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1 Sufficient Conditions for Invertibility of the AST DCS model

The condition in Assumption 1.(c) is implied by E|¢p+ [k —r*(1 — QI(ytSO))][(](ytSM))% +(1—

r lr
I(ytgu))g—ift]] < 1. Given the bounds —Cj), = —(VZ/TJrfBl(/W/TH) < 8;§\t < 0, and the fact that
the condition is trivially satisfied at the upper bound, it is sufficient to satisfy the following
B¢+ (k" = k) (Cily,<p) + Crly,>p)) — 26" Crly,~0)|- The parameter space in then partitioned

into two parts with ¢ < 0 and p > 0, leading to the following conditions.

Casel: >0

o+ (K" — K)Ci|(a — M) + |¢ + (K" — k) Cy — 26" C, | M,
+lo+ (K —r)Cr —26"Cr|(1 —a) < 1

Case 2: u<0

|+ (k" — K)Clla+ ¢+ (K" — k)Cp|[Ma + |¢ + (k" — k)Cr —25"Cr|(1 —a— M) < 1

where M; and My are the probabilities that 0 < y; < p and g < y; < 0 respectively. These
can be obtained directly from the CDF of the AST distribution given in Section 3 of Zhu and

Galbraith (2010).



2 Proofs for the Univariate AST DCS model

2.1 AST DCS - Definitions and Notation

Theoretically, it will be convenient to work with the infinitely lived process
5 =N
At+1 = m + KZO &’ 81—
J:

In practice we are forced to use a finite initial value, denoted )\, which leads to the pro-
cess {S\t}teN. It will be shown below that the use of this initial value doesn’t influence the

asymptotic properties of the estimator. Throughout I will write the log likelihood as

T

T
L(yl) =T In fyl0) =T>_ 1(wl6)
t=1

t=1

Lyel0) = Tyl (4el0) + (1 = Lyu<p)l" (9:6)

where I(y,<,) is an indicator function that equals 1 if y; < p and O otherwise. Though
this is based on the conditional density, dependence on the information set F;_; will be
suppressed throughout. Likewise, the score in Section 2.2 will be condensed down to s; =
Ig(y’g)Sé + (1 = Iyy0))8;- Values of the likelihood and score that are functions of the finite
process {A\;} will also be denoted with a tilde (i.e.- 3 and L(y|f)). Let 6; refer to the i"
element of 0 = {u, v, vy, o, 9, ¢, k,k*}. The subscript 6y refers to the true parameter value
while A\ (6g) = Ao¢. Use is made throughout of constants denoted Cj, for i = 1,2,3,.... It

should be noted that these do not represent the same constants across different results.

Weak derivatives are used throughout the following results as the functions at hand are
differentiable almost everywhere. The functions in question generally have the form g(y,0) =
I(ytgu)gl(y, 0) + (1 = Ity,<u))g" (y,0). I define the weak derivative as

99(y,0) 99'(y.0) 99" (y,0)
F T R R Gl (/20 v




These derivatives are used to establish Lipschitz continuity as given in Davidson (1994, The-

orem 21.10)

|9(y,0') — g(y,0)| < B0’ — 0

, a8,

where the Lipschitz constant B can take the form ‘W‘. As this result need only hold
almost surely, the lack of derivatives on sets of measure zero do not affect the results. To
simplify many expressions, I denote sgn(—y;) = hy. Finally, |A| = (tr(A’A))Y/? denotes the

Euclidean norm of a vector or matrix.

2.2 Preliminary Results - Consistency

The first lemma uses Lemma 7a) from Zhu (2012) and then follows similar arguments to those

in equation (61) of the same paper.

Lemma 2.1. For some positive constant C1 > 1, E|In(1+ C1(y; — 1)?)| < oo under Assump-

tions 1.(a) and 1.(b).

Proof. Lemma 7a) from Zhu (2012) states that for some € > 0, there exists a positive finite
constant My such that |In(z)| < My(1 + 2+ 27¢) for > 0.} This can be used to bound the

desired quantity as follows.

Elln(1 + Cy(y — p)*)| < Elin(1 4 2C 112 + 2C1377))|
= Blin(1 4 2C14° + 2C197 ) [2<1) + In(1 + 2C1 1% 4+ 2C197) (21|
<1+ 2C1(1+ i) + Elin(1 + 201447 + 20197 [ 21|
< 142011+ %) + (14 2C132) + In(2C1) + 2E|in(y?)|

< Oy +2MoB(1 + yi* +y; ) < o0

where the last inequality holds for € < v/2. O

!This follows from x¢|in(z)| — 0 as « — 07 and 2™ ¢|In(x)| — 0 as z — +oo.



Lemma 2.2. Under Assumption 1.(a)-(c), {\ot} is strictly stationary and ergodic, for all
0o € ©. This implies that ¢; and the estimated e; are also strictly stationary and ergodic.

Furthermore, any measurable function of e, will be measurable.

Proof. First note that at 6y, so: is a bounded i.i.d. sequence that is not a function of Ag;. For
the basic model with s = 0, the conditions for stationarity and ergodicity of Ag; as given in

Brandt (1986) amount to
Elog|l¢| <0 Elog*|so| < oo

The first is met trivially given the parameter restriction in Assumption 1.(b) and the second
follows directly from the fact that the score is naturally bounded. Hence, {\y;:} is strictly
stationary and ergodic. The model with leverage (i.e. - k§ # 0) no longer fits the linear
stochastic recurrence equation of Brandt (1986), nor does it satisfy the Lipschitz conditions
required in Bougerol (1993). In this case, the existence of a stationary and ergodic solution

can be established by defining the following measurable maps for finite m

00 m=20
>\Ot,m =
00 + doXi—1,m + kos(zt—1) + K5sgn(g(zi—1, Aot—1,m))s(zi—1) m >1

where gg is an initializing constant. Iterating backwards yields

Mam =00 Y b+ > 0 [(K0 + K§sgn(g(zi-1, -, Z-1-m; 00))) $(ze-1-4)] + oo
i=0 i=0

As |pol < 1, 0 < k,k* < R and |s(z—1)] < C < oo by Assumption 1.(b), this sequence
converges almost surely on a closed segment of R as m — oco. By Proposition 2.6 of Straumann
and Mikosch (2006), the process {Ao:} is stationary and ergodic and Ag; is a measurable
function of (21, z¢—2,.....). It follows that ¢ is also stationary and ergodic by Assumption
1.(a). The estimated residuals e; = € + o — p are a measurable function of €; and so strictly

stationary and ergodic (Theorem 3.5.8 of Stout(1974)). O



Lemma 2.3. Given Assumption 1.(b). regarding the compactness of the parameter space O,

the time-varying scale is bounded by 0 < g < 0, < 7 < 0.

Proof. Note that the score is bounded by s; = _LE < g, < 23 — g T further define

Sm = maz(sy, sy). 1 then get

o0

Ml =) ¢ (6 + mse1—j + K hy1_jsi-1-j)
i=0

00
Z 5+f€5tlj+lﬁlht1]5t1])|

j:
- 9] 2|Ksm|
Z\qﬁjé\—l—zgﬁﬂﬁ\stljy—kz:qﬁ]n \stl]]_l 7 |+1_‘7;|<oo
J=0 J=0 j=0
relying on the restriction |¢| < ¢ < 1. The result directly follows. O

Lemma 2.4. Under Assumption 1.(a)-(c), E [sup 6’\t|] <00 a.s.

Proof. For some x;; we have

Ot
00;

Jj=11=1
> 7 054y
<lwigl + [T |e+ (s + 5t 5= lwis—l
- t

6st 1
—1

By Assumption 1.(c), supgco Hl 0 ‘d)—i— K+ K hi1) 5y — 0 a.s. at an exponential

rate as j — oo following Lemma 2.4 of Straumann and Mikosch (2006). Given this, proof of

the stated result requires sup E [logt ;4] < oo as per Lemma 2.1 of the same paper.
0O

Defining a; = (2\%—1—0[’1[”) and by = (Myly(tl%’;'%) and again using weak derivatives where



appropriate, it is straightforward to show that under Assumption 1.(b)

0st—1(ye—10, 0¢-1) (+3)(+1) a

|14 = ‘f{ <R
On Vi (1+a? )’
3 1 b v+ 3)(v+1
R(1/104- Y+ 1) t—1 i 2,%(7/4' )7 + )<OO
(1) v
’{L‘Q’t’ _ ‘Hast_l(yt_ﬂ@, Ut—l) S 3 (I/T =+ 3)(VT + 1) b%—l S aa*
oy Uy (1 + bt2—1) oy
3 y+3| d 1 a? < 49 8@*)
+ R sbo+ v+ 1)—— a2y
2 l2 =1 2y, 14+a t — )(1 +a§71)2 dy
3 u+3 R(D+3)( +1)% | 0a*
21/2 v oy,
Ga
<C1+4 0y 9 <C;+0CyC3 < 0
1
Osi_1(y-100, 04—
|x37t’:‘n St—1(yt—110, 0¢-1) < C1 4+ CyCs < oo
ov,
| Osia(yealb o) | _ |43 w+1) 6y 1 o
el = |% oo =0 vV 2 22 Ja
l (1 —I—at_l)
N +3) e+ 1) by 1 da*
Uy (1+ b?_l)z (1—a*)? oo
(7 +3)(7 + 1) 1-aK@®@)\> 4
<2——= 1|1
: v T Ta Ew)) ali-a) =%
|25,6| = [1] < 00
9] RSl
[z6,] = [Ae—1| < + < 00
1—1]g]  1—19]
|z74] = |8¢-1] < 8 < 00
|28 ¢| = |hi—15t—1] < Sm < 00

which is sufficient to establish the stated result.

Lemma 2.5. Under Assumption 1.(a)-(c), E [sup ‘al%ﬁ” <00 a.s..
0cO



Proof. 1 begin with

22 mr 5

Bl"(ytw 8)\t
o +(1_If(99))

I N""ox | 06

g2|sm\‘8£

which follows from the fact that |s,,| is bounded. Application of Lemma 2.4 then provides
the result for ¢. The proofs for the derivatives w.r.t §, Kk and k* are essentially the same as
they only appear in the likelihood through A;, and so they are omitted. Turning to other
parameters, it is useful to first bound the expectation of the partial derivatives (holding oy
fixed). This can be done using the compact parameter space (Assumption 1.(b)) and the

results in Lemma 2.1. I demonstrate this with one side of the distribution

M (yil0,00)| _|vi+1 a mtl vl 1-aK@)\ _
ou 2004 1+ a? 2a* oy o a K(v)
all(yt’9 O’t) 1 8M(O( 1z I/T) 1 9 v+ 1 a;

—| = T — ~in(1
oy, Mo, v, vp) oy, 2 (1 +ar) + 2 1+ a;
V41
<Ci+Cy+ % < 00
' ()0, 04) 1 5M(a vy, Vy)
) — ) ) < C
vy Mo, v, ) vy St
ol (yil0,00)| L OM(awmw)  n+l af O
O | M(o, v, ) O a* 1+ a? da
_ 1-aK(p) 4
< 1 1 <
<o (1 0 ) sy <

where the terms for v, v, and « use the fact that M() is a continuously differentiable function

of bounded parameters. Proceeding in the case of v, I get

E ‘m(yt’@)‘ _ E‘(?l yl0, o) [ 81 yt‘e +(1— [f(y,e))

Ol (y]0) ] O
61/1 81/,

8)\t 8Vl

<02+2|5mE’ < 0

oy

Similar arguments are used to bound the expectations of the derivatives with respect to v, «

and p which established the stated result. O



Lemma 2.6. Under Assumption 1.(a)-(c), E [sup l(yt\ﬁ)@ < 0.
0cO

Proof. This can be shown by dealing with each half of the density in turn.

1%} 20(*0}

1 (ye—p\?
ln(l—i—(t >>‘
1%} 204*0't

< Oy 4 Cy + Csln(1 + Cy(ys — p)?) < 00

1 1 _ 2
L wl6)] = |2+ In(M (e v,07)) — 2L <1+<yt u) )‘

< el + [in(M (e, vy, vr))| +

I/l—l-1’

where the final inequality comes from Lemma 2.1 and the bounded constance {C1, Co, C3, Cy}
exist due to Lemma 2.3 and the compactness of © (Assumption 1.(b)) as previously demon-
strated.  Similar arguments apply to "(y]6). Finally, noting that [Iy, ¢\l'(ye|6) + (1 —
LoV (wel0)] < |14yl 0)] + |17 (y]6)], the stated result is obtained. O

The initialisation can be ignored in the asymptotic arguments based on the following lemma,

Lemma 2.7. Under Assumption 1.(a)-(c), for all finite initial values No, sup|L(y, 0, \o) —
0O

L(y,0,20)| 20 as T — .

Proof. The first part of the proof is similar to that of Lemma 2.4 above. Note that

Al (ye|0, A )\ 951-1\ -
M :Stft = S¢ ((b—f—(:‘i—i-/f,*ht_l) ft 1) ,t. !
8)\O 8)\0 8)\15_1 8)\0
= * 8gt—l—j a.s.
§smH o+ (k+ K h—j)—= =0 ast— o0
=0 8)‘t*1*j

for all # € © by Lemma 2.1 of Straumann and Mikosch(2006). This relies on

} <0
05-1-;

j
= (¢+(/{+/{*htj) = ) 0 asj— o0

054
sup E [log O+ (k+ H*ht_l)%

0cO

t—1

OAt—1-j



which is guaranteed by Assumption 1.(c). It follows that

T ~
(ye|0, At) as.
Tflg M%O as T — oo
=1

Ao
- dL(y|0) a.s.
This gives oy, Dast— oo for all § € ©. It follows that
0
. OL(yl0) ||+
L(yl§) L(y|9)‘ < |2LWl) ‘)\0 “ 0|0 asT - o
0

2.3 Proofs for AST DCS consistency

Proof of Theorem 1a) (Consistency). Consistency is established by verifying the condi-
tions of Theorem 2.1 in Newey and McFadden (1994). Lemma 2.7 enables us to ignore the
initialisation and simply work with the process with an infinite past. Condition i) (compact
parameter space) is satisfied by Assumption 1.(b). The continuity 4ii) and uniform conver-
gence of the objective function iv) can be shown using the uniform LLN of Andrews (1992,
Theorem 3). This ULLN requires the Lipschitz condition given in Lemma 2.5 and pointwise
convergence of the objective function. The latter is shown with the strong law of large num-
bers for stationary and ergodic processes (Stout (1974), Theorem 3.5.7) using Lemma 2.2 and
Lemma 2.6.

The identification in condition ) can be established in two parts. Firstly, the results on
identification of the static model in Proposition 1 of Zhu and Galbraith (2010) carry over to
the present case. It is therefore only necessary to show that the time-varying scale o4(0) is
unique in the parameters . This can be proven by contradiction along similar lines to Weiss

(1986) and Lumsdaine (1996). I start with




where the derivative is taken over all y; where it exists?. Assuming that (8 — ) = v # 0,

I obtain the following

7180): =m |(k+ n*htl)agul + <<l5 + (K + I{*htl)giill) 8221]

= 7Ktk ht_l)agtul =0 as
B s e G ek 7

= Y2(k + f@*htl)a;;ll =0 as
gt = [+ wh) B (o (ot wthy SoL) Dt

— 3(k + H*ht—l)a;:/rl =0 as
i =l et (o st 5t ) S50

= Y(k + f@*ht,l)ast_l =0 as

) fJe}

7588)(\; =5 _1 + <¢ + (k+ fi*ht_l)gittll> 32}1} = v =0
76?92; =% :/\t—l + <¢ + (K + H*ht—l)giij) 822;1] = Y%A-1=0 as
77% =7 :Stl + <¢ + (K + ff*htﬂgittj) 82:1] = Yrst-1=0 as
'7822: =8 :ht—lst—l + (¢+ (K + H*ht—1)(§j\zi> 8221] = whi—15-1 =0 as

However, the random variables that are the final terms of each equation are clearly non-
degenerate, implying that %’y =0 <= v = 0 which leads to a contradiction. Therefore,
ln(at(eo)/at(ﬁ)) =0iff 6 = 90.

As all conditions of Theorem 2.1 in Newey and McFadden (1994) are satisfied, 6 =5 6y as

T — oo. O

2The set over which it does not has probability zero. Hence the condition is met "almost everywhere",
which is enough to establish identification.

10



2.4 Preliminary Results - Normality

Lemma 2.8. Under Assumption 1.(a)-(c), %2)\52* <2 % < w <00 .
t m
Proof. Starting with
N 1
=C
K L+a§ (w+1>}
which gives
isé _ 20[ (I% <20l_(yl+3)(yl+1)
o\ | (1+a? 2\ - B v
+ at) l
0%st _ st a? <1_ 2 >
ON? (1+a2)? 1+ a
<40l = 23+

Y

Similar arguments apply to s; which implies that

Osy < maz ((m +3) (v + 1)7 (vr +3)(vr + 1)) _ @+3)m+1) =
B2y ” o, P

925t < maz 2(v; + 3) (v + 1), 2 +3) (1 + 1)) _ 27 +3)(7+1) o
8A? 4Vl 4V7~ v

Lemma 2.9. Under Assumption 1.(a)-(c), E [216%7 ‘%‘:%‘;

11



Proof. Squaring the initial expression from Lemma 2.4 gives

BAt aAt . ‘ ' ‘ % 8st_1 8)\15_1
6@ 69] = xl,txj,t—l—xl,t <¢+ (FJ—FH ht_l)a)\t_1> 89]
* ast—l a)\t—l
+ xiy <<b +(k+k ht_l)a/\t—1) a0,
Bsi-1\ > ON_1 ON_1
*he_
+ <¢+(”+“ ! 1)8)\t1) 26, 00,

oo P
. Osi—1 \~ .
= |Tijt + ZH (¢ + K+ K he_ 1)8)\1 l> Tijt—p

p=11=0

Once again relying on Lemma 2.1 of Straumann and Mikosch (2006) and Assumption 1.(c),
leaving the need to bound supyeg E[log™ %5+ < co. The this can be done simply using Lemma

2.8 and the result that |z;¢| is naturally bounded for ¢ = 1,2, .., 8. O

I again note that 6; refers to the " element of 6 = {u, vy, vy, , 6, ¢, K, K*}.

; %)
Lemma 2.10. Under Assumption 1.(a)-(c), E [ggg ‘Wﬁé;

] < 00 .
Proof. For all i,j = {1,2,3,4,5,6,7,8},

0 0St—1 OAi—1
+'<69 |:¢+(/€+/€ ht 1)8)\t_1:|> 601

Osi-1] ?N—1
D1 | 96,00,

O0x; 4

06,

qu—%(/s—m hi—1)——

‘ O* X\t <

06,00,

Dst—1] %M1
D1 | 9600,
0si_i
Oy

= |aj;, |+ ‘ [¢> + (K + K hi1)

= }xw,t} + iﬁo

O+ (k+ K& hi—)) | |}

iJ,t— p’

As in Lemma 2.4, supgeg [[12 0‘9+ K+ K ht_)ai :

— 0 a.s. by Lemma 2.4 of Strau-

mann and Mikosch (2006) and Assumption 1.(c), which leaves only to show supgee E[log™z};,] <

8931 t

oo to establish the stated result. I begin by bounding E . For {i,j} = {56 —8,j}, this
can be done directly using the Lemmas 2.4 and 2.8, together with expressions for x; ; obtained
in the former. The remaining terms for {i,5} = {1 — 4,4} can be bounded using the results

in Lemma 2.4 and very similar arguments to those used in to bound x;;, where use is made

12



of the compact parameter space and resulting bounds on A\; from Lemma 2.3. To bound the
ij,t

0 851571 8>\t,1 2 8)\,571 2
E‘(aej [¢+“0At1]> 20, ] E U 26,

where the second component on the right is bounded by Lemma 2.9. The first component

second component of E|x}. |, note that

E

0si—1
ONi—1

2

26, [¢+ K

with j = {5,6,7,8} can be bounded directly using Lemmas 2.4 and 2.8. For j = {1,2,3,4}, 1

ast—1(970t—1)

2
Ohe100, . This can be done using very similar arguments to those

need to also bound F

of Lemma 2.4, though the proofs are long and omitted here to preserve space. Taken together,

this gives
E' &si_1 _ E‘ﬁzst—l(yt—lw,%—l) 82511 O |
9106, O\100; o2 06,
<ap| Pttt ||k
<op|Poiond | B

by Jensen’s inequality and Lemma 2.8. This is sufficient to find bounds for j = {1,2,3,4}. O

(al(gg\m) (m(géw))’

Proof. For i,5 ={1,2,3,4,5,6,7,8}, each element of this matrix is bounded by

|
|
|

Lemma 2.11. Under Assumption 1.(a)-(c), E [sup } <00 .
0cO

Ol(ye|0, \e) Ol(y:|0, At)
26, a6,
Ol(ytw, /\t) al(yt|9) Ot
E _
TR T 00, on 00,
[ al(?/t|97 /\t) 8l(yt|9) Ot
FE
TR 90, 0N, 06,

[ (92l(yt]0) 6)\t 6)\75
<2 [ | 557 (Gt |

sup
0cO

8l(yt|9) 35(%’9)
E <E
[33@ 00;  06; ||~

=Hy+Hy+ Hs+ Hy

H, is bounded by results in Lemma 2.5, Hy and Hj3 are bounded by Lemmas 2.5 and 2.4

13



together with the bounds on s, while Hy is bounded by Lemma 2.9 and the bounds on s;. [

Lemma 2.12. Under Assumption 1.(a)-(c), E [ggg ‘dgg(g’g,@)

| <.

Proof. A full derivation for all 21 elements of the matrix is not possible in the space here.
However, the result can be established using previous lemmas and results therein. A sketch off

the proof is as follows. For i,j = {1,2,3,4,5,6,7,8}, each element of this matrix is bounded

by
32l(yt\9) 0 0l(yt|0,00)\ OM\ 0 Ol(y|f,04)\ ON
Elsup? 99| o g 0 OUl0,00) \ OAel| | g 0 0yl o)
o | <7 el Cox ) an )+ e Cag ™) 30|
82l(yt\9) 8)\15 8)\15 6l(yt’9) 62At
E UGl0) (07t OA: E
- [ﬁé‘é’ A2 <an» aej> ] * [zgg ON aeiaej}
32[(%\9,015)
E R
- [32‘8 00,06, ]

=hLh+L+I3+ 14+ 15

I, can be bounded? from results in Lemma 2.5 together with Lemma, 2.4, I can be bounded
from Lemma 2.4 and results in that proof on the bounds of z;;, I3 can be bounded from
Lemmas 2.8 and 2.9 and I4 can be bounded from Lemmas 2.8 and 2.10.15 relates to the static
model and can be shown to be bounded in much the same way as was done in Lemma 2.5.
Inspection of that proof show that 5 will involve the derivatives of functions (for the lhs of
the likelihood) of the form g(62_4) + h(61_5)p(as), where p(a;) will be a;/(1+ a?),a?/(1 + a?)
or In(1+ a;) and g(), h() are continuous functions of the shape parameters. These once again
lead to naturally bounded functions of a; (and b; for the rhs) and continuous functions of the

bounded shape parameters. ]
Lemma 2.13. Under Assumption 1, E Olly:]0) =0
00 0=0,

Proof. The only departure from the standard proof is that [ f'(y|6)dy = 9/90 [ f(y|0)dy
cannot be established through continuity of the function f(y|f). I proceed in bounding the
density function by |f(y|0)| < |f (ye|@)| +|f" (y¢|0)| < 201Cs where |1/0¢| < C; (Lemma 2.3),

3Note that in each case, part of term has been shown to be naturally bounded.
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Mo, v, 1) < Co (from Assumption 2) and use is made of 1/(1 + z)? < 1 when x > 0. From

this follows

Syl + ejh) — f(el0) < AGIG
h - h
for 0 < h < h < oo, where ej is a vector with its 4t element as one and zeros elsewhere.

Application of the dominated convergence theorem gives the desired result. O

2.5 Proof of Normality

Proof of Theorem 1b) (Asymptotic Normality of AST DCS) Asymptotic normality is
established by verifying the conditions of Theorem 7.2 in Newey and McFadden (1994), which
explicitly allow for non-smooth objective functions. Consistency was already established in
the section above. Condition i) which requires F [%f@} = 0 is given by Lemma 2.13.
Condition iii) which requires that 6y is an interior point of a compact parameter space is given
under Assumption 1.(d). For condition iv), I need to apply a central limit theorem to the
scores evaluated at 6. Lemma 2.11 established that the scores have a finite second moment
(denoted Ag below). By Lemma 2.2 and condition i) above I know that the sequence {al yt‘eo)}

is a stationary and ergodic martingale difference sequence. I can now apply Theorem 19.1 of

Billingsley (1999) to get

(T 7“]
—1/2 1 yt|90 W(r) ()

000

which satisfies condition iv). Conditions ii) and v) are verified through Theorem 7.3 in Newey
and McFadden (1994). T define g(y,0%) = %’ . The first condition to be satisfied
=6+

requires that with probability one,

r(y,0) = |9(y,0) — g(y,60) — A(y)(0 — 0o)| /[(6 — o) = 0,0 — 6o (2)

15



for some function A(y). Given that the result must only hold almost surely, I define A(y) =

2
8(9@%’('9?) o, and use the following result

2
o10:0) — oty 00) = ( )

) 0—0) as.

=6

form some 6 € [0, 0]. Substituting these expressions into equation(2) gives

[ 9%1(y)9) d%1(y|0)

r(y,0) = ‘(6989’ s 06067 —on (0 —06o)| /(8 —60)l
1 9%1(y]0) 9%1(y|0)
= ‘8980’ s ~ 5000 - -0 ,0—>6y as.

following the continuous mapping theorem which allows for discontinuity on sets of mea-
sure zero (see van der Vaart (1998), pg 7). The second condition to be satisfied is that

Elsupjg—g,|<c 7(y,0)] < oo for some e > 0. This is can be shown directly with Lemma 2.5

and Lemma 2.12. The third condition is to show that 71 ZtT 1 656?9'/9) S5 E [8%9(%,6)} This
can be achieved through application of the ergodic theorem (Stout (1974), Theorem 3.5.7)
using Lemma 2.2 and Lemma 2.12. The conditions for Theorem 7.3 of Newey and McFadden
(1994) are therefore satisfied, which in turn satisfies conditions ii) and v) of the Theorem 7.3.
Finally, the asymptotic first order condition can be shown to hold with a proof directly fol-
lowing Ruppert and Carroll (1980) and Komunjer (2005). This provides asymptotic normality
results as in Theorem 7.2 Newey and McFadden (1994), with the covariance matrix collapsing
down to the inverse of the information matrix by the usual information matrix equality* The

result regarding consistent estimation of the information matrix comes from the dominated

convergence theorem, where a dominating function can be formed from the results in Lemma

2.5. O

2
“This is obtained by the dominated convergence theorem as in Lemma 2.13 by noting that Sl —

86,00,
f(yel0+eih)—2f(y|0)+f(ye|0—ejh)
h2

limh—)oo
2.5.

and a dominating function can be formed from the results in Lemma
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2.6 Proof of Asymptotic Properties under Misspecification

Proof of Theorem 2 (CAN of QMLE for AST DCS under Misspecification) Part
a) of this theorem is established under Theorem 3.4 of White (1994) while part b) is again
established under Theorem 7.2 of Newey and McFadden (1994). The proof is essentially the
same as for Theorem 1 above with 6 taking the place of g and ¢ taking the place of v when
bounding F|y¢| for some € > 0. Stationarity and ergodicity of the process {\;}icz is now
guaranteed directly by Assumption 2.(c) and no longer just |¢| < 1. The result in Lemma
2.13 now follows from the fact that the pseudo-true parameter 6 is the unique maximiser
of the expected pseudo-likelihood. The remaining results still hold as the proofs there were
constructed to leverage only the function form of the objective function and never the true
distribution of errors. The final point regarding the estimation of B follows from standard
results such as Lemma 4.3 of Newey and McFadden (1994) with the use of an appropriate law

of large numbers, such as the ergodic theorem of Stout (1974, Theorem 3.5.7). O
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3 Additional Simulation Results

Table A1 presents an alternative measure of central tendency to to the mean estimate results
presented in Section 3 of the main paper. The results show that all parameters are essentially

median unbiased with sample sizes of T'= 1000 or more.

Table Al: Median of AST DCS Model Estimates

T ¢, 0, VR I «@ VL VR 1) 10} K

500 0.95,0.6, 10 | 0.084 0.598 5.086 11.898 0.062 0.938 0.054
1000 0.091 0.598 5.051 10.862 0.056 0.944 0.050
2000 0.095 0.599 5.026 10.421 0.053 0.947 0.050
500 0.95,0.6, 30 | 0.094 0.600 5.122 37.652 0.061 0.939 0.054
1000 0.098 0.600 5.041 33.011 0.056 0.944 0.050
2000 0.099 0.600 5.028 31.981 0.053 0.947 0.050
500 0.99, 0.6, 10 | 0.052 0.599 5.232 11.838 0.093 0.981 0.054
1000 0.082 0.600 5.149 10.858 0.070 0.986 0.049
2000 0.092 0.600 5.052 10.420 0.060 0.988 0.050
500 0.95,0.3,10 | 0.085 0.297 5.160 11.226 0.060 0.939 0.054
1000 0.091 0.298 5.063 10.588 0.056 0.944 0.050
2000 0.094 0.299 5.027 10.264 0.053 0.947 0.050
500 0.95, 0.6, 7 | 0.079 0.596 6.245 7.948 0.062 0.938 0.054
1000 0.089 0.597 5.046 7.467 0.056 0.944 0.050
2000 0.094 0.598 5.018 7.209 0.053 0.947 0.050
500 0.95,0.6,3 | 0.083 0.598 5.176 3.101 0.062 0.938 0.054
1000 0.090 0.599 5.102 3.045 0.056 0.944 0.050
2000 0.094 0.599 5.045 3.024 0.053 0.947 0.050

Note: Other parameters set at {u,vp,d,x} = {0.1,5,0.05,0.05}. Based on 10,000 replications per setting. MSE times

1000 is reported for all parameters except vy, and vg.

Table A2 presents an alternative to coverage results presented in Section 3 in the main
paper. Here I replace the standard errors estimated for each parameter via finite differences
of the likelihood with the standard deviation of the Monte Carlo estimates. The aim is to
examine the validity of the asymptotic approximation in reasonable sample sizes, abstracting
from the issue of obtaining accurate estimates of the standard errors. The results show that

coverage properties are very good in this case.
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Table A2: Coverage of AST DCS Model Alternative 95% Confidence Intervals

T ¢, a, VR 1 «@ 179 VR 1) 1) K

500 0.95,0.6,10 | 0.93 094 099 096 095 0.95 0.96
1000 094 095 096 098 094 094 0.95
2000 0.96 0.96 0.95 098 095 095 0.95
500 0.95,0.6,30 | 0.94 0.95 0.99 0.89 095 0.95 0.96
1000 0.96 0.96 0.98 0.93 095 095 0.95
2000 096 095 095 096 094 094 0.95
500 0.99,0.6,10 | 0.98 0.95 0.99 0.90 097 0.97 0.94
1000 099 095 095 096 094 094 0.95
2000 099 095 095 099 093 092 0.95
500 0.95,0.3,10 | 0.93 0.98 0.98 0.97 095 0.95 0.96
1000 094 095 099 098 095 095 0.95
2000 095 096 097 095 094 095 0.95
500 0.95,06,7 | 0.93 0.93 098 098 0.95 095 0.96
1000 093 094 095 097 095 095 0.95
2000 093 094 095 096 094 094 0.95
500 0.95,0.6,3 | 0.93 0.94 099 099 0.95 095 0.96
1000 095 0.95 094 095 095 095 0.95
2000 096 093 095 095 094 094 0.95

Note: Other parameters set at {u,vr,d,x} = {0.1,5,0.05,0.05}. Based on 10,000 replications per setting. MSE times

1000 is reported for all parameters except vy, and vg.

4 Full Sample Estimates - AST DCS and Restricted Models

This section presents in-sample estimation results for the S&P 500, DJIA, NASDAQ, Kospi
and Bovespa equity market indices. The results show estimation for the AST DCS, AT DCS,
ST DCS and T DCS models all with leverage, together with some model diagnostics and model

comparison statistics.
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5 Out-of-sample Portfolio Construction - Frank Copula

This section replicates the results reported in Section 4.3 of the main paper with a Frank
copula instead of the Clayton copula. The main difference between these two dependence
models is that the Frank copula is symmetric, allowing for tail dependence for both gains
and losses. The Clayton copula only allows for tail dependence amongst losses. These results
are reported to show that the out-of-sample results appear reasonably robust to the copula
specification, as the reported management fees (and statistical significance) are qualitatively

and quantitatively very similar.

Table A8: Out-of-sample Management Fees - Frank Copula

FTSE S&P DJIA NASDAQ Kospi Bovespa
Panel A: AST DCS vs ST DCS

FTSE - 0.84 0.73 2.34% 3.16* 1.86%*
S&P 0.21 - -0.67 0.62% 2.48%* 2.55%
DJIA 0.19 0.77 - -0.07 2.13* 1.24*
NASDAQ 0.02 0.32 0.50 - 2.19* 1.92*
Kospi 0.02 0.08  0.08 0.08 - 2.74%
Bovespa 0.07 0.04 0.17 0.06 0.03 -
Panel B: AT DCS vs ST DCS

FTSE - 0.53 1.29 2.56% 4.03* 4.78*
S&P 0.38 - -1.07 2.47* 4.63* 6.57*
DJIA 0.13 0.83 - 1.59 4.60%* 6.16*
NASDAQ 0.10 0.09 0.15 - 8.98%* 4.60*
Kospi 0.10 0.08 0.06 0.01 - 4.99*
Bovespa 0.00 0.00 0.00 0.04 0.01 -

Note: AST is the asymmetric skew t distribution. Special cases are the asymmetric t (AT) with o = 0.5 and the skewed
t (ST) with v;, = vr. Upper triangle values are the management fees (percent per year) that a CRRA investor would
pay to invest according to the AST/AT DCS model over the ST DCS model. Lower triangle provides the p-value for
superior predictive ability of the ST DCS model. * indicates significance at a 10% level.
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