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Abstract

This online appendix provides supplementary material for the paper “Mixed Causal-

Noncausal Autoregressions with Exogenous Regressors”. The material consists of the proofs

of the main results, an auxiliary proposition (with proof), the derivation of the approximate

likelihood function and how the MARX model can arise from a transfer function model.



A - Graphs of Data
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Figure 1: Growth rates of commodity prices, exchange rate and industrial production index
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B - Additional Simulation Results

B.1 - Simulation of MARX Processes

A MARX process cannot be simulated directly as simultaneously initial and terminal values

are required. If the degree of (at least) one of the polynomials equals 0, the problem is greatly

simplified.16 In the general MARX(r, s, q) setup, filtered values as introduced in Lemma 1 are

used to circumvent the problem. Similar to Gouriéroux and Jasiak (2016), we make use of the

independence of specific blocks of u, v and y values.

We characterize the simulation procedure as a two-step approach. First, ut is constructed us-

ing the second equality of (3) by taking s terminal values, say u∗T+1, ..., u
∗
T+s and using simulated

sequences for εt and Xt. Second, yt is created using the first equality of (3) similar to a con-

ventional causal autoregressive process which requires r starting values for yt, say y∗−1, ..., y
∗
−r.
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Figure 2: A simulated MARX process (left) and the same process without exogenous variable
(right)

Figure 2 shows simulated paths of an MARX(1,1,1) and MAR(1,1) process with [φ1, ϕ1]
′ =

[0.3, 0.9]′, β1 = 0.3, xt
iid∼ t(1, 1) and εt

iid∼ t(3, 1) where t(ν, σ) denotes the Student’s t distribu-

16In that case yt can easily be simulated directly by generating a sequence of εt and choosing starting [terminal]
values for yt and Xt in the causal [noncausal] case.

17It is highly advised to allow for a burn-in period in both steps to remove the dependence on the terminal
values of ut and the starting values of yt. Note that (4) could equivalently be used to simulate an MARX process.
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tion with degrees of freedom parameter ν and scale parameter σ. Both processes generally move

similarly with the major exception that the MARX process contains more peaks and troughs,

which are also more extreme in comparison. This is due to xt which is standard Cauchy dis-

tributed for expository purposes. The MARX specification encompasses shocks that are present

because of major changes in explanatory variables at specific points in time.

B.2 - Performance MLE for MARX

To assess the performance of the maximum likelihood estimator, we make use of the DGP

introduced at the beginning of Section 4. Four different specifications for xt are considered: (i)

xt
iid∼ t(5, 1), (ii) xt

iid∼ N (0, 1), (iii) xt
iid∼ t(1, 1) (i.e. Standard Cauchy) and (iv) xt follows

an AR(1) process: xt = 0.6x1,t−1 + εt where εt
iid∼ N (0, 5). In every replication, processes are

simulated and estimated by the ML estimator proposed in Section 3. Table 12 reports the mean

and standard deviations of the estimated parameters by MLE over all 10,000 simulations. The

scale parameter σ is fixed at 1 for both simulation and estimation.

Results are very similar for different specifications of xt. The most noticeable difference is

that the standard deviations of the parameters are larger for the first two cases especially when

T is small. This can be due to the fact that both the t(5, 1) and N (0, 1) distribution do not

generate large outliers in xt, making it more difficult to disentangle their contribution to the

series from that of lags and leads of yt. The means of the estimated parameters also lie further

away from the true value when compared to the other specifications, but are still close. The

most difficult parameter to estimate is ν, which has a large standard deviation for T = 50.

For larger T , the standard deviations decrease rapidly. In all cases, the estimated mean of all

parameters becomes more accurate and standard deviations decline as T grows large. Table

13 shows results for the same simulation study in the infinite variance case, i.e., εt
iid∼ t(2, 1).

Similar to Hecq et al. (2016) for the MAR model, results suggests the fatter the tails of the error

distribution, the more accurate the estimation for all parameters of the MARX model.
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Specification for xt

xt
iid∼ t(5, 1) xt

iid∼ N (0, 1) xt
iid∼ t(1, 1) xt ∼ AR(1)

T Parameter Mean Std. dev Mean Std. dev Mean Std. dev Mean Std. dev

50 φ1 0.307 0.167 0.316 0.174 0.298 0.079 0.293 0.079
ϕ1 0.468 0.162 0.462 0.170 0.493 0.071 0.491 0.066
β1 0.303 0.152 0.305 0.194 0.299 0.039 0.304 0.036
ν 5.140 8.562 5.089 8.203 5.050 8.295 5.416 9.906

100 φ1 0.301 0.104 0.302 0.109 0.299 0.039 0.295 0.052
ϕ1 0.488 0.099 0.486 0.104 0.498 0.035 0.497 0.043
β1 0.302 0.102 0.302 0.131 0.300 0.018 0.302 0.024
ν 3.487 1.899 3.487 2.216 3.474 1.754 3.544 2.534

500 φ1 0.299 0.037 0.299 0.038 0.300 0.010 0.299 0.022
ϕ1 0.498 0.037 0.499 0.035 0.500 0.009 0.499 0.018
β1 0.301 0.043 0.300 0.055 0.300 0.004 0.300 0.011
ν 3.057 0.366 3.061 0.367 3.053 0.423 3.060 0.364

1000 φ1 0.300 0.025 0.300 0.026 0.300 0.006 0.300 0.015
ϕ1 0.499 0.023 0.499 0.023 0.500 0.004 0.500 0.013
β1 0.300 0.030 0.300 0.039 0.300 0.002 0.300 0.007
ν 3.031 0.255 3.029 0.254 3.023 0.322 3.026 0.254

Table 12: Finite sample properties of the ML estimator for an MARX(1,1,1) with εt
iid∼ t(3, 1)

Specification for x1,t

x1,t
iid∼ t(5) x1,t

iid∼ N(0, 1) x1,t
iid∼ C(0, 1) x1,t ∼ AR(1)

T Parameter Mean Std. dev Mean Std. dev Mean Std. dev Mean Std. dev

50 φ1 0.299 0.120 0.303 0.139 0.299 0.081 0.292 0.071
ϕ1 0.481 0.117 0.480 0.138 0.494 0.072 0.494 0.060
β1 0.308 0.167 0.313 0.205 0.299 0.043 0.303 0.037
ν 2.615 4.446 2.594 2.932 2.490 2.470 2.459 3.196

100 φ1 0.298 0.075 0.301 0.071 0.299 0.035 0.295 0.048
ϕ1 0.498 0.067 0.492 0.065 0.500 0.031 0.495 0.041
β1 0.300 0.110 0.301 0.139 0.299 0.021 0.302 0.026
ν 2.129 0.565 2.150 0.533 2.132 0.535 2.173 0.600

500 φ1 0.300 0.024 0.299 0.025 0.300 0.012 0.299 0.018
ϕ1 0.500 0.021 0.500 0.021 0.500 0.007 0.500 0.016
β1 0.301 0.046 0.298 0.058 0.300 0.004 0.300 0.010
ν 2.034 0.187 2.027 0.185 2.012 0.221 2.026 0.190

1000 φ1 0.300 0.015 0.299 0.015 0.300 0.005 0.300 0.012
ϕ1 0.500 0.014 0.500 0.013 0.500 0.005 0.500 0.010
β 0.300 0.032 0.299 0.041 0.300 0.002 0.300 0.007
ν 2.007 0.128 2.016 0.136 2.000 0.153 2.014 0.131

Table 13: Finite sample properties of the ML estimator for an MARX(1,1,1) with εt
iid∼ t(2, 1)
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C - Proofs

C.1 Proof of Lemma 2

Define et ≡ f ′σ(εt;λ)
fσ(εt;λ)

≡ f ′(εt/σ;λ)
σf(εt/σ;λ)

, J̃ ≡ σ−2J , Ĩ ≡ σ−2I and n ≡ (T − p). Furthermore, let

x ≡ εt/σ, then we have that

E(e2t ) = E

[(
f ′σ(εt;λ)

fσ(εt;λ)

)2
]

=

∫ (
f ′σ(εt;λ)

fσ(εt;λ)

)2

fσ(εt;λ)dεt = σ−2
∫

(f ′(x;λ))2

f(x;λ)
dx = J̃ ,

where we used the definitions of the density and J . Also we have that

E(et) = E
(
f ′σ(εt;λ)

fσ(εt;λ)

)
=

∫
f ′σ(εt;λ)dεt = σ−1f(x)|∞−∞ = 0,

which follows by the definition of the density and assumption (A3) in Breidt et al. (1991). To

simplify future computations, we begin by noting that

E(zset) =


0, if s 6= t,

−1, if s = t,

(16)

which follows from the assumptions on the density and strixt exogeneity between all exogeneous

regressors and the error term. For i = 1, ..., r, we can show that E
(
∂gt(θ0)
∂φi

)
= E(−etvt−i) =

−E
(
et
∑∞

j=0 αjzt−i−j

)
= 0. Hence, we note that V t−1 and et are still independent as in Lanne

and Saikkonen (2011). Consequently, we still find

Cov

(
∂gt(θ0)

∂φ

)
= Cov(−V t−1et) = E(e2t )E(V t−1V

′
t−1) = J̃ΓV ,

where ΓV denotes the autocovariance matrix of the vector V t−1. Because V t−1et is uncorrelated,

we have limn→∞
1
nCov

(∑T−s
t=r+1

∂gt(θ0)
∂φ

)
= J̃ΓV . Symmetrically, by using similar arguments,

we can show for i = 1, ..., s that E
(
∂gt(θ0)
∂ϕi

)
= E(−etut+i) = −E

(
et
∑∞

j=0 δjzt+i+j

)
= 0. That

5



is, the independence of et and U t+1 is preserved through strict exogeneity. Letting ΓU be the

autocovariance matrix of U t+1, we find that

Cov

(
∂gt(θ0)

∂ϕ

)
= Cov(−U t+1et) = E(e2t )E(U t+1U

′
t+1) = J̃ΓU .

Because U t+1et is uncorrelated, we have limn→∞
1
nCov

(∑T−s
t=r+1

∂gt(θ0)
∂ϕ

)
= J̃ΓU . Lastly, we

can apply the same logic for the parameter vector β. Since for i = 1, ..., q, we have that

E
(
∂gt(θ0)
∂βi

)
= 0 by the strict exogeneity of xi,t and εt. If we denote by ΓX , the autocovariance

matrix of Xt, it follows that

Cov

(
∂gt(θ0)

∂β

)
= Cov(−Xtet) = E(e2t )E(XtX

′
t) = J̃ΓX .

Because Xtet is uncorrelated, we have limn→∞
1
nCov

(∑T−s
t=r+1

∂gt(θ0)
∂β

)
= J̃ΓX . We now char-

acterize the covariances of the partials. To that end, we first notice that

Cov(zt−iet, zk−jek) =



I + J̃
∑q

m=1 β
2
mσ

2
xm if t = k, i = j = 0,

J + J̃
∑q

m=1 β
2
mσ

2
xm if t = k, i = j 6= 0,

1 if t 6= k, i = t− k, j = k − t,

0 otherwise.

(17)

Hence, using (16)-(17), we find that

Cov

(
∂gt(θ0)

∂φi
,
∂gk(θ0)

∂φj

)
=


γV (i− j)J̃ , if t = k, 1 ≤ i ≤ j ≤ r,

0, otherwise.
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Cov

(
∂gt(θ0)

∂ϕi
,
∂gk(θ0)

∂ϕj

)
=


γU (i− j)J̃ , if t = k, 1 ≤ i ≤ j ≤ s,

0, otherwise.

Cov

(
∂gt(θ0)

∂βi
,
∂gk(θ0)

∂βj

)
=


σ2xiJ̃ , if t = k, i = j 6= 0,

0, otherwise.

Define Qm(i, j, a) ≡
∑∞

b=0 δbγxm(i+ j + a+ b). For the covariance matrix between ∂gt(θ0)/∂φ

and ∂gt(θ0)/∂ϕ, first consider for 1 ≤ i ≤ r, 1 ≤ j ≤ s:

Cov

(
∂gt(θ0)

∂φi
,
∂gk(θ0)

∂ϕj

)
= Cov

( ∞∑
a=0

αazt−i−aet,

∞∑
b=0

δbzk+j+bek

)

=

∞∑
a=0

∞∑
b=0

αaδbCov (zt−i−aet, zk+j+bek)

=


αt−k−iδt−k−j , for t > k,

J̃
∑∞

a=0 αa
∑q

m=1 β
2
mQm(i, j, a) for t = k,

0 for t < k.

The element (i, j) of the matrix 1
nCov(∂LT (θ0)/∂φ, ∂LT (θ0)/∂ϕ) is

nCov

(
1

n

T−s∑
t=r+1

∂gt(θ0)

∂φi
,

1

n

T−s∑
k=r+1

∂gk(θ0)

∂ϕj

)

=
1

n

T−s∑
t=r+1

T−s∑
k=r+1

Cov

(
∂gt(θ0)

∂φi
,
∂gk(θ0)

∂ϕj

)

=
1

n

T−s∑
t=r+1

T−s∑
k=r+1

Cov(−vt−iet,−uk+jek)

=
1

n

T−s∑
t=r+1

T−s∑
k=r+1

(
1{t>k}αt−k−iδt−k−j + 1{t=k}J̃

∞∑
a=0

αa

q∑
m=1

β2mQm(i, j, a)

)
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=
1

n

(
T−s−1∑
k=r+1

T−s−k−i∑
t=0

αtδt+i−j

)
+ J̃

∞∑
a=0

αa

q∑
m=1

β2mQm(i, j, a)

→
∞∑
t=0

αtδt+i−j + J̃
∞∑
a=0

αa

q∑
m=1

β2mQm(i, j, a),

where convergence of the first term follows from the geometric decay of the sequences {αt} and

{δt}. Note that δt+i−j = 0 for t+ i− j < 0. The equalities follow from results presented earlier,

the change of summands follows from imposing t > k.

Next, we consider the covariance between the partial derivatives of the log-likelihood with

respect to the causal autoregressive parameters φ and the parameter vector of the exogenous

variables β. That is,

Cov

(
∂gt(θ0)

∂φi
,
∂gk(θ0)

∂βj

)
= Cov(−vt−iet,−xj,kek)

= E

( ∞∑
a=0

αaεt−i−axj,keket

)

+ E

( ∞∑
a=0

αa

q∑
m=1

βmxm,t−i−axj,keket

)

=


βjJ̃

∑∞
a=0 αaγxj (i+ a) for t = k, 1 ≤ i ≤ r,

0 for t 6= k, 1 ≤ i ≤ r.

Note that this outcome is independent of time t. Symmetrically, we can compute the covariance

between the partial derivatives of the log-likelihood with respect to the noncausal autoregressive

parameters ϕ and the parameter vector of the exogenous variables β:

Cov

(
∂gt(θ0)

∂ϕi
,
∂gk(θ0)

∂βj

)
= Cov(−ut+iet,−xj,kek)

= E

( ∞∑
b=0

δbεt+i+bxj,keket

)

8



+ E

( ∞∑
b=0

δb

q∑
m=1

βmxm,t+i+bxj,keket

)

=


βjJ̃

∑∞
b=0 δbγxj (i+ b) for t = k, 1 ≤ i ≤ s,

0 for t 6= k, 1 ≤ i ≤ s.

The proof of asymptotic normality is similar to Breidt et al. (1991) and Lanne and Saikkonen

(2011). Define M = diag(Σ,Ω), W t = ∂gt(θ0)
∂θ and note that n ≡ (T − p). By the Cramér-Wold

theorem, it suffices to show that for any vector a of appropriate size,

1√
n

T−s∑
t=r+1

a′W t
d→ N (0,a′Ma). (18)

Define the sequence of (p + q + d + 1) dimensional random vectors {W tm, t ∈ Z} to be the

partials defined in Appendix A, where vt, ut and all xi,t for i = 1, ..., q are replaced by their

representation ut =
∑∞

j=0 δjzt+j and vt =
∑∞

j=0 αjzt−j and assumption (II) with the sums

truncated at a large positive integerm, i.e., v
(m)
t =

∑m
j=0 αjzt−j , u

(m)
t =

∑m
j=0 δjzt+j and x

(m)
i,t =

ci +
∑m

j=−m ρi,jηi,t−j .

It can be verified that E(W t) = 0 and γW t
(0) + 2

∑∞
j=1 γW t

(j) 6= 0. This result also holds

for W t replaced by W tm. Let Mm be the matrix corresponding to M , obtained by truncating

ut, vt and Xt. Then the stationary sequence {W tm, t ∈ Z} is max{m + p, 2m} dependent.18

Now that we verified the conditions, we can apply Theorem 6.4.2 in Brockwell and Davis (1991)

to obtain

1√
n

T−s∑
t=r+1

a′W tm
d→ N (0,a′Mma).

18The m + p follows from writing ut and vt in their truncated representation, 2m follows from the processes
in Xt which have a two-sided MA representation truncated by m at both sides.
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Now, it follows that for m→∞, W tm →W t (by definition) and thus Mm →M . Because

lim
m→∞

lim
n→∞

Var

(
1√
n

T−s∑
t=r+1

(
a′W tm − a′W t

))
= 0,

the convergence in (18) is immediate from Proposition 6.3.9 in Brockwell and Davis (1991). The

positive definiteness of Σ can be established similar to the proof in Breidt et al. (1991). In the

MARX case, the block matrix Σ is given as

Σ =


Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 .

In a first step, let us focus on the submatrix Σ̃1 given by

Σ̃1 =

Σ11 Σ12

Σ21 Σ22

 and partition it as Σ̃1 =

A B

B′ C

 ,
where A is r × r, C is s × s and B is r × s. Consider the vectors P = [P1, ..., Pr]

′ and

S = [S1, ..., Ss]
′ defined by P t =

∑∞
a=0 αaz−t−ae0 for t = 1, ..., r and St =

∑∞
b=0 δbzt−be0 for

t = 1, ..., s. It can easily be verified that the covariance matrices of P and S, denoted ΣPP and

ΣSS , are equal to A and C. From (17), it follows that

Cov(Pi, Sj) = Cov

( ∞∑
a=0

αaz−i−ae0,
∞∑
b=0

δbzj−be0

)

=
∞∑
a=0

∞∑
b=0

αaδbE(z−i−azj−be
2
0)

=
∞∑
a=0

αaδb+i−j(J + J̃
q∑

m=1

β2mσ
2
m).
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We know that J > 1 by condition (A5) of Andrews et al. (2006). We have that J̃
∑q

m=1 β
2
mσ

2
m =

J
(∑q

m=1 β
2
mσ

2
m

σ2

)
> 0, which in turn implies that (J + J̃

∑q
m=1 β

2
mσ

2
m) > 1. Similar to Breidt

et al. (1991), we exploit that the matrices A and C are positive definite since there is no linear

dependence within the vectors P and S. We proceed by proving the positive definiteness of Σ̃

by showing that the Schur Complement of the block A of the matrix Σ̃ given as C −B′A−1B

is positive definite. We know that the covariance matrix of S − ΣSPΣPP
−1, i.e. C − (J +

J̃
∑q

m=1 β
2
mσ

2
m)B′A−1B, is positive semidefinite and hence for a nonzero vector c ∈ Rs with

Bc 6= 0, we have that

c′(C −B′A−1B)c > c′(C − (J + J̃
q∑

m=1

β2mσ
2
m)B′A−1B)c ≥ 0.

Alternatively, if Bc = 0, we have that

c′(C −B′A−1B)c = c′Cc > 0,

by the positive definiteness of C. Hence, now that we established positive definiteness of Σ̃1,

we can repartition the matrix Σ as

Σ =

Σ̃1 Σ̃2

Σ̃
′
2 Σ̃3

 ,
where Σ̃1 is (r + s) × (r + s), Σ̃2 = [Σ12,Σ23]

′ is (r + s) × q and Σ̃3 = Σ33 is q × q. Since

Σ33 = diag(σ21, ..., σ
2
m), we have that for a nonzero vector c ∈ Rq, c′Σ33c = c21σ

2
1+...+c2mσ

2
m > 0.

Hence, as we know that Σ̃1 and Σ̃3 are positive definite, it is sufficient to show that the Schur

complement of the block Σ̃1 of the matrix Σ is positive definite, which can be established

analogous to the case above. The positive definiteness of Ω follows from condition (A6) in

Andrews et al. (2006).
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C.2 Proof of Theorem 1

We first present the second partial derivatives of the function gt(θ). Set h(x;λ) = f ′(x;λ)/f(x;λ),

such that

h′(x;λ) =
f ′′(x;λ)

f(x;λ)
−
(
f ′(x;λ)

f(x;λ)

)2

,

which can easily be verified using the quotient rule. Let Y t be the (r × s) matrix with

elements yt−i+j . Write ṽt = vt(ϕ) and ũt = ut(φ) and thus Ṽ t−1 = [ṽt−1, ..., ṽt−r]
′ and

Ũ t+1 = [ũt+1, ..., ũt+s]
′ to simplify notation. Similarly, ε̃t = ṽt − φ1ṽt−1 − ... − φrṽt−r =

ũt − ϕ1ũt+1 − ... − ϕsũt+s denotes εt evaluated at an arbitrary point in the permissible pa-

rameter space, not the true one. Then, the second partial derivatives in the MARX case can

be obtained through differentiation, similar to Lanne and Saikkonen (2011) and Breidt et al.

(1991):

∂2gt(θ)/∂φ∂φ′ = σ−2h′(σ−1ε̃t;λ)Ṽ t−1Ṽ
′
t−1,

∂2gt(θ)/∂ϕ∂ϕ′ = σ−2h′(σ−1ε̃t;λ)Ũ t+1Ũ
′
t+1,

∂2gt(θ)/∂β∂β′ = σ−2h′(σ−1ε̃t;λ)XtX
′
t,

∂2gt(θ)/∂σ2 = 2σ−3h(σ−1ε̃t;λ)ε̃t + σ−4h′(σ−1ε̃t;λ)ε̃2t + σ−2,

∂2gt(θ)/∂λ∂λ′ =
1

f(σ−1ε̃t;λ)

∂2f(σ−1ε̃t;λ)

∂λ∂λ′

− 1

f2(σ−1ε̃t;λ)

(
∂f(σ−1ε̃t;λ)

∂λ

)(
∂f(σ−1ε̃t;λ)

∂λ

)′
,

∂2gt(θ)/∂φ∂ϕ′ = σ−2h′(σ−1ε̃t;λ)Ṽ t−1Ũ
′
t+1 + σ−1h(σ−1ε̃t;λ)Y t,

∂2gt(θ)/∂φ∂β′ = σ−2h′(σ−1ε̃t;λ)Ṽ t−1X
′
t,

∂2gt(θ)/∂φ∂σ = σ−3h′(σ−1ε̃t;λ)ε̃tṼ t−1 + σ−2h(σ−1ε̃t;λ)Ṽ t−1,

∂2gt(θ)/∂φ∂λ′ = −σ−1Ṽ t−1∂h(σ−1ε̃t;λ)/∂λ′,

∂2gt(θ)/∂ϕ∂β′ = σ−2h′(σ−1ε̃t;λ)Ũ t+1X
′
t,
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∂2gt(θ)/∂ϕ∂σ = σ−3h′(σ−1ε̃t;λ)ε̃tŨ t+1 + σ−2h(σ−1ε̃t;λ)Ũ t+1,

∂2gt(θ)/∂ϕ∂λ′ = −σ−1Ũ t+1∂h(σ−1ε̃t;λ)/∂λ′,

∂2gt(θ)/∂β∂σ = σ−3h′(σ−1ε̃t;λ)ε̃tXt + σ−2h(σ−1ε̃t;λ)Xt,

∂2gt(θ)/∂β∂λ′ = −σ−1Xt∂h(σ−1ε̃t;λ)/∂λ′,

∂2gt(θ)/∂σ∂λ′ = −σ−2ε̃t∂h(σ−1ε̃t;λ)/∂λ′.

It can be verified that E(∂2gt(θ0)/∂θ∂θ′) = −diag(Σ,Ω). The proof for consistency is exactly

the same as in Lanne and Saikkonen (2011). That is, similar to Andrews et al. (2006), we use

the Taylor expansion

T−s∑
t=r+1

[
gt(θ0 + T−1/2c)− gt(θ0)

]
=

1√
T

T−s∑
t=r+1

c′
∂gt(θ0)

∂θ
+

1

2T

T−s∑
t=r+1

c′
∂2gt(θ0)

∂θ∂θ′
c

+
1

2T

T−s∑
t=r+1

c′
(
∂2gt(θ

∗
T (c))

∂θ∂θ′
− ∂2gt(θ0)

∂θ∂θ′

)
c,

where c ∈ Rp+q+1+d and the argument θ∗T (c) in the matrix of second partial derivatives means

that each row is evaluated at an intermediate point lying between the true parameter value

θ0 and T−1/2c. If ‖·‖ denotes the Euclidian norm we have supc∈C
∥∥θ∗T (c)− θ0

∥∥ → 0 for any

compact set C ⊂ Rp+q+1+d. Using the dominance conditions (A7) in Davis et al. (1992),

arguments similar to Breidt et al. (1991, p. 186-190) and assumption (I) in this paper, it

can be shown that a uniform law of large numbers for stationary ergodic processes applies to

∂2gt(θ)/∂θ∂θ′ over any small enough compact neighborhood θ0. We can conclude that

1

T

T−s∑
t=r+1

c′
(
∂2gt(θ

∗
T (c))

∂θ∂θ′
− ∂2gt(θ0)

∂θ∂θ′

)
c

p→ 0,

for c ∈ C. As in the proof of Theorem 1 of Andrews et al. (2006), we can make use of Remark

1 of Davis et al. (1992) and complete the proof.
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C.3 Approximate Likelihood Function

Define b = β′x̃ such that z = BAy − β′x̃ = BAy − b. Assume B and A are invertible. We

are interested in the inverse transformation, i.e. y = Q(z + b), where Q = B−1A−1. Let Q be

a (2× 2) matrix, then we have

y1
y2

 =

q1 q2

q3 q4



z1
z2

+

b1
b2


 , (19)

with the following functions y1 = g1(z1, z2) = q1z1+q2z2+b1 and y2 = g2(z1, z2) = q3z1+q4z2+b2.

The Jacobian is given as the matrix of all partial derivatives from y to z, i.e.

J =

∂y1∂z1
∂y1
∂z2

∂y2
∂z1

∂y2
∂z2

 =

q1 q2

q3 q4

 = Q. (20)

Then the joint density of y1 and y2 is given as fy1,y2(y1, y2) = 1
| det(Q)|fz1,z2(BAy − b). This

result can be generalized to higher orders (see e.g., Casella and Berger, 2002, p. 185). From

Proposition 1 we know that the information sets (i) and (vi) are observationally equivalent.

Using this result and Q = B−1A−1, we find that the probability density of the process yt can

be represented in the following way:

fy;λ(y) =
1

| det(Q)|
fz(BAy − b;λ)

= |det(A)||det(B)|hV (BAy − b)fε(BAy − b;λ)hU (BAy − b)

= |det(A)|hV (BAy − b)

(
T−s∏
t=r+1

fσ(BAy − b;λ)

)
hU (BAy − b)

= hV (ϕ(L−1)y1, ..., ϕ(L−1)yr)

(
T−s∏
t=r+1

fσ(φ(L)ϕ(L−1)yt − β′Xt;λ)

)

hU (φ(L)yT−s+1, ..., φ(L)yT )|det(A)|, (21)
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where A and B are two nonsingular matrices with det(B) = 1; hV and hU are the joint

densities of (v1, ..., vr) and (uT−s+1, ..., uT ) respectively. Independence of the blocks (v1, ..., vr),

(εr+1, ..., εT−s) and (uT−s+1, ..., uT ) is applied in the second equality and the definition of the

filtered values as presented in (3) and (4) in the fourth equality. Since det(A) is independent of

sample size, the density of yt can be approximated by the second term in (21).

C.4 From Transfer Function Model to MARX

For expository purposes, we consider a single explanatory variable denoted x∗t . The transfer

function model is given by

yt = ψ∗(L)x∗t + nt, (22)

where nt is a noise process assumed to follow a stationary AR process, a(L)nt = ε∗t . The ARX

(or ARDL) model can be motivated from (22) by assuming that the transfer function operator

can be expressed in a rational factorization as ψ∗(z) = a(z)−1θ∗(z). Multiplying (22) by a(L)

yields

a(L)yt = θ∗(L)x∗t + a(L)nt

= θ∗(L)x∗t + ε∗t , (23)

which is the usual ARX(p, k) model representation when deg(a(z)) = p and deg(θ∗(z)) = k. If

all roots of a(z) lie outside the unit circle, the process is stationary which implies that estimation

and inference can directly be conducted. Breidt et al. (1991) consider the more complex case

in which r roots lie outside the unit circle and s inside (r + s = p) and propose to factorize the

polynomial to obtain

φ(L)ϕ∗(L)yt = θ∗(L)x∗t + ε∗t .
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Lanne and Saikkonen (2011) propose to rewrite ϕ∗(z) in terms of the lead operator and obtain

the relation ϕ∗(z) = −ϕ∗szsϕ(z−1). By rearranging terms, we find

φ(L)ϕ(L−1)yt =

(
− 1

ϕ∗s
+
θ∗1
ϕ∗s
L+ ...+

θ∗k
ϕ∗s
Lk
)
x∗t+s −

1

ϕ∗s
ε∗t+s

= θ(L)xt + εt. (24)

In case only a contemporaneous value of xt enters the system, take ψ∗(z) = a(z)−1β. Note that

the derivation can easily be extended to q regressors by defining ψ∗(z) = [ψ∗1(z), ..., ψ∗q (z)]
′

and considering X∗t . In the distributed lag case take ψ∗(z) = a(z)−1θ∗(z) with θ∗(z) =

[θ∗1(z), ..., θ∗k(z)]
′; in the contemporaneous case define ψ∗(z) = a(z)−1β with β ∈ Rq. In case

one wants to allow for (mixed) dynamics in the exogenous regressors, it seems more natural to

model such a process as a VAR. The mixed VAR model (see e.g., Lanne and Saikkonen, 2013;

Davis and Song, 2012) accommodates this structure.

C Auxiliary Proposition with Proof

Proposition 1. For an MARX(r, s, q) model, the following information sets are equivalent:

(i) (y1, ..., yT ,Xr+1, ...,XT−s)

(ii) (y1, ..., yr, ur+1, ..., uT ,Xr+1, ...,XT−s)

(iii) (v1, ..., vT−s, yT−s+1, ..., yT ,Xr+1, ...,XT−s)

(iv) (y1, ..., yr, εr+1, ..., εT−s, uT−s+1, ..., uT )

(v) (v1, ..., vr, εr+1, ..., εT−s, yT−s+1, ..., yT )

(vi) (v1, ..., vr, εr+1, ..., εT−s, uT−s+1, ..., uT )

Additionally, the following information sets are equivalent:
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(i′) (y1, ..., yT )

(ii′) (y1, ..., yr, ur+1, ..., uT )

(iii′) (v1, ..., vT−s, yT−s+1, ..., yT )

Proof of Proposition 1

Let ∼ denote equivalence in information sets. To show that (i), (ii) and (iii) are equivalent is

similar to showing that (i′), (ii′) and (iii′) are equivalent. We prove (i′) ∼ (ii′), (i′) ∼ (iii′), (ii) ∼

(iv), (iii) ∼ (v) and (i) ∼ (vi).

Case 1: (i′) ∼ (ii′). Using (3), (ii′) (y1, ..., yr, ur+1, ..., uT ) = (y1, ..., yr, φ(L)yr+1, ..., φ(L)yT ).

Since ur+1 = yr+1 − φ1yr − ...− φry1 with y1, ..., yr and ur+1 known, yr+1 is known. The same

reasoning can be recursively applied to ur+2 up to uT , leading to the desired result.

Case 2: (i′) ∼ (iii′). By (4), (iii′) (v1, ..., vT−s, yT−s+1, ..., yT ) = (ϕ(L−1)y1, ..., ϕ(L−1)yT−s, yT−s+1, ..., yT ).

Since vT−s = yT−s−ϕ1yT−s+1− ...−ϕsyT with yT−s+1, ..., yT and vT−s known, yT−s is known.

The same reasoning can be recursively applied to vT−s−1 up to v1, leading to the desired result.

Hence, since (i′), (ii′) and (iii′) are equivalent, we know that (i), (ii) and (iii) are as well (as all

information sets are augmented with the same information).

Case 3: (ii) ∼ (iv). We have (iv) (y1, ..., yr, εr+1, ...εT−s, uT−s+1, .., uT ) = (y1, ..., yr, ϕ(L−1)ur+1−

β′Xr+1, ..., ϕ(L−1)uT−s−β′XT−s, uT−s+1, ..., uT ) by using the second equality in equation (3).

Since εT−s = uT−s − ϕ1uT−s+1 − ... − ϕsuT − β′XT−s with uT−s+1, ..., uT , XT−s and εT−s

known, uT−s is known. The same reasoning can be recursively applied to uT−s−1 up to ur+1.

Case 4: (iii) ∼ (v). We have (v) (v1, ..., vr, εr+1, ...εT−s, yT−s+1, .., yT ) = (v1, ..., vr, φ(L)vr+1 −

β′Xr+1, ..., φ(L)vT−s − β′XT−s, yT−s+1, ..., yT ) by using the second equality in equation (4).

Since εr+1 = vr+1 − φ1vr − ... − φrv1 − β′Xr+1 with v1, ..., vr, Xr+1 and εr+1 known, vr+1 is

known. This reasoning can be recursively applied to vr+2 up to vT−s.

Case 5: (i) ∼ (vi). To show: (y1, ..., yT ,Xr, ...,XT−s) ∼ (v1, ..., vr, εr+1, ..., εT−s, uT−s+1, ..., uT ).
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We denote the vector corresponding to the information set (i) by ỹ and (ii) by z and use re-

sults similar to Lanne and Saikkonen (2011). Define w = [v1, ..., vT−s, uT−s+1, ..., uT ]′ and

y = [y1, ..., yT ]′. Then



v1
...

vT−s

uT−s+1

...

vT


=



y1 − ϕ1y2 − ...− ϕsys+1

...

yT−s − ϕ1yT−s+1 − ...− ϕsyT

yT−s+1 − φ1yT−s − ...− φryT−s+1−r
...

yT − φ1yT−1 − ...− φryT−r


= A



y1
...

yT−s

yT−s+1

...

yT


,

which can be written as w = Ay. Now define x̃ = [0, ..., 0︸ ︷︷ ︸
r times

,Xr+1, ...,XT−s, 0, ..., 0︸ ︷︷ ︸
s times

]′. Similarly,

we form the following system of equations for z, since (6) shows that z = Bw−β′x̃. Combining

both systems of equations, we find that z and ỹ are related as z = BAy−β′x̃, where y and x̃

combined form the information set ỹ. Since B, A and β only contain known parameters, this

shows that (i) and (ii) are equivalent. All cases combined show that information sets (i)− (vi)

are equivalent.



v1
...

vr

vr+1 − φ1vr − ...− φrv1 − β′Xr+1

...

vT−s − φ1vT−s−1 − ...− φrvT−s−r − β′XT−s

uT−s+1

...

uT



= B



v1
...

vr

vr+1

...

vT−s

uT−s+1

...

uT



− β′



0

...

0

Xr+1

...

XT−s

0

...

0



.
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