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A Gibbs Sampling of the Change-Point Process Volatility Model

In this section we outline the Gibbs sampling algorithm used to obtain draws of log volatilities and
related hyper-parameters for the change-point process, conditional on the mean equation. Matlab
code is available at http://www.rimir.ro/eric/research.html. Starting with the general state-
space representation

yt = µt + exp (ht/2) εt, εt ∼ N (0, 1),

ht = ηst − ρst(ht−1 − ηst−1
) + νt, νt ∼ N (0, σ2h,st),

we consider the steps needed to sample

(h, h0, s, λ, βλ, η, η0, σ
2
η , ρ, ρ0, σ

2
ρ, σ

2
h, σ

2
h,0, σ

2
σ |µ, y).

For completeness, define λ = (λ1, . . . , λM )′ and µ = (µ1, . . . , µT )
′. We assume the latter is obtained

by an appropriate sampling of the mean equation conditional on the volatilities h. The algorithm
for sampling the volatilities and the related hyper-parameters proceeds as follows:

1. Sample (h, h0 | s, η, ρ, σ
2
h, µ, y) by first re-writing the joint prior as

(h0, h) ∼ N
(
H−1

h ζh,
(
H ′

hΩ
−1Hh

)−1
)
, (1)

where ζh = (η1, (1− ρ1)η1, η2 − ρ2η1, . . . , ηsT − ρsT ηsT−1
)′, Ω = diag(Vh0

, σ2h,1, . . . , σ
2
h,st

), and

Hh =




1
−ρ1 1

. . .
. . .

−ρsT 1


 .
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Further letting y∗t = ln((yt−µt)
2+c) and y∗ = (y∗1 , . . . , y

∗
T )

′, where c is a small offset constant
(e.g. in our empirical work, we set c = 10−4), the volatility state equation may be expressed
as

y∗ = h+ ε̃, (2)

where the distribution of ε̃t = ln ε2t is closely approximated by a seven-point mixture of
normal distributions [e.g. see Kim et al., 1998, for details]. Let θj be the mean and ψ2

j be
the variance of the jth component, and let gt denote a draw of the component in period t.
Defining further θ = (θg1 , . . . , θgT )

′, Ψ = diag(ψ2
g1
, . . . , ψ2

gT
), one proceeds by first drawing

a vector g = (g1, . . . , gT )
′ of components conditional on h and other parameters [e.g. as

described in Kim et al., 1998], followed by sampling (h0, h) conditional on the components
from

(h0, h) ∼ N (h, V h), (3)

h = V h

(
H ′

hΩ
−1ζh +

(
0

Ψ−1

)
(y∗ − θ)

)
,

V h =

(
H ′

hΩ
−1Hh +

(
0

Ψ−1

))−1

.

2. Sample the regimes by first obtaining a draw

βλ ∼ G

(
ξ
1
+Mαλ, ξ2 +

M∑

m=1

λm

)
. (4)

Next, sample
(s, λ |βλ, h, h0, η, ρ, σ

2
h)

by first drawing s marginal of λ, followed by (λ | s). The algorithm for sampling the regime
indicators s is an extension of the Chib [1996] algorithm and is described in more detail in
the Koop and Potter [2006] working paper. Here, we only present the practical aspects of its
implementation in the context of our regime-switching volatility model. In particular, recall
from Koop and Potter [2007] that the hierarchical prior on regime durations implies a Markov
process for the evolution of regimes, where a Markov state is the pair (st, d̃st)—i.e., a regime
number and a partial duration of that regime (up to time t). Indexing a Markov state by i,
such that

i = (m− 1)(T + 1)−
m−1∑

n=1

n+ d̃m,

we will denote the reverse mapping as (m(i), d̃m(i)). The transition probabilities matrix P ,
therefore, is L× L, with L =M(T + 1)−

∑M
m=1m, and contains the elements

pi,j =





πi if m(j) = m(i) + 1, d̃m(j) = 1, j 6= i+ 1

1− πi if j = i+ 1, d̃m(j) 6= 1
0 otherwise

. (5)
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In this case, πi represents the probability of switching to regime m(i)+1 at period t+1 given
that m(i) prevailed in period t. We compute it as

πi = 1− Pr
(
dm(i) = d̃m(i) + 1 | dm(i) > d̃m(i)

)
= (1 + πi,0)

−1,

πi,0 =
1− FNB

(
d̃m(i) − 1;αλ, βλ/(1 + βλ)

)

pNB

(
d̃m(i)− 1;αλ, βλ/(1 + βλ)

) , (6)

where pNB( · ) denotes the Negative Binomial pmf and FNB( · ) denotes the negative binomial
cdf. Note that the above formulation uses the fact that λm can be integrated out analytically
to yield Negative Binomial priors on d1, . . . , dm, which remain independent conditional on βλ.
Moreover, for all i corresponding to m(i) =M , we set πi = 1.

Next, construct a series of L× 1 vectors F1, . . . , FT recursively. That is, starting with F1 =
(1, 0, . . . , 0), compute for t = 2, . . . , T

F̃t = P ′Ft−1 ⊙ zt,

Ft = F̃t/

L∑

j=1

F̃t,j ,

where ⊙ denotes element-wise multiplication and zt is a L× 1 vector of state equation eval-
uations such that

zt,i =





φ
(
ht; ηm(i) + ρm(i)(ht−1 − ηm(i)−1), σ

2
h,m(i)

)
if d̃m(i) = 1

φ
(
ht; ηm(i) + ρm(i)(ht−1 − ηm(i)), σ

2
h,m(i)

)
if d̃m(i) > 1 (7)

where φ (xt,m, v) is a normal pdf with mean m and variance v. Now, FT contains the pmf
for the conditional distribution of (sT , d̃sT ). A draw from this distribution, therefore, locates
both the final in-sample regime number m∗ as well as the last in-sample change-point τm∗−1.
Thus, for all τm∗−1 6 t 6 T , set st = m∗. The object ̟ = Pm∗ ⊙ Ft̃, where Pj denotes the

jth column of P , is a vector of weights for the distribution of the pair (st̃, d̃st̃). Subsequently,

in period t̃ = τm∗−1 − 1, a draw of (st̃, d̃st̃) is obtained from the distribution ̟. Proceeding
this way until τ1 is reached produces a sample of s1, . . . , sT .

A final remark on the above procedure is that P will typically be a very large, but sparse
matrix (the same applies, albeit to a lesser extent, to Ft as well). For example, in our
empirical application with T = 261 and M = 30 we have L = 7395, and in consequence, P
contains over 54 million elements. Even storing a full matrix of this magnitude is difficult
on a typical personal computer; performing a simple operation such multiplication is at best
impractical. One must therefore take care in utilizing appropriate sparse matrix routines in
the course of the regime-switching algorithm. In our case, for example, only a maximum of
2(L −M) = 14, 730 of the elements in P can be non-zero, and this number is much lower
in practice since many transition probabilities (e.g. πi) are also set to zero. Working with
sparse matrix routines provides the necessary efficiency for this algorithm to be operational.1

1In our implementation using Matlab, we work with matrices constructed by the sparse command and related
routines.
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The sampling of the regimes is completed by drawing λ in two steps. First sample

λm ∼ G(αλ + dm − 1, β + 1), m = 1, . . . ,m∗ − 1, (8)

λm ∼ G(αλ, β), m = m∗ + 1, . . . ,M, (9)

where dm are obtained from the draws of s1, . . . , sT . To draw λm∗ we employ an M-H step
as suggested in Koop and Potter [2006]. Given a previous draw of λm∗ , the candidate λcm∗ is
drawn independently from the prior

λcm∗ ∼ G(αλ, β), (10)

and accepted with probability

Pr (accept λcm∗) = min



1, 1−

1− FPo

(
d̃m∗ − 2;λcm∗

)

1− FPo

(
d̃m∗ − 2;λm∗

)



 , (11)

where FPo( · ) denotes the cdf of the Poisson distribution and d̃m∗ is the partial duration of
the final in-sample regime.

3. Sample η, η0 and σ2η in two blocks: (η0, η |σ
2
η) followed by (σ2η | η0, η). To obtain a draw of

the former, begin with the joint prior:

(η0, η) ∼ N
(
κη0ιM+1,

(
H ′

ηΣ
−1
η Hη

)−1
)
, (12)

where Ση = diag(Vη0 , σ
2
ηι

′
M ) and Hη is the M +1×M +1 versions of the matrix H defined in

the text (i.e. with 1 on the main diagonal and -1 on the first lower diagonal). Furthermore,
the volatility state equation can be expressed as

h∗ =Wη + ν, (13)

where h∗ = Hhh, W is a T + 1×M matrix with elements

wt,m =





1− ρm if st = st−1 = m
−ρm if st = m+ 1, st−1 = m
1 if st = m, st−1 = m− 1
0 otherwise

, (14)

and s0 = 1 by definition. Also, define the augmented matrix W̃ = (0,W ). Accordingly, a
draw of (η0, η) is obtained from

(η0, η) ∼ N
(
η, V η

)
, (15)

η = V η

(
κη0
Vη0

ι̃M+1 + W̃ ′Ω−1h∗
)

V η =
(
H ′

ηΣ
−1
η Hη + W̃ ′Ω−1W̃

)−1
.

Finally, define ξη = (η1 − η0 − κη0 , η2 − η1, . . . , ηM − ηM−1)
′ and sample

σ2η ∼ IG
(
γη +M/2, δη + ξ

′

ηξη/2
)
. (16)
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4. Sample ρ, ρ0 and σ2ρ in three blocks: (ρ, | ρ, σ2ρ), (ρ0, | ρ0, σ
2
ρ) and (σ2ρ | ρ0, ρ). The conditional

sampling of ρ is discussed in detail in Section 3 of the main text. In our empirical application
we use an adaptive algorithm where we first attempt to obtain a draw of ρ directly from
equation 3 of the main text with brute force accept-reject, up to a maximum of c∗ attempts.
If the latter step fails, then a draw of ρ is obtained with the augmented step in equations
5-8 of the main text. The potential advantage of the adaptive approach is that whenever
the accept-reject step succeeds, the Markov chain partially regenerates in the sense that all
future draws of (f, ρ) are no longer correlated with any previous draws of f . The drawback,
of course, is that whenever the accept-reject step fails, the c∗ attempts are a computational
waste.

In our experience, setting c∗ = 1000 appears to improve mixing in models with shorter
expected durations (e.g. αλ = 15, αλ = 30), but does not provide a noticeable advantage
in models with longer expected durations (e.g. αλ = 60, αλ = 120). This is because in
models with shorter durations, m∗ is higher with a larger posterior probability, and therefore,
over the course of the MCMC sampler, m∗ achieves (with some frequency) values sufficiently
close to M , which reduces the probability that |ρ| < ιM is binding. In models with longer
expected durations, on the other hand, m∗ is low relative to M with a high probability and
the accept-reject algorithm fails for most MCMC iterations, making the approach wasteful.

Given ρ, proceed by sampling

ρ0 ∼ N

(
V ρ0

σ2ρ
ρ1, V ρ0

)
, (17)

σ2ρ ∼ IG
(
γρ +M/2, δρ + ξ

′

ρξρ/2
)
, (18)

V ρ0 =

(
1

Vρ0
+

1

σ2ρ

)−1

,

ξρ = (ρ1 − ρ0 − κρ0 , ρ2 − ρ1, . . . , ρM − ρM−1)
′.

5. Sample lnσ2h, lnσ
2
h,0 and σ2σ in two blocks: (lnσ2h,0, lnσ

2
h |σ

2
σ) followed by (σ2σ , | lnσ

2
h,0, ln σ

2
h).

To sample the first block, denote as in the previous steps

(ln σ2h,0, ln σ
2
h) ∼ N

(
κσ0

ιM+1,
(
H ′

σΣ
−1
σ Hσ

)−1
)
, (19)

h† = S lnσ2h + ν̃, (20)

where Hσ = Hη, Σσ = diag(Vσ0
, σ2σι

′
M ), h†t = ln((ht−ρstht−1− ζh,t+1)

2+ c) and S is a T ×M
matrix with column

Sm = (0, . . . , 0, sτm−1
, . . . , sτm−1, 0, . . . , 0)

′.

The procedure for sampling (ln σ2h,0, ln σ
2
h) follows analogously from that described in Step 1

above for sampling the log volatilities. The remaining block is sampled in a straightforward
way as

σ2σ ∼ IG
(
γσ +M/2, δσ + ξ

′

σξσ/2
)
, (21)

ξσ = (lnσ2h,1 − lnσ2h,0 − κσ0
, lnσ2h,2 − lnσ2h,1, . . . , lnσ

2
h,M − lnσ2h,M−1)

′.
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A.1 Estimating the UC-SV Model

In the main text, we discuss adapting the above sampler to estimate the UC-SV specification (see
the main text for more details). The extension is trivial:

• Repeat Steps 1, 2-5 twice: once for (hµ,t, ηµ,m, ρµ,m, σ
2
hµ,m

) another for (hy,t, ηy,m, ρy,m, σ
2
hy,m

).

• In Step 2, replace (7) with

zt,i =





φ
(
hµ,t; ηµ,m(i) + ρµ,m(i)(hµ,t−1 − ηµ,m(i)−1), σ

2
hµ,m(i)

)
×

if d̃m(i) = 1
φ
(
hy,t; ηy,m(i) + ρy,m(i)(hy,t−1 − ηy,m(i)−1), σ

2
hy ,m(i)

)

φ
(
hµ,t; ηµ,m(i) + ρµ,m(i)(hµ,t−1 − ηµ,m(i)), σ

2
hµ,m(i)

)
×

if d̃m(i) > 1
φ
(
hy,t; ηy,m(i) + ρy,m(i)(hy,t−1 − ηy,m(i)), σ

2
hy ,m(i)

)
(22)

B Estimation Results Using Core CPI Data

In this section we present results obtained by using core CPI data—i.e., excluding food and energy
prices. The model is estimated with αλ = ξ

1
= ξ

2
= 30 and the bounded trend mean equation. The

estimated log-volatility, level, persistance, and change point probabilities are presented in Figure
1. See the main text for a discussion of these results.

6



log-volatilities (ht) unconditional means (ηst)

1960 1970 1980 1990 2000 2010
−4

−3

−2

−1

0

1

2

3

4

1960 1970 1980 1990 2000 2010
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

persistance (ρst) change-point probabilities means (ηy,st)

1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1

1960 1970 1980 1990 2000 2010
0

0.1

0.2

0.3

0.4

0.5

Figure 1: Core CPI data based posterior median and the (16%, 84%) probability interval for log-
volatility ht and parameters (ηst , ρst) of the Multiple Stationary Regime specification. Also shown
are the regime change point probabilities with Federal Reserve Bank Chairperson changeovers
(vertical dotted lines) and the NBER recessions (shaded grey bands).

C Prior Sensitivity Analysis

We examine two aspects of the prior on regime durations. First, we assess the effect of changing prior
hyper-parameters αλ, ξ1, ξ2 that lead to the same expected (marginal) prior duration dm = E(dm).
In Figure 2 we present the marginal probability mass function p(dm) under various settings of the
hyper-parameters. This is easily computed by numerically integrating out βλ, λm in the hierarchical
prior outline in the main text. The settings for αλ, ξ1, and ξ2 are shown in Table 1. Each panel in
Table 1 relates to densities displayed in the corresponding panel in Figure 2.

The densities plotted in the top left panel all have the same mean duration of dm = 32. Similarly,
the densities plotted in the top right panel all have dm = 62 and those in the bottom left have
dm = 92. The three plots in each of these panels are produced using the different settings for αλ, ξ1,
and ξ

2
shown in Table 1. While there is some variation in the shapes of the densities, the mass of
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dm αλ ξ
1

ξ
2

dm αλ ξ
1

ξ
2

32 30 30 30 62 60 60 60
32 30.5 60 60 62 30 15.8 30
32 30.6 90 90 62 90 133.8 90

dm αλ ξ
1

ξ
2

dm αλ ξ
1

ξ
2

92 90 90 90 32 30 30 30
92 30 30 88 62 60 60 60
92 60 60 89.5 92 90 90 90

Table 1: Settings of hyperparameters in Figure 2. The rows and columns correspond to those in
the figure.

each is around the same general region. The bottom right panel shows three densities with mean
durations dm = 32, 62 and 92 and in all three we have imposed αλ = ξ

1
= ξ

2
. Under these settings

we see significant changes in the densities. The biggest difference is clearly the location, but there is
also some slight change in the shape. This analysis seems to reinforce the view of Koop and Potter
[2007] that expected regime duration is the most important feature of their hierarchical prior, and
in our empirical applications we follow them in setting αλ = ξ

1
= ξ

2
for any given value of E(dm).

We could analyse further but we set αλ = ξ
1
= ξ

2
in all cases and focussed upon E (dm) in setting

αλ, ξ1, and ξ2 as we found it easier to think about the location than the hyper-parameters.
Moreover, we re-estimate our multiple stationary regimes model under the two alternative

settings dm = 62 and dm = 122. Corresponding to each of these configurations, we set δη = δρ ∈
{0.5, 1}, thus allowing for greater cross-regime transitions in the parameters for models with longer
a priori durations (also, recall that for our main specification with dm = 32, we set δη = 0.25). All
other prior settings are the same as those described in the main text.

Figure 3 presents two results for the AR(4) conditional mean specification and Figure 4 does the
same for the bounded trend mean. For ease of comparison, we also re-produce estimates under the
dm = 32 prior for each conditional mean. In both cases the MSR specification converges to a single
stationary regime process as the prior expected duration is increased, but inline with our main
results, the estimated log volatilities do not change significantly across these alternative priors.

Note that when the prior duration is long, the information in the data is used to estimate fewer
parameters. This information improves the estimate of ρm rather than ηm which has quite wide
error bands. This behaviour again appears to agree with the idea that a single (or few) stationary
regime(s) cannot adequately capture the large low frequency movements in inflation volatility such
as those we observe in these models. As a result ρm approaches 1 and ηm becomes less well identified
near this point.

Also as is to be expected, the change-point probabilities fall as the prior expected duration
increases and when the prior expected duration is very long, i.e. dm = 122, there is little evidence
of regime change. For the shorter prior duration, dm = 62, there are clear spikes in probability of
regime change around 1973, and 1992 and a few other points that coincide with the more pronounced
spikes under the dm = 32 specification.
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Figure 2: Marginal prior mass function for regime durations p(dm) under various settings of
αλ, ξ1, ξ2.
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Figure 3: Prior sensitivity analysis for changing prior expected durations under the AR(4) mean
model. The dashed lines depict the (16%, 84%) HPD intervals.
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Figure 4: Prior sensitivity analysis for changing prior expected durations under the Bounded Trend
conditional mean model. The dashed lines depict the (16%, 84%) HPD intervals.
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D Comparision of Results Under Alternative Mean Specifications

In this section we present results for the two additional specifications of the mean equation: sta-

tionary unobserved components and full time-varying parameters. The model with stationary un-
observed components is given by

yt = φ0,t + φ1yt−1 + · · ·+ φ4yt−4 + exp(ht/2)εt, εt ∼ N(0, 1), (23)

φ0,t = π0 + π1φ0,t−1 + εt, εt ∼ N(0, σ2φ), (24)

where −1 < π1 < 1 and φ1, . . . , φ4 are restricted to stationarity. The model with full time-varying
parameters in the mean is given by

yt = φ0,t + φ1,tyt−1 + φ2,tyt−2 + exp(ht/2)εt, εt ∼ N(0, 1), (25)

φi,t = φi,t−1 + εt, εt ∼ N(0, σ2φ), (26)

and no stationarity restrictions are imposed. Figure 5 presents the results using αλ = ξ
1
= ξ

2
= 30.

For ease of comparison, we also reproduce estimates using the bounded trend as the conditional
mean.
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Figure 5: Comparison of alternative mean equation specification. The dashed lines depict the
(16%, 84%) HPD intervals.
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