht−1−µh)+ ε
h
t , ε

h
t ∼ N

(
0,σ2

h
)
. (3.3)

Estimating this specification is very easy using PMCMC. We can simply let γt =(τt ,ht)
′
, modify the propaga-

tion and resampling steps of the particle filter such that we simulate particles for γt , and then generate γ1:T ∼

p(γ1:T | θ ,y1:T ). Below, we report results for (3.1)-(3.3) using PG-AS, PMMH and compare our results with

a Gibbs sampling approach. Specifically, for the latter approach, we generate τ1:T ∼ p(τ1:T | θ ,h1:T ,y1:T )

and h1:T ∼ p(h1:T | θ ,τ1:T ,y1:T ) sequentially using the precision sampler of Chan (2013).

Results are reported in Figure 3 and Table 2. Similar to the SVM model, we obtain almost identical

posterior estimates of the latent processes and the model parameters. However, contrary to typical Gibbs

sampling procedures such as Chan et al. (2013), bounding one or all of the processes requires minor coding

effort. For instance, assume that we want to bound τ1:T between a and b, i.e. τt ∈ (a,b), t = 1, ...,T . For

this version, all we need to do is to change the propagation step of the particle filter such that we simulate

particles from a truncated Normal distribution, i.e. τ
( j)
t ∼ T N(a,b,τ

(
a( j)

t

)
t−1 ,σ2

τ ) , j = 1, ...,M. We illustrate

this point graphically in panels (c) and (d) of Figure 4. In panel (c), we plot M = 20 particles for t = 1, ...,20

time periods for a model where the unobserved process is unbounded. In panel (d), we consider the same
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model, however, we bound the unobserved process between a = 0 and b = 4. Obviously, in the latter case,

all of the generated particles are within the prespecified interval, which makes generating the unobserved

process very easy.

Finally, as previously mentioned, one major advantage of PMCMC is that p
(
y1:T | θ (i)

)
, i = 1, ...,N, is

easily available as a byproduct of the particle filter. More importantly, Del Moral (2004) shows that this

output is an unbiased estimate of p(y1:T | θ), see also Flury and Shephard (2011). Therefore, we can use

these quantities to compute different statistics. In this paper. we use p
(
y1:T | θ (i)

)
and calculate the marginal

likelihood (ML) using the method of Gelfand-Dey (1994), see also Koop (2004). We can also compute ML

using the the conditional likelihood, p(y1:T | τ1:T ,h1:T ,θ). However, we refer the reader to Chan and Grant

(2015) for more details on the pitfalls of estimating ML based on the conditional likelihood.

For (3.1)-(3.3), we obtain a ML value of −551.71. We then compare this model with versions of (3.1)-

(3.3), where a = 0 and b = 5,6, ...,10, i.e. we increase b by 1. For each specification, we estimate the

model and compute ML. We report posterior means of τ1:T for these versions in panels (e) and (f) Figure

4. According to ML, we must increase b to 9 before we obtain the highest ML value. For instance, for the

version with a = 0, b = 5, we obtain a ML of −563.64. As we increase b, we obtain higher ML values.

For the version with a = 0, b = 9, we obtain a ML of −551.06, which slightly outperforms (3.1)-(3.3). For

a = 0, b = 10, we obtain a ML of −551.15.

4 AR-trend-bound with a and b Estimated

Estimating a and b in the AR-trend-bound model is also easy using PMCMC. For PG-AS, we can simply

implement the Griddy Gibbs procedure to draw a ∼ p
(
a | τ1:T ,σ

2
τ

)
and b ∼ p

(
b | τ1:T ,σ

2
τ

)
from their re-

spective conditional posteriors. For PMMH, we follow Chan et al. (2013), let p(a) ∼ Uni f orm(0,1.5),

p(b)∼Uni f orm(2.5,5), and augment the parameter vector to include a and b. We then proceed to sample

θ all-at-once. At each iteration, we simply use Matlab’s while command to ensure that the restrictions in θ

are satisfied. We estimate the posterior mean of a at 1.43 and b at 4.20, with posterior standard deviations

of 0.52 and 0.38, respectively, see panels (e) and (f) of Figure 7. Compared to AR-trend-bound, a = 0 and

b = 5, we estimate τ1:T at a lower rate, whereas posterior estimates of ρ1:T and h1:T are similar to the version

where a = 0 and b = 5. Finally, by comparing the marginal likelihoods, we see that this version marginally

outperforms AR-trend-bound, a = 0 and b = 5, see Table 1 in the main text.
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Table 1: Estimation results, stochastic volatility in mean model
Parameter true mean std. dev 16%-tile 84%-tile RB Geweke

Method: AR-MH

µ 0.10 0.1297 0.0782 0.0528 0.2076 1.92 -1.86

λ -0.05 -0.0953 0.0686 -0.1631 -0.0277 1.64 1.48

µh 0.50 -0.0810 0.6038 -0.4724 0.3238 1.24 0.89

φh 0.98 0.9819 0.0112 0.9715 0.9929 13.75 0.37

σ2
h 0.02 0.0219 0.0077 0.0149 0.0286 39.78 -0.82

Method: PG-AS

µ 0.10 0.1299 0.0777 0.0529 0.2068 1.80 -0.91

λ -0.05 -0.0950 0.0679 -0.1620 -0.0279 1.60 1.63

µh 0.50 -0.0680 0.5701 -0.4516 0.3214 1.32 -0.88

φh 0.98 0.9812 0.0113 0.9703 0.9924 13.84 0.19

σ2
h 0.02 0.0227 0.0080 0.0157 0.0296 39.64 0.71

Method: PMMH

µ 0.10 0.1269 0.0776 0.0499 0.2056 22.27 -1.53

λ -0.05 -0.0945 0.0687 -0.1629 -0.0263 23.18 1.48

µh 0.50 -0.0871 0.5365 -0.4817 0.3123 33.40 1.44

φh 0.98 0.9815 0.0106 0.9712 0.9920 27.74 -0.32

σ2
h 0.02 0.0222 0.0071 0.0155 0.0288 25.55 0.22

This table reports estimation results of (2.1)-(2.2) using the mentioned methods. RB: Inefficiency factors using a bandwidth, B, of
100. Geweke: Geweke’s convergence statistics, see Koop (2004).
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Table 2: Estimation results, unobserved components model with SV effects, US inflation
Parameter mean std. dev 16%-tile 84%-tile RB Geweke

Method: AR-MH

µh 1.0435 1.1360 0.1758 1.9496 1.98 0.02

φh 0.9766 0.0161 0.9614 0.9920 14.60 0.83

σ2
h 0.1089 0.0424 0.0706 0.1467 32.93 -1.33

σ2
τ 0.2329 0.1183 0.1191 0.3539 49.13 1.57

Method: PG-AS

µh 1.0594 1.1370 0.2009 1.9649 1.76 -1.09

φh 0.9768 0.0160 0.9617 0.9920 13.70 -0.61

σ2
h 0.1055 0.0411 0.0687 0.1415 31.23 0.97

σ2
τ 0.2285 0.1119 0.1200 0.3410 45.14 1.10

Method: PMMH

µh 1.1054 1.2023 0.2416 2.0265 41.28 1.55

φh 0.9768 0.0151 0.9628 0.9911 37.78 1.19

σ2
h 0.1028 0.0384 0.0673 0.1369 34.02 -1.13

σ2
τ 0.2711 0.1237 0.1464 0.4014 33.91 0.10

This table reports estimation results of (3.1)-(3.3) using the mentioned methods. RB: Inefficiency factors using a bandwidth, B, of
100. Geweke: Geweke’s convergence statistics, see Koop (2004).
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Figure 2: Estimation results, stochastic volatility in mean model
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Panels (a), (c) and (e): Posterior estimates of exp(h1:T /2), t = 1, ...,T , using the mentioned methods. The blue lines indicate the
posterior mean estimates. The black dotted lines are the 16 and 84 posterior percentiles. Panel (b): Inefficiency factors of h1:T using
the mentioned methods. Panel (d): Autocorrelation functions of the posterior draws of φh using the mentioned methods. Panel (f):
Autocorrelation functions of the posterior draws of σ2

h using the mentioned methods.
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Figure 3: Estimation results, unobserved components model with SV effects, US inflation
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Panels (a), (c) and (e): Posterior estimates of τ1:T , t = 1, ...,T , using the mentioned methods. The blue lines indicate the posterior
mean estimates. The black dotted lines are the 16 and 84 posterior percentiles. Panels (b), (d) and (f): Posterior estimates of h1:T ,
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Figure 4: Estimation results, unobserved components model with SV effects, US inflation
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Figure 7: Estimation results, AR-trend model, a and b estimated, US inflation
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Panels (a), (b) and (c): Posterior estimates of τ1:T , ρ1:T and h1:T using PMMH. The blue lines indicate the posterior mean estimates.
The black dotted lines are the 16 and 84 posterior percentiles. Panel (d): Autocorrelation functions of the posterior draws of a and
b. Panels (e) and (f): Histograms of the posterior draws of a and b.
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