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1. Asymptotic Variance of the Parametric Two-Step Estimator of Censored

Selection Model

This Section discusses the estimation of the asymptotic variance of the estimator
summarized in Procedure 3.2. Denote Wi = (1,X,Zi, 0i2), @ = (11,0, €1,7), dix =
(1,2i,%;), and @ = (12,8',&,)". Using the argument similar to that presented in Section
2 below, it can be shown that

VN( — 8) ~ Normal(0,V),
where V.= A~'BA ! is the asymptotic variance of v/ N (6 — 6),
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Here H;;(0) is the Hessian matrix from the second-step probit estimation, while H;(7)

and S;;(7) are the Hessian matrix and score vector from the first-step Tobit estimation,

respectively.



Then, Avar() can be estimated as A"'BA~1/N,
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where Hzt(é) is the Hessian matrix from the second-step probit estimation evaluated at
6, while H;,(#) and S (#) are the Hessian matrix and score vector from the first-step

Tobit estimation, respectively, evaluated at 7.

2. Asymptotic Properities of the Semiparametric Estimator

In this Section we discuss asymptotic properties of the semiparametric estimator pro-
posed in Section 4 of the paper. The argument below is very similar to the one in Blundell
and Powell (2004).

To demonstrate the consistency of the semiparametric estimator, first show that St is
consistent for Xt ¢t = 1,..., T, where X is a particular form of matrix 3! that uses the

weighting matrix specified in equation (55) in the paper. Using the first-order mean-value



expansion, for each ¢t we can write:

S* = S, +S!, where (5)
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where x{” () and K (-) are vectors of first derivatives of functions k4 (+) and &, (-), respec-

tively, i = (1,21, ..., 2Zit), ®¢ = (N2, €1y -+, Ot + Eop, - .-, Eop)’, and 7y is the first-step
estimator of ;.

Similar to Blundell and Powell (2004), if the first four moments of r;; and s;; are finite,
and Ky(+), Ky(+), Tit, 5 are bounded, then St = Xt + op(1), t =1,....T, when h, — 0,
hiN — oo.

To show that S! converges in probability to zero, t = 1,...,T, assume that functions
Kg()y Kul(s), Iiél)(-), /iz(jl)(-) are uniformly bounded, and the first two moments of q;; exist.
For the first-step Powell’s censored least absolute deviations estimator (Powell, 1984) or
symmetrically trimmed censored least squares estimator (Powell, 1986), assume that the
appropriate regularity conditions hold, so that 7, is v/N-consistent for all ¢. Moreover,
assume that regularity conditions provided in Ahn and Powell (1993) are satisfied. These
include smoothness assumptions for conditional expectation and density functions con-
ditional on g;; = gj and vy» = vj2, as well as the restrictions on the speed with which
hg and h, converge to zero as N — oo, where both depend on the dimensionality of
the continuous component of w;. There is also a requirement that higher-order (bias-
reducing) kernels are used at both steps. The second-step kernels, s, and &, are assumed

to be fourth-order kernels with the first three moments being equal to zero. For the first-



step kernel, K, the number of vanishing moments depends on the number of continuous
variables in w;. If these assumptions hold, the biases resulting from the nonparametric
estimation of g;; and w;j;; are of the order smaller than V/N.
From above, it follows that under the specified conditions,
T T
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Moreover, using the lawtc_)fl’ iteratéglexpectations:
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Furthermore, 3,0 = 0 because
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where we use the fact that w;;0 = g;, t=1,...,T.

Finally, the identification condition has to hold. Regarding the first-step estimation,
necessary identification conditions for the censored least absolute deviations estimator
and symmetrically trimmed least squares estimator are provided in Powell (1984) and
Powell (1986), respectively. The second part of the identification condition is that in
the population, @ is a unique nontrivial solution to ¥y@ = 0 after the normalization
0 = (1,a') is imposed. Specifically, assume that matrix 322, which is the lower-right
(M +L—1)x (M + L — 1) sub-matrix of matrix Xy, has full rank. This completes the
consistency argument.

In order to establish v/ N-asymptotic normality, we first use the second order mean



value expansion to write
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Under assumptions stated in Ahn and Powell (1993), using v/N-consistency of the

ijt = 4
2w

first-step estimator 7r, and following the same argument as in Blundell and Powell (2004),

it should be the case that
VNS0 = 0,(1), VNS,0 =o0,(1). (18)
Furthermore, when the selection equation is estimated using either Powell’s censored

least absolute deviations estimator or symmetrically trimmed censored least squares esti-

mator, 7 satisfies
N

VN (i — ) = %_Z m; + 0,(1),

where E(m;) = 0, and E(m;m}) exists and is nonsingular.

Then, we can show that

\/ng = \/N810 + 0p(1) = \/_1N Z(eﬂ + eig) + 0p(1), (19)
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If the censored least absolute deviations estimator (Powell, 1984) is used as the esti-

Qit | - (20)

mator of 7, and the first-step estimation is performed separately for each t, then
m;; (7ry)
m,(mw) = co )
m,7(7r)
) = [60)- 307 Um0, (3~ e > 0]).
J; = E(llgym >0]-q,q9:), t=1,....T, (21)
where f;(+) is the density function of error v; in period t.
If wm;, t = 1,...,T, is estimated using the symmetrically trimmed censored least
squares estimator (Powell, 1986), then
my(m,) = Ci' - ldum > 0] - o, - (min{si, 2qu7m:} — dirmm)
C: = E{l[-qum < v < qumy| -dyqie}, t=1,...,T. (22)
From (12) and (19) it follows that
VNO'SO = 0,(1), (23)
so that for the subvector & of @ = (1, /), we obtain
VN(a& — a) =% Normal(0, 25,V 35,0), (24)
where X9 is the lower (M + L — 1) x (M + L — 1) diagonal submatrix of 3, and Vg is
the lower (M + L — 1) x (M + L — 1) diagonal submatrix of V,
V = Var(e;; + e2) = E[(e;1 + ei2)(ei1 + €2)]. (25)
Note that this is a robust form of the variance that accounts for serial dependence in

the errors.



To obtain a consistent estimator of Avar[v/N(& — «)], first note that S is consistent
for 9. Furthermore, using the argument similar to the one in Ahn and Powell (1993), a
consistent estimator of V' would be
N
V=— Z €1+ €) (i + €)', (26)

where
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for m;(7) = [my(71),...,myp(7r)], and m;(7;) defined as in either (21) or (22), but

evaluated at ;.
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Table 1: Simulation results for Bg/ﬁl (B2/P1 = 0.6), uyp ~ X3

Probit, sit censored, s; binary, sq+ censored,
Probit time means 2-step MLE full MLE Semiparametric
1) (2) (3) (4) (5)
02=0,6=0,p=0
N=500 Bias 0.0006 0.0017 0.0006 0.0052 0.0051
RMSE 0.0482 0.0584 0.0612 0.0594 0.0698
Average se 0.0477 0.0583 0.0613 0.0594 0.0693
Bootstrap se 0.0815
02=03,6=-03,p=0
N=500 Bias -0.0630 0.0000 -0.0008 0.0016 0.0098
RMSE 0.0912 0.0654 0.0698 0.0672 0.0812
Average se 0.0641 0.0673 0.0711 0.0684 0.0795
Bootstrap se 0.0945
02=103,64=-03,p=0.5
N=500 Bias -0.1237 -0.0459 0.0011 0.0042 -0.0048
RMSE 0.1402 0.0816 0.0698 0.0677 0.0779
Average se 0.0680 0.0690 0.0712 0.0687 0.0764
Bootstrap se 0.0988
02=0,6=0,p=0
N=1000 Bias 0.0009 0.0021 0.0007 0.0052 0.0057
RMSE 0.0350 0.0426 0.0446 0.0438 0.0471
Average se 0.0338 0.0413 0.0434 0.0420 0.0509
Bootstrap se 0.0539
02=03,6=-03,p=0
N=1000 Bias -0.0617 0.0006 -0.0002 0.0020 0.0070
RMSE 0.0775 0.0495 0.0517 0.0506 0.0557
Average se 0.0455 0.0476 0.0502 0.0484 0.0476
Bootstrap se 0.0623
02=103,64=-03,p=05
N=1000 Bias -0.1213 -0.0455 0.0004 0.0037 -0.0026
RMSE 0.1310 0.0672 0.0510 0.0501 0.0529
Average se 0.0482 0.0489 0.0503 0.0485 0.0573
Bootstrap se 0.0643
02=0,6=0,p=0
N=2500 Bias 0.0017 0.0018 -0.00002 0.0049 0.0033
RMSE 0.0218 0.0262 0.0274 0.0270 0.0294
Average se 0.0214 0.0261 0.0274 0.0265 0.0469
02=03,6=-03,p=0
N=2500 Bias -0.0605 0.0023 0.0008 0.0033 0.0044
RMSE 0.0672 0.0303 0.0326 0.0310 0.0357
Average se 0.0288 0.0301 0.0318 0.0306 0.0275
02=0.3,¢=-03,p=05
N=2500 Bias -0.1215 -0.0458 0.0002 0.0032 -0.0047
RMSE 0.1255 0.0550 0.0309 0.0301 0.0327
Average se 0.0305 0.0309 0.0317 0.0306 0.0476




Table 2: Descriptive Statistics for NLSY79 data

Variable Mean
Age (years) 31.07
(2.63)
Education (years) 13.51
(2.35)
AFQT score 54.05
(26.16)
Married (%) 69.39
Number of observations 8,340

Sample standard deviations are in parentheses

below the sample means



