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1 Description of the hedge funds data

This section supplements Section 3.1 in the paper.

1.1 Filtering of the data

Here, we detail the preprocessing of the original dataset extracted from the Hedge Fund Research
(HFR) database. First, we remove funds not reporting net-of-fees returns in a monthly basis,
or with partial quarterly observations. Second, we remove funds with missing historical data
(returns, total assets, minimum investment) and/or missing observations of their fund specific
factors, e.g., investment style, management and incentive fees, country of residence, and leverage.
Additionally, we only keep funds for which the reported country of residence belongs to one of the
following developed countries: Australia, Austria, Belgium, Canada, Czech Republic, Denmark,
Finland, France, Germany, Greece, Ireland, Israel, Italy, Japan, Luxembourg, Netherlands, New
Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United States of America., and United
Kingdom. This step ensures the availability of the macroeconomic data for each of the resulting
funds. Similarly, we remove funds that are reporting for less than 24 months. Moreover, to avoid
double counting and inconsistent reporting standards, we remove funds of funds, and funds with
an inception date prior to December 1989. Finally, we only keep returns starting in January
1994, first date at which some of the explanatory variables used in the multivariate analysis are
available. Our database stops in May 2017.

1.2 Descriptive statistics

Descriptive statistics of the historical returns for each investment style are reported in Table 1.
We observe important differences in all aspects of their respective distributions, especially in the
skewness and kurtosis dimensions.
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Inv. Style Mean Std. Skew. Kurt. # Funds # Obs.

Conv. Arb. 0.07 0.16 -2.01 56.54 387 31,044
Dist./Rest. 0.08 0.14 -0.37 58.58 222 20,802

Eq. M. Neut. 0.06 0.11 -0.33 25.61 566 42,097
F. Inc. Arb. 0.07 0.11 -2.66 67.86 660 54,502
Glob. Trad. 0.07 0.18 0.78 17.92 1,305 111,085

L/S Eq. 0.09 0.19 0.35 20.54 3,205 280,966
Man. Fut. 0.07 0.19 1.37 27.64 406 31,555
Merg. Arb. 0.07 0.08 1.09 44.97 122 11,702
Mult. Str. 0.07 0.12 0.09 73.51 421 35,951

Others (ED) 0.10 0.16 0.59 29.83 471 42,315
Sh. Bias 0.02 0.18 0.40 6.85 42 2,919
Y. Alt. 0.09 0.17 -0.39 15.69 117 8,855

Table 1: Descriptive statistics of the panel of hedge funds, over the period January 1994–May
2017 for a given investment style. Mean and variance of the returns are expressed in yearly
equivalent rates.

2 Marginal and dependence modeling of investment styles

This section supplements Section 3.2 and 3.3 in the paper.

2.1 Marginal tail risk of hedge funds

We report in Tables 2 and 3 the estimated regression coefficients of the dynamic Generalized
Pareto models, obtained without the regularization step. That is, the maximum likelihood
estimates of the regression coefficients of the models for σ(xσ0 ) and ξ(xξ0); see Equations (3)–(4)
in the paper.

These results are difficult to interpret since we have a large number of candidate explanatory
variables. To tackle this issue in our main analysis, we use the LASSO-based penalization

procedure of Hambuckers et al. (2018). We display the estimated regression coefficients β̂ββ
σ

0 and

β̂ββ
ξ

0 obtained with the LASSO procedure in Tables 4 and 5, respectively. We do not report
any standard errors, since we should technically account for post-selection inference, a complex
question beyond the scope of this paper. Usual standard errors based on the observed Fisher
information matrix for an additional unpenalized step are available upon request.

Finally, to stress the robustness of our findings, we compare the results obtained with the
post-LASSO estimator and a pre-test approach where we only select significant covariates at
the 1% test level, using a BIC criterion. A summary is displayed in Figure 1, where we report
1−BIC(pre-test)/BIC(post-LASSO), with negative values indicating a better BIC for the post-
LASSO estimator. We see that, for all investment styles, either the LASSO does much better
(up to 3.5% decrease in BIC), or is equivalent (at most 0.2% larger). These results point in the
direction of a good selection procedure obtained with the LASSO approach.

2.2 Hedge funds connectedness

Figure 2 displays the mean extremal connectedness measures conditional on the market factors
(MSCI, EPU, FSI) being larger than their third respective quartiles. This figure highlights the
existence of changes in extremal connectedness under different market stress conditions.

3 Marginal tail risk of banks and extremal connectedness
with hedge funds

The focus of the paper is on extremal connectedness within the hedge fund sector. However, in
the perspective of quantifying the contribution of hedge funds to systemic risks, we investigate
in Subsection 3.4.3 of the main manuscript the extremal connectedness between hedge funds
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Figure 1: Relative BIC for models obtained either with a pre-test estimator (i.e. a maximum
likelihood estimator of the GP regression model, fitted with the subset of covariates for which
the p-value of the full model is smaller than 0.01), or a post-LASSO estimator.
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Figure 2: Empirical mean of the pairwise conditional tail coefficient χ(xt) conditional on the
following market factors exceeding their highest quartile: MSCI (top), EPU (bottom left), and FSI

(bottom right). For better visibility, edges with values exceeding the median of all edges’ values
are removed. The width of the edges is proportional to the estimated value.
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and the classical financial system. To do so, we employ the same approach as defined in the
Methodology section of the paper, although slightly modified. In the present section, we provide
more details of our computations.

3.1 Bank data

To build a representative sample of the financial system, we collect daily (log) returns and market
values for 29 international banks listed in developed countries, over the period 01/1994–05/2017
and 1. The full list is given in Table 6. Twenty of these banks are classified by the Financial
Stability Board as being globally systemically important institutions, whereas the other nine
banks are major ones in terms of total assets. One bank is also listed as an insurer (AXA) by
the data provider, whereas three banks fall in the investment bank/broker-dealer category as
well (Goldman Sachs, Morgan Stanley, and Credit Suisse). When market value is missing for
a particular day, we use the value registered the day before. To assess the robustness of our
findings to the choice of this sample, we repeat our analysis with a sample composed solely of
investment banks/broker-dealers in the next section.

United States Europe Canada & Japan

Citigroup (C) Standard Chartered (STAN) Bank of Montreal (BMO)
JP Morgan Chase (JPM) Barclays (BCS) Bank of Nova Scotia (BNS)
Bank of America (BAC) HSBC, Lloyds (LYG) Imperial Bank of Commerce (CM)
Bank of NY Mellon (BK) Credit Suisse (CS) Royal Bank of Canada (RY)

Goldman Sachs (GS) Commerzbank (CBK) Toronto Dominion (TD)
Morgan Stanley (MS) Deutsche Bank (DB), ING Mitsubishi UFJ (MUFJ)

State Street (STT) Soc. Gen. (GLE), AXA -
Westpac Bank. Corp. (WBK) BNP Paribas (BNP), Int. Sanpaolo (ISP) -

Wells Fargo (WFC) Santander (SAN), BBVA -

Table 6: List of banks, split per listing origins.

3.2 Marginal tail risk of banks

Similarly to hedge funds, we first need to model the distribution of extremely negative returns and
filter out the dynamics in the tail. We do so with the dynamic GP regression approach described
in Section 2.1. However, we face the challenge that our pool of banks is much narrower than the
one of hedge funds, which would yield very few extreme observations per month if the analysis
is based on monthly data. To bypass this issue, we use daily data instead. Our initial sample
consists therefore of the daily (log) returns of all banks, pooled together. This initial sample
consists of 167,689 observations (Figure 3, panel (a)).

To select our final sample of exceedances, we apply the same threshold estimation method
based on quantile regression as used for our main analysis, such that we have roughly 5% of
the largest losses in a given month above the threshold. In essence, this consists of estimating
a quantile regression model with time (expressed in month) as a covariate. Our final sample
of exceedances consists of the 8,366 observations larger than the time-varying threshold. Their
histogram is displayed in Figure 3, panel (b).

To control for common risk exposures and remove the marginal tail dynamic, we fit the
dynamic GPD model on the exceedances. We use the following set of covariates xbanks0 in both
the shape and the scale parameters, motivated by the approach of Agarwal et al. (2017) and
Hale & Lopez (2019):

{|Rt−1|, BankID,
PTFSBDt, PTFSFXt, PTFSCOMt, EMFt, ESFt, BD10RETt, BAAMTSYt,

MKTt, SMBt, HMLt, MOMt}.

|Rt−1| is the absolute lagged returns, used to control for bank-specific heteroscedasticity. BankID
is a bank-specific fixed effect. PTFSBDt, PTFSFXt, PTFSCOMt, EMFt, ESFt, BD10RETt and BAAMTSYt

1The data are retrieved from Capital IQ.
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(a) (b)

Figure 3: (a) Initial (pooled) sample of the daily log-returns for 29 major banks in developed
countries (USA, Canada, Europe, and Japan), over the period 01/1994 - 05/2017. (b) Histogram
of the loss exceedances (top 5%) above a time-varying threshold, computed with a quantile
regression approach.

are the seven factors of Fung & Hsieh (2004). Finally, MKTt, SMBt, HMLt and MOMt are the four
factors (market, size, value, and momentum) of Carhart (1997) and Fama & French (1993). We
use our LASSO approach to estimate the model and select the relevant covariates. The fixed
effects are not subject to penalization and are included by default in the model. Our results
are the following: for the shape parameter, all covariates are excluded from the final model. On
the contrary, for the scale parameter, they are all kept in the model except EMFt and PTFSFXt.
Estimated parameters are reported in Table 7. The QQ-plot for the exceedances reveals a good
fit (Figure 4, panel (a)). Similarly to what is done for the hedge funds’ investment styles, we
rely on our model to construct the weighted VaR at level α = 99%, over time and across all
banks, using the daily relative market values as weights (instead of the total assets). Monthly
averages of this quantity are displayed in Figure 4, panel (b). We see an important peak during
the financial crisis, as well as after the 9/11 terrorist attacks.

3.3 Extremal connectedness between funds and banks

Finally, using the estimated distribution combining the empirical distribution and the dynamic
GPD, we transform the banks’ negative returns to the unit-Fréchet scale. For each month, we
have therefore around 600 observations from which the largest ones are matched with the largest
monthly hedge funds’ (rescaled) losses to form pairs of losses2. Then, the dynamic extremal con-
nectedness between banks and funds is obtained by fitting the Hüsler–Reiss parametric family
(Hüsler & Reiss 1989) to the pairs exceeding a large radial threshold, modeled through a para-
metric quantile regression at the 95 % level. In Figure 5, we display the average connectedness
between banks and the various hedge funds’ investment styles over the entire period of analysis.
The estimate χ̂banks,lt over time can be found in Figure 6.

4 Marginal tail risk of broker-dealers and extremal con-
nectedness with hedge funds

To give additional insights on the connectedness of funds with the financial system, we repeat
our analysis with a sample of financial institutions registered solely as broker-dealers.

4.1 List of selected broker-dealers

This section details the selection process of the broker-dealers’ sample with daily stock price and
market value data obtained from Capital IQ. To select our sample, we apply the following filters:

2This matching approach implies that the extremal connectedness is assumed constant within a given month.
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Factor β̂ββ
σ

0 (MLE) β̂ββ
σ

0 (LASSO) β̂ββ
ξ

0 (MLE) β̂ββ
ξ

0 (LASSO)

BAC -3.961 -3.943 0.139 0.110
BBVA -0.239 -0.281 -0.062 0.008
BCS -0.139 -0.157 -0.003 0.033
BK -0.280 -0.282 0.017 0.027
BMO -0.407 -0.441 -0.193 -0.137
BNP -0.022 -0.078 -0.173 -0.090
BNS -0.494 -0.516 -0.145 -0.114
CBK 0.037 0.016 -0.096 -0.056
C -0.057 -0.047 0.015 0.004
CM -0.465 -0.491 -0.038 0.015
CS -0.009 -0.029 -0.093 -0.048
DB -0.008 -0.036 -0.139 -0.089
GLE 0.083 0.036 -0.143 -0.068
GS -0.218 -0.255 -0.021 0.030

HSBC -0.197 -0.189 -0.076 -0.086
ING 0.056 0.023 0.017 0.090
ISP 0.023 -0.016 -0.044 0.006
JPM -0.128 -0.147 -0.138 -0.110
MS 0.187 0.161 -0.110 -0.071
RY -0.525 -0.552 -0.203 -0.169
SAN -0.241 -0.249 0.042 0.073
STAN 0.026 0 -0.121 -0.081
STT -0.231 -0.225 0.123 0.127
TD -0.392 -0.422 -0.177 -0.122
WBK -0.493 -0.518 -0.188 -0.151
WFC -0.161 -0.174 -0.089 -0.083
LYG -0.240 -0.260 0.177 0.213
MUFG -0.252 -0.290 -0.099 -0.046
AXA -0.045 -0.045 -0.061 -0.054
|Rt−1| 0.161 0.164 -0.008 0
PTFSBD 0.066 0.061 0.005 0
PTFSFX -0.022 0 -0.004 0
PTFSCOM 0.041 0.021 0.011 0

EMF 0.239 0 -0.005 0
ESF 0.100 0.040 -0.044 0

BD10RET 0.155 0.084 -0.046 0
BAAMTSY -0.430 -0.332 0.062 0

MKT -0.382 -0.130 0.023 0
SMB -0.107 -0.085 0.041 0
HML -0.055 -0.054 -0.011 0
MOM -0.052 -0.044 -0.007 0

Table 7: Estimated regression parameters for the banks, obtained either from classical MLE or
LASSO-type estimation procedures.
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Figure 4: (a) QQ-plot of the pseudo-residuals of the dynamic GP regression model for the banks’
returns. Grey: residuals obtained from the classical MLE. Black: residuals obtained from the
LASSO approach, followed by an additional MLE step with only the selected covariates. (b)
Weighted VaR at level 99% (monthly average). The weights are the market value of the respective
banks, expressed as a proportion of the total market value of our sample on a given day.
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Figure 6: Estimates of the tail dependence over time between the banks and a given investment
style. Asymptotic (pointwise) 95% confidence intervals are displayed in gray and a smoothed
approximation using a lowpass moving average filter is represented in red.

first, we select financial institutions registered as “investment bankers/brokers and services stock
trading”. Then, we only keep the institutions listed on the NYSE, Euronext, the Tokyo Stock
Exchange, and the SWX Swiss Exchange. Finally, we remove three institutions also listed as
banks and that are used in our main analysis (Goldman Sachs, Morgan Stanley, and Credit
Suisse). Our final sample consists of 21 institutions, listed in Table 8 (17 in the U.S., two in
Europe, and two in Japan).

4.2 Marginal tail risk of brokers

In this section, we provide the estimated marginal tail risk regression parameters for our sample
of 21 broker-dealers. As explanatory variables, we use brokers’ fixed effects, the lagged absolute
return |Rt−1|, the seven factors of Fung & Hsieh (2004) and the three factors of Carhart (1997)
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Name Ticker Stock exchange

Ladenburg Thalmann Fin. Serv. LTS NYSE
Seaboard Corp. SEB NYSE
Cohen & Co. COHN NYSE

Waddell & Reed Financial WDR NYSE
Stifel Financial Corp. SF NYSE

Raymond James Financial RJF NYSE
Oppenheimer Holdings OPY NYSE

JMP group JMP NYSE
Intercontinental Exchange ICE NYSE

Greenhill & Co. GHL NYSE
GAMCO Investors GBL NYSE

GAIN Capital Holdings GCAP NYSE
Associated Capital Group AC NYSE

BlackRock BLK NYSE
Lazard LAZ NYSE

Charles Schwab Corp. SCHW NYSE
Jefferies Financial Group JEF NYSE

UBS UBS SWX
Natixis KN Euronext
Nomura NOM TSE

Daiwa Securities Group Inc. DAW TSE

Table 8: List of broker-dealers.

and Fama & French (1993) (size, value, and momentum). Classical MLE and LASSO-type
estimators for the continuous covariates are reported in Table 9. Looking at the QQ-plot of
the estimated model, the fit appears satisfactory, especially far in the tail (Figure 7, panel (a)).
Similarly to what is done for the banks and hedge funds, we rely on our model to construct the
weighted VaR at level α = 99%, over time and across all brokers, using the daily market values
as weights. This quantity is displayed in Figure 7, panel (b), where we see an important peak
during the financial crisis.

4.3 Connectedness with brokers

Using the estimated distribution, we transform the brokers’ negative returns to the unit-Fréchet
scale. For each month, the largest observations are matched with the largest monthly hedge
funds’ (rescaled) losses to form pairs of losses3. In Figure 8, we display the average connect-
edness between brokers and the various hedge funds’ investment styles over the entire period
of analysis, whereas in Figure 9, we display χ̂brokers,lt over time. As for the banks, we find the
investment styles Global trading and Long short equity to be strongly connected on average,
whereas Yield alternatives and Short bias are weakly connected with brokers. Variations over
time are limited. Overall, broker-specific connectedness is significant, indicating a sizeable like-
lihood of joint extreme losses between hedge funds and brokers. These results are in line with
those obtained with the sample of large and systemically important banks. This is also consis-
tent with the existence of broker-specific commonalities in hedge funds, as discussed in Chung &
Kang (2016) and Kumar et al. (2020). In particular, under the contagion hypothesis discussed
in Chung & Kang (2016) and which dominates in times of crisis, one would expect such a strong
extremal connectedness.

Finally, we display several of the risk indicators proposed in the paper to measure the likeli-
hood of spillovers between brokers and hedge funds: a broker-specific connectedness (the analo-
gous of the bank-specific connectedness), as well as the ∆eCoV aR for four dates, with the same
investment styles as references. These quantities are displayed in Figures 10 and 11. Regarding
the total connectedness, we observe several phases: first, an increase from 1995 to (roughly)
2001, followed by a stable period. Contrary to the findings related to the bank connectedness,
we do not witness an increase prior to the financial crisis. Connectedness remains stable until
summer 2008, when it started increasing sharply up to February 2009, with the highest peak in
October 2008. This is a result consistent with the contagion phenomenon discussed by Chung
& Kang (2016), where brokers act as propagators of liquidity shocks to their clients. After a fall
in March 2009, connectedness progressively increases up to 2013, reaching a value around .4 at

3This matching approach implies that the extremal connectedness is assumed constant within a given month
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Factor β̂ββ
σ

0 (MLE) β̂ββ
σ

0 (LASSO) β̂ββ
ξ

0 (MLE) β̂ββ
ξ

0 (LASSO)

KN -3.989 -3.978 0.143 0.154
DAIWA -0.172 -0.164 0.005 -0.004
JEF -0.368 -0.344 0.093 0.065
LAZ -0.151 -0.164 -0.155 -0.172
NOMU -0.095 -0.090 -0.044 -0.041
SCHW -0.138 -0.123 -0.025 -0.037
UBS -0.041 0.004 -0.074 -0.116
BLK -0.218 -0.214 -0.084 -0.080
AC -0.399 -0.665 -0.323 -0.285

GCAP 0.319 0.108 0.145 0.178
GBL -0.046 -0.064 0.022 0.058
GHL -0.157 -0.168 -0.073 -0.100
ICE -0.027 -0.125 -0.027 0.033
JMP 0.049 -0.124 -0.261 -0.215
OPY 0.051 0.049 -0.091 -0.089
RJF -0.038 0 -0.146 -0.173
SF -0.059 -0.070 -0.134 -0.141
WDR -0.006 0 -0.213 -0.217
COHN 0.272 0.077 0.142 0.189
SEB 0.074 0.040 -0.075 -0.055
LTS 0.449 0.424 0.016 -0.005
|Rt−1| 0.158 0.119 -0.020 0
PTFSBD 0.015 0 0.036 0.025
PTFSFX 0.022 0 -0.047 0
PTFSCOM 0.017 0 0.062 0.038

EMF -0.121 -0.036 0.030 0
ESF 0.091 0 -0.025 0

BD10RET 0.152 0 -0.048 0
BAAMTSY -0.343 -0.223 0.054 0

SMB -0.082 0 0.015 0
HML -0.055 0 0.022 0
MOM -0.045 0 0.003 0

Table 9: Estimated regression parameters for the broker-dealers, obtained either from classical
ML estimation or LASSO-type estimation procedures.
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Figure 7: (a) QQ-plot of the pseudo-residuals of the dynamic GP regression model for the
brokers’ returns. Grey: residuals obtained from the classical MLE. Black: residuals obtained
from the LASSO approach, followed by an additional MLE step with only the selected covariates.
(b) Weighted (total) VaR at level 99% for the sample of brokers. The weights are the market
value of the respective brokers, expressed as a proportion of the total market value of our sample
on a given day.
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Figure 8: Unconditional estimate of the extremal connectedness between brokers and the different
investment styles.
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Figure 9: Estimates of the tail dependence over time between the brokers and a given investment
style. Asymptotic (pointwise) 95% confidence intervals are displayed in gray and a smoothed
approximation using a lowpass moving average filter is represented in red.
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the end of our sample. Finally, regarding ∆eCoV aR, we observe relatively few discrepancies in
normal times (i.e., July 2007) between the reference styles displaying the smallest and highest
average connectedness (namely Short bias and Global trading). However, during the crisis, the
risk contribution of Global trading is significantly larger than the one of Short bias (15% against
20% in October 2008), a result that can be connected with both the information connection
hypothesis of Kumar et al. (2020) and the contagion hypothesis of Chung & Kang (2016), sug-
gesting both that equity funds (in particular those invested in emerging markets) share a special
connection with their brokers.
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Figure 10: Broker-specific connectedness χ̃brokerst (black). Smoothed approximation using a
lowpass moving average filter is represented in red.
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Figure 11: Empirical density of the brokers’ RC for Short bias and Global trading at four different
dates: July 2007, September 2008, October 2008, and March 2009. We fix α = α̃ = 0.975.

5 Simulation study

5.1 Capturing heteroscedasticity at the fund’s level

In this section, we report the results of a simulation study emphasizing the suitability of our
approach to deal with heteroscedasticity at the fund level. A legitimate question regarding our
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marginal modeling relates to the impact of fund-level heteroscedasticity on the estimation. To
control for this effect when estimating the marginal tail risk, we include the absolute lagged
returns of the funds in the set of predictors, in line with the findings of Trapin (2017), Bee et al.
(2018), and Bee & Trapin (2018). This solution was found preferable to the use of a fund-level
volatility proxy. To emphasize the suitability of this approach to deal well with a GARCH-type
structure of the volatility without including fund-level volatility estimates, we conduct several
simulation scenarios where the tail distribution is estimated through a dynamic GPD with non-
stationary scale parameter and constant shape (a set-up in line with our findings where our
LASSO approach retains almost no covariate in the shape parameter, and with Mikosch &
Starica (2000) who show that the tail index associated with a GARCH(p, q) process is constant).
The considered simulations schemes are the following:

1. We simulate a single time series of length T = 10, 000 from a classical GARCH(1,1) model,
then select the 5% smallest observations, and apply the dynamic EV regression approach
to estimate the tail distribution. Beforehand, we multiply every return by −1 to work with
losses. As explanatory variables, we use for each extreme observation the absolute return
from the previous period.

2. We simulate (independently) 1000 time series of length T = 100 following two different
GARCH structures (500 series each). Then, we select the 5% smallest observations of the
complete panel. Similarly to the first simulation, we estimate the dynamic EV regres-
sion model with the lagged Realized Measure of Volatility (RMV), in each time series, as
explanatory variable.

3. We repeat the simulation set-up (2) but instead of using a global threshold, we estimate a
time-varying threshold via quantile regression, using a polynomial function of time.

4. Finally, we repeat again the set-up (2), and use the theoretical quantile of each observation
as a threshold: if a return is smaller than the 5% quantile of its conditional distribution,
it is retained as an exceedance.

In Table 10, we detail the parameters of the GARCH models and the distributional assump-
tions made for the different data generating processes (DGP). To assess the goodness-of-fit of
the dynamic EV regression models, we look at the QQ-plots of the Gaussian pseudo-residuals
obtained via probability integral transform. We repeat the simulation 200 times, and compute
the residuals’ quantiles, for probabilities ranging between .001 and .999. In Figure 12, we display
the median estimates, as well as the Monte Carlo percentile confidence intervals at level 5%, i.e.,
the quantiles at level .025 and .975 across simulations. We see that we fit well the distribution
of the observations far in the tail in all setups.

For setup (4) where the effect of threshold selection has been neutralized by the use of the
true quantile, we also compute 99% quantile estimates of the loss distribution for each observa-
tion at each point in time, using the dynamic EV approach. We obtain perfect quantile coverage
probabilities with our approach. Finally, we compute the mean squared forecast error for the
predicted quantile at level 99%. We compare our results with those obtained using as explana-
tory variables either the true lagged standard deviation, the true contemporaneous standard
deviation or their estimated counterparts. Estimates are obtained by fitting GARCH(1,1) mod-
els to the time series of returns. In Figure 13, we display the boxplots of the sum of squared
errors (SSE) for the various specifications. We see that using the true values of the volatility
process, we obtain the smallest SSE among all specifications. However, the model based on the
RMV largely outperforms the one based on estimated volatility.

Thus, aside from the theoretical arguments raised by Bee et al. (2019) for non-stationary
volatility processes (a likely feature of the data due to the dynamic investment strategy pursued
by hedge funds), it appears also that the use of lagged absolute returns as a predictor in our
dynamic EV regression model offers the best compromise between goodness-of-fit of the tail
distribution, correct empirical coverage and overall quantile estimation.
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Simulation set-up ω α β Distribution

DGP 1 .0001 .93 .05 Student, ν = 5

DGP 2 (a) .0001 .9 .05 Student, ν = 5
DGP 2 (b) .0001 .8 .1 -

DGP 3 (a) .0001 .85 .08 Student, ν = 5
DGP 3 (b) .0001 .92 .05 - -

DGP 4 (a) .0001 .9 .05 Student, ν = 5
DGP 4 (b) .0001 .8 .1 -

Table 10: Parameters used in the different simulation setups. The quantities ω, α, and β denote
the constant, auto-regressive, and moving-average parameters, respectively, of the GARCH pro-
cess. For DGP 2 to 4, we combine two different processes. All innovations are simulated from a
standardized Student distribution with five degrees of freedom.
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Figure 12: QQ-plots of the pseudo residuals obtained with the dynamic EV regression approach.

5.2 Modeling tail dependence in a two-step approach

Here, we illustrate the adequate performances of our two-step approach in estimating the strength
of the tail dependence under a dynamic setting.

We simulate from the t-copula model that exhibits tail dependence (as opposed to the Gaus-
sian copula) with covariate-dependent margins. Then, we apply our two-stage procedure with
the semi-parametric marginal transformation described by equation (15) in a first step, and the
estimation of the tail dependence performed in a second step. The tail dependence modeling
consists in fitting the Hüsler–Reiss angular density to the pseudo-angular observations (of the
first step) with a radial component exceeding a high threshold, set here at the 95% quantile of
the radial variable; see Section 2.2 for details.
To assess the propagation of the impact of misspecification and parameter uncertainty of the
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Figure 13: Boxplots of the sum of squared errors (SSE) for the quantile 99%, obtained with
various specifications. I and II: RMVt−1 and log(RMVt−1). III and IV: log(σt−1) and log(σt).
V: uninformative process xt−1 following an independent GARCH process. VI, VII and VIII:
log(σ̂t−1), log(σ̂t) and (RMVt−1, log(σ̂t−1)).

margins in the dependence modeling, we compare the estimated coefficient of tail dependence
χ resulting from the estimation of the t-copula based on the pseudo-uniform observations, i.e.,
the semi-parametrically transformed marginal observations, with the true value of χ under the
t-copula model, i.e.,

χ = 2tν+1(−
√
ν + 1

√
1− ρ/

√
1 + ρ),

where ν and ρ represent the degree of freedom and the correlation parameter associated with the
t-copula, respectively. Additionally, we compare these two quantities to the estimated coefficient
of tail dependence obtained by assuming a Hüsler–Reiss copula for the tail dependence. Such
comparison allows quantifying the effect of the double misspecification of the model (the margins
are captured semi-parametrically and the dependence is modeled using an extreme value copula
in the tails).

We simulate 2000 observations from this model, with a degree of freedom ν = 4 and different
strengths of dependence, captured by the correlation parameter ρ. Regarding the margins, we
consider the following two settings:

• The margins are Student’s t distributed with a degree of freedom

ν(x) = 4 + log(1 + x)

depending on a deterministic covariate x, different for each margin. Here, the marginal
distribution is in the maximum domain of attraction of a GEV and the use of the GP
distribution (in the first step) holds only approximately for any high finite threshold.

• The margins are GEV distributed with location and shape equal to one and a scale pa-
rameter

σ(x) = log(1/2 + x)

depending on a deterministic covariate x, different for each margin. Here, the use of the
GP distribution holds exactly for any finite threshold.

Figure 14 displays the estimated tail dependence coefficient for both settings, different correla-
tions, and 300 replicates.

Comparing the estimated tail dependence coefficient resulting from fitting the correctly spec-
ified t-copula, we notice that the semi-parametric marginal transformation seems to have little to
no impact on the estimation of the strength of tail dependence. This is valid for both covariate-
dependent marginal settings where the true underlying marginal distribution is either in the max-
imum domain of attraction of an extreme value distribution, i.e., the marginal t−distribution, or
is an extreme value distribution itself, i.e., the marginal GEV distribution. Note however that
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Figure 14: Boxplots of the estimated coefficient of tail dependence under different dependence
strengths dictated by the correlation coefficient ρ of the t-copula. Top panels display the results
for the Student’s t-margins and bottom panels for the GEV margins.

we observe a slight bias when dependence is rather weak. This is due to the fact that under such
setting, inference about tail dependence involves more observations that are extreme only in one
margin and are thus rank-transformed.
Comparing the estimated tail dependence coefficient resulting from fitting the Hüsler–Reiss an-
gular density to the semi-parametrically transformed observations (to unit-Fréchet scale) with
a radial component exceeding a high threshold, we notice a slight upward bias when tail de-
pendence is rather weak. This bias is addressed in Mhalla et al. (2019) and is expected as the
angular density is valid only asymptotically and a finite radial threshold is needed in practice.
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