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A.1 Sample coverage: New condominium apartments

The REALIS database comprises all private residential property transactions for which caveats

were lodged with the Singapore Land Authority. A caveat is a legal document lodged by a buyer

or his mortgage provider to protect his interests in that property by preventing contradictory

dealings with the property from being registered. Only a minor proportion of transactions do not

see a caveat lodged. In particular, buyers who do not take out a mortgage are not required to

lodge a caveat, although many still choose to.

In addition to missing some transactions without lodged caveats, we exclude 214 multi-unit

transactions, which account for 1% of our sample. We do so because we do not have information

on these apartments’ individual characteristics, such as apartment size and story. For projects with

missing completion year in REALIS, we consulted the real-estate websites propertyguru.com.sg,

iproperty.com.sg, and stproperty.sg. We failed to find the completion year for 19 apartments and

exclude their sales from our analysis. We also exclude 28 transactions that have missing story (or

are basement units), and another 26 units sold 11 years after construction was completed; these

likely relate to used units.

We validate our sample coverage by comparing the number of units that appear in our sales

data with the total number of constructed units. The latter information is available from REALIS

for condominium projects with construction completed in the second quarter of 2002 or later. Since

it might take the developer several years to sell all units in a project, here we focus on the 735

projects that were completed between 2003 and 2012 and have at least one recorded transaction.

Out of a universe of 82,991 constructed units for these 735 projects, we observe the sale of 77,095

units in our transaction data, or 93% of the population. Another way to check our sample coverage

is to compare the changes in the stock of condominium units reported by the Urban Redevelopment

Authority against the number of new condominium transactions in our sample, as we do in the

text.

A.2 Location fixed effects

Singapore uses a 6-digit postal code system in which a 6-digit code identifies a building. Thus, a

lease-invariant condominium project with five apartment buildings will have five 6-digit codes, one

for each building. We face a trade-off when specifying the granularity of our geographic controls.
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Specifying location fixed effects that are too detailed absorbs the variation in remaining lease length

that we seek to exploit. For an extreme example, consider the 6-digit level, with zero variation

in lease contract. Consider a condominium project on a lease of “99 Yrs From 2/11/2009” and

realistically suppose that all units in one of its 6-digit buildings were sold before construction was

completed (and housing benefits began) in 2013: All units would have the same remaining lease of

95 years. Moreover, too tight locations result in a less favorable number of transactions per fixed

effect, with potentially larger incidental parameter bias. On the other hand, specifying geographic

controls that are too coarse can lead to inconsistent estimates of the effect of tenure on value,

because tenure might correlate with unobserved quality differences associated with location.

To allow for enough variation in lease type while controlling for local neighborhood character-

istics, consider grouping properties by the first three digits of the postal code. Doing so results in

187 3-digit postal areas, 108 of which have properties of more than one lease type—i.e., perpetual

leases, multi-century leases, and multi-decade leases. In the 79 areas in which there is no variation

in lease type, e.g., all apartments are multi-decade leases, 30 areas contain only one condominium

project.

Given that the proportion of Singapore’s land occupied by residences was 14%, totaling 100

km2, dividing this residential land into 187 regions enables us to control for geographic variation at

quite a granular level.1 To demonstrate this, we obtained the geographic coordinates for each of the

1,672 condominium projects in our sample and calculated the bilateral distance between each pair

of projects that share the same 3-digit postal area. The distribution of these within-area bilateral

distances is plotted in Figure A.2. Across pairs of properties with the same 3-digit location, the

majority are located in close proximity, for example the neighboring Botannia and Infiniti located

in area 127xxx. Specifically, 75% of these bilateral distances are shorter than 1 km and 95% of

the distances are shorter than 1.8 km. In other words, 95% of the projects with a common 3-digit

control are located in a small area with a 0.9 km radius. Only 8 projects (44 bilateral distances)

are located more than 4 km from another project with a 3-digit area in common.

Specifying 3-digit location fixed effects may provide a good compromise between controlling for

potentially confounding spatial heterogeneity and preserving variation in tenure, which is the object

of interest. At the same time, we implement specifications with more granular 5-digit controls.

1Land use in 2010 (www.mnd.gov.sg/landuseplan/). Notice that 100/187 = 0.53 km2 per 3-digit fixed effect, i.e.,
less than a “unit square” of side 1 km. Housing in Singapore agglomerates in specific local neighborhoods around
different axes from the original downtown area.
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A.3 Adjusting prices, including prepayments, to 2014 S$

Payment of the purchase price is due in full when a buyer purchases a condominium apartment

that is already completed. In this case, payment coincides with the start of housing benefits (and

we adjust the historical purchase price to January 2014 S$). When a buyer purchases property that

is still under development, partial payment is made prior to the start of housing benefits. Here, we

take the observed time difference between purchase and construction completion, and compound

(upward adjust) the transaction price using a typical payment scheme that developers follow for

sales during construction. In particular, we adopt the scheme recommended under current Urban

Redevelopment Authority guidelines. There has been little variation in prepayment schemes over

the sample period and across developers.

Under the Urban Redevelopment Authority scheme, 20% of the purchase price is due upon

signing the Sale & Purchase agreement, or within 8 weeks from the Option to Purchase. Another

40% is due in gradual payments based on completion of six staggered stages of construction. For

example, 10% is due when the foundation is completed. Another 10% is due when the concrete

framework is completed. At a subsequent stage, 25% is due when the Temporary Occupation

Permit or Certificate of Statutory Completion is issued, and the final 15% is due soon after, upon

construction completion. These last two payments are typically due within 1 year of each other.

We approximate this payment scheme and adjust the transaction price as follows. For a purchase

observed any year before the condominium’s completion year, we adjust any amount due at the

time of purchase for milestones that had already passed—e.g., the initial 20% deposit and any

payments such as the 10% for foundation work—using the CPI of the purchase month-year, and

adjust to January 2014 S$. The 40% of the price due at or near completion is adjusted by the

completion-year June CPI. (We do not observe the month of completion and take it to be June, as

a midpoint.) Other intermediate payments—e.g., the 10% for concrete work—are adjusted by the

(midpoint) June CPI of the years between the purchase year and the completion year.

How the remaining 60% beyond the 40% due in the completion year is adjusted depends on

the number of years that elapse from purchase to construction completion. For an apartment

purchased in March, for instance, 1 year before the completion year, we adjust the remaining 60%

by the purchase-year March CPI. For a purchase in March 2 years before completion, we adjust

50% of the price by the purchase-year March CPI and 10% by the year-after-purchase June CPI.
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For a purchase in March 3 years before completion, we adjust 40% of the price by the purchase-year

March CPI, 10% by the year-after-purchase June CPI, and 10% by the 2-years-after-purchase June

CPI. Finally, for a purchase 4 years or more before June of the completion year, we adjust 20% of

the price by the purchase month-year CPI, 20% by the year-after-purchase June CPI, 10% by the

2-years-after-purchase June CPI, and 10% by the 3-years-after-purchase June CPI.

Again, any payments due at the time of purchase are adjusted by the CPI of the purchase

month and year to January 2014 S$. For example, for a purchase in March, say, either in the year

of or after construction completion, we adjust the entire purchase price by the March CPI of the

purchase year, since payment would have been due in full at the time of the purchase.

A.4 Model implementation

Functional forms for the discount rate schedule

In addition to modeling the discount rate schedule as an exponential function of time, we fit a

logarithmic function and a hyperbolic function of time, respectively:

rt = r (t; γ) =

 max (γ1 + γ2 log t, γ3) for 1 < t ≤ 106

max
(
γ1 + γ2 log 106, γ3

)
for t > 106

(logarithmic)

rt = r (t; γ) =

 max (γ1t
γ2 , γ3) for 1 < t ≤ 106

max
(
γ1
(
106
)γ2 , γ3) for t > 106

(hyperbolic)

As stated in the text, across all parametric structures, slope parameter γ2 is the key one of interest,

γ1 is the period-1 discount rate, and γ3 bounds the discount rate from below. A negative (resp.,

positive) γ2 implies declining (resp., rising) discount rates, and a zero value for this parameter

implies a constant discount rate.

Trend acceleration penalty

We add a rate acceleration penalty to the objective function when estimating rt with multiple

steps (Tables 4 and A.11). (In principle, we could similarly introduce even more smoothness to

the parametric structures as well.) With steps one century wide until the tenth century, the sum
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of squared second differences (SSSD) in the penalized NLLS criterion function (6) is

8∑
t=1

((rt+2 − rt+1)− (rt+1 − rt))2 ,

where r1, r2, , ..., r9 denote annual discount rates over the first, second, ..., ninth century and r10

denotes the annual discount rate over the tenth and subsequent centuries (year 901 on). With

steps one century wide until the fifth century, we further restrict the discount rate for the sixth

and subsequent centuries to equal that in the fifth century, i.e., r5 = r6 = ... = r10. In practice, we

choose a smoothing parameter λ such that the rate acceleration penalty λ×SSSD accounts for only

a small fraction of the optimized objective function, e.g., λ×SSSD=0.04 out of RSS+λ×SSSD=

1513.43, in Table 4, column 3.

Model cross validation

Cross validation is a common model evaluation and selection tool in the machine learning and

statistical learning toolbox (James et al. (2013), pp.176-186). Essentially, the approach splits a

dataset into an estimation sample (the training set) to estimate the model and then predicts the

dependent variable in a held-out sample (the test set) using the estimated model. The out-of-

sample residuals are then used to compute the Mean Squared Error (MSE). Often, the model with

the lowest MSE is judged the better predictive model.

We also make use of cross validation, treating it as another tool to compare the relative per-

formance of the various models we estimate, without explicitly using it to pick a definitive model

(thought the reader could do so if desired). Unlike the traditional cross-validation approach, we

also conduct pairwise t-tests of the difference in the MSEs of the various models.

Generally, the cross-validation MSE is computed as follows:

1. Randomly sort the N observations.

2. Split the observations into K groups of roughly equal size.

3. For k = 1, . . . ,K,

(a) Exclude the Nk observations in group k. The N−k observations in the remaining K − 1

groups make up the training set.

(b) Estimate the model on the training set.
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(c) Use the estimated model to calculate the (out-of-sample) residuals ε̃i for the observations

in group k, which make up the test set.

4. Compute, across N observations in all K groups, MSE =
1

N

N∑
i=1

ε̃2i .

We adjust the procedure described above because of our use of location fixed effects. To ensure

that the same locations are contained in the training and test sets at each iteration k of step

3, we amend steps 1 and 2 by randomly partitioning the observations within location. We omit

observations for any location that has fewer than 10 observations, i.e., less than one observation per

fold given a choice of K = 10 folds. Cross validation of the models with 5-digit location controls

includes 178,588 observations and with 3-digit location controls, 179,202 observations (down slightly

from the 179,218 observations in the full sample).

Common choices for the number of folds K are 5, 10, or 20 (Hansen (2020), p.860). Our results

are robust to the choice; we report the results of using 10 folds. (Figure A.8 illustrates the stability

of the discount rate schedule parameter estimates across training sets.)

We perform pairwise equality tests within and between the models reported in Tables 2 and 4.

Under the null hypothesis that the MSEs of models A and B are equal, the t-statistic is:

t =

1

N

N∑
i=1

(
ε̃2A,i − ε̃2B,i

)
√
σ̂2/N

, (1)

where ε̃A,i is observation i’s out-of-sample residual from model A, ε̃B,i is observation i’s out-of-

sample residual from model B, σ̂2 is the sample variance of ε̃2A − ε̃2B, and N is the number of

observations in the cross-validation exercise.

To compute the MSE for model (2) in which the dependent variable is log price, we transform

the log price prediction to a prediction of price, and take the difference relative to observed price

as the residual ε̃i. After squaring and taking the mean across observations, this MSE for the log

price model can then be compared to MSE for model (3) in which the dependent variable is price.
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Specifically,

E (pim | Xi, Li, θ, r, ξm) = E
(
eln pim | Xi, Li, θ, r, ξm

)
,

= E
(
elnu(Xi;θ)+lnφ(Li;r)+ξm+εim | Xi, Li, θ, r, ξm

)
,

= elnu(Xi;θ)+lnφ(Li;r)+ξm E (eεim | Xi, Li, θ, r, ξm) ,

= elnu(Xi;θ)+lnφ(Li;r)+ξm E (eεim) .

noting, in the last step, the idiosyncratic mean-zero shock εim. We estimate E (eεim) as

Ê (eεim) =
1

Nk

Nk∑
i=1

eε̃im =
1

Nk

Nk∑
i=1

eln pim−lnu(Xi;θ̂)−lnφ(Li ;̂r)−ξ̂m

(Here the hat denotes parameter estimates implemented on a training set of size N−k and predic-

tions in a test set of size Nk.) A prediction of price pim from log price model (2) is then:

p̂im = elnu(Xi;θ̂)+lnφ(Li ;̂r)+ξ̂m Ê (eεim)

A.5 Rental prices and unobserved heterogeneity

Our purchase price regressions control for many observed property characteristics such as location,

apartment size, and story, in addition to age of construction directly by choice of sample. Here,

we look to the rental market for an indication of whether unobserved quality differs systematically

by (landlord) tenure length. Since renters should care only about flows of housing services and not

differences in the landlord’s ownership tenure, finding that tenure has no effect on rental prices

provides evidence that apartments of different lease types do not differ in unobserved quality.

The Urban Redevelopment Authority reports rental contracts for privately developed apart-

ments submitted to the Inland Revenue Authority of Singapore for Stamp Duty assessment (see

next section) within the last 36 months at the time of the search (February 2012 to January 2015).

The data include monthly rent and starting month of the rental contract, the condominium project

name and street, the apartment’s floor area in mutually exclusive categories, and the number of

bedrooms. The apartment building—equivalently, 6-digit postal code—is not reported, and build-

ings in the same project may span different 5-digit codes. We merged project-level information,

such as lease type, construction completion year, total number of apartments, and maximal story,
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from the REALIS transaction sales data.

To control for unobserved heterogeneity arising from differences in renovation, maintenance,

and depreciation, and in line with our analysis of property purchase prices, we restrict the sample

to rentals of condominium apartments that were aged less than 10 years at the time of rental.

Given some extreme prices in the data, we trimmed the top and bottom 1% of the rental price

distribution. The data do not distinguish between studio units and a multi-bedroom unit renting

out one bedroom, so we drop single-bedroom contracts. The final sample consists of 42,699 rental

contracts, of which 58%, 5%, and 37% are apartments for which landlords have perpetual, multi-

century, and multi-decade leases, respectively.

Table A.12 reports estimates of OLS regressions with the log of the apartment’s monthly rental

price (in January 2014 S$) as the dependent variable. Estimates on the multi-century and multi-

decade landlord leases are small and statistically insignificant (the dummy for perpetual landlord

leases is the reference category). With very tight 5-digit location controls, any rental price difference

between perpetual and multi-century landlord leases cannot be identified. Reflecting the tightness

of 5-digit controls, there are only four 5-digit locations where rental contracts on multi-century

landlord leases and at least one more landlord lease type are observed; this number of “multi-

century plus” locations climbs from 4 to 28, i.e., sevenfold, with less tight but still quite fine

3-digit controls. In sum, evidence from the rental market suggests that unobserved quality across

apartments of varying lease types is unlikely to be strong.

A.6 Restrictions on publicly developed apartments and taxes

Apartments developed through the Housing Development Board (HDB)

Compared to the largely unrestricted market for privately developed housing, the government

regulates the purchase of new and used HDB apartments. We describe some key HDB regulations.

Only Singapore citizens can buy new HDB apartments, and HDB resales can be purchased by

citizens and permanent residents. The price of new HDB apartments is heavily discounted. As

many as 13 different schemes provide additional subsidies. For example, the “Additional Central

Provident Fund Housing Grant” and the “Special Central Provident Fund Housing Grant” each

provide up to S$ 40,000 in additional subsidies to eligible buyers. Along with these subsidies is

an income ceiling, as the government attempts to push buyers to privately developed housing. For
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example, average gross monthly household income cannot exceed S$ 12,000 to be eligible to buy an

HDB apartment with 4 rooms or more. These schemes come with other restrictions as well. For

example, the most common scheme, the Public Scheme, targets families. The buyer must be at

least 21 years old and either be married, living with parents, or, in the case of widowed or divorced

persons, have legal custody of children.

New HDB apartments have a minimum occupancy period of 5 years. There is no occupancy

requirement for privately developed housing, but property is subject to extra taxes if resold within

4 years of the date of purchase, presumably to curb “flipping.” For example, selling a unit within

1 year of purchase is subject to an additional 16% tax.

Stamp duty

Two types of ad valorem duties are payable by buyers: the Buyer’s Stamp Duty (BSD), and the

Additional Buyer’s Stamp Duty (ABSD). The BSD rate is 1% for the first S$ 180,000, 2% for the

next S$ 180,000, and 3% for the remaining amount. The ABSD was introduced in December 2011

to curb property price growth, and raised in January 2013. The schedule of the ABSD is as follows.

Buyer’s Residency Status Dec/2011 to Jan/2013 After Jan/2013

Citizens, 1st property Not applicable Not applicable

Citizens, 2nd property Not applicable 7%

Citizens, 3rd and subsequent property 3% 10%

Permanent Residents, 1st property Not applicable 5%

Permanent Residents, 2nd and after 3% 10%

Foreigners, any property 10% 15%

Since there are only 314 observations with a transaction price below S$ 360,000, the combined

BSD/ABSD marginal tax rate depends only on the buyer’s residency status, not on the value of the

property. After the introduction of ABSD in 2011, it is possible that the increased progressivity

of stamp duty on some non-citizen buyers—and foreigners in particular—may have dampened

demand for higher-value properties. To the extent that this shift adversely affected the demand for

perpetual leases over comparable lower-value maturities, controlling for this shift would increase

the estimated perpetuity premium even further.

Property tax
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Annual property tax is an increasing function of a property’s Annual Value (AV). The Inland

Revenue Authority of Singapore determines AV from market rental prices for rented-out units in

the same or comparable condominium projects (rent depends on the flow utility of housing services,

but not on landlord’s lease). For most of our sample period, until January 2014, the property tax

rate for owner-occupied units was 0 for the first S$ 6,000, 4% for the next S$ 59,000, and 6% for the

amount exceeding S$ 65,000. Over the last few months in our sample, after January 2014—which

we drop in a robustness test—property taxes for owner-occupied units became more progressive: 0

for the first S$ 8,000, 4% for the next S$ 47,000, and the rate increases by 2% for every S$ 15,000

increase in Annual Value until it reaches the maximum of 16%. For non-owner-occupied units, the

marginal tax rate is a flat 10%.

References

Hansen, B. (2020). Econometrics. Manuscript, University of Wisconsin.

He, J., Liu, H., Sing, T. F., Song, C. and Wong, W.-K. (2020). Superstition, conspicuous spending,

and the housing market: Evidence from Singapore. Management Science, 66(2), pp. 783–804.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learn-

ing. Springer, New York.

A.10



T
ab

le
A

.1
:

S
el

ec
te

d
d

es
cr

ip
ti

v
e

st
a
ti

st
ic

s
b
y

le
a
se

ty
p

e.

P
er

ce
n
ti

le

V
ar

ia
b

le
N

M
ea

n
S

td
.

D
ev

.
1
st

5
th

2
5
th

5
0
th

7
5
th

9
5
th

9
9
th

T
ra

n
sa

ct
io

n
p

ri
ce

(S
$)

P
er

p
et

u
al

le
as

es
72

,8
34

1,
60

7
,5

2
8

1
,5

2
1
,0

3
9

4
9
3
,6

7
0

5
8
3
,1

9
1

8
8
5
,0

0
1

1
,1

8
4
,1

2
2

1
,7

1
1
,6

8
3

4
,0

5
1
,7

6
0

7
,6

8
1
,8

2
1

M
u

lt
i-

ce
n
tu

ry
le

as
es

9,
15

4
1,

46
8
,9

0
2

1
,3

0
8
,2

2
7

5
4
0
,9

1
7

6
7
8
,7

9
6

9
5
8
,6

0
1

1
,2

2
0
,1

8
0

1
,5

3
2
,4

1
0

2
,5

8
1
,7

5
5

7
,2

1
2
,7

1
4

M
u

lt
i-

d
ec

ad
e

le
as

es
97

,2
30

1,
12

0
,6

6
8

7
5
7
,7

2
2

4
8
3
,2

2
0

5
9
4
,3

8
9

7
8
1
,7

0
3

9
5
9
,4

9
6

1
,2

1
4
,4

2
7

2
,0

9
9
,4

7
5

3
,6

8
7
,8

7
3

T
ot

al
17

9,
21

8
1,

33
6
,3

1
4

1
,1

8
1
,1

5
8

4
9
0
,6

6
0

5
9
1
,7

2
4

8
1
9
,0

9
0

1
,0

4
2
,0

9
2

1
,4

0
8
,6

7
0

2
,9

7
6
,9

4
0

6
,4

0
3
,5

4
9

P
ri

ce
p

er
m

2
(S

$)
P

er
p

et
u

al
le

as
es

72
,8

34
14

,1
2
2

6
,3

1
5

6
,1

9
7

7
,5

0
0

9
,7

5
2

1
2
,5

1
7

1
6
,7

6
0

2
5
,6

3
5

3
6
,6

9
2

M
u

lt
i-

ce
n
tu

ry
le

as
es

9,
15

4
12

,3
4
9

4
,8

6
0

6
,4

7
5

7
,4

5
6

9
,2

1
5

1
0
,9

0
9

1
4
,5

8
8

2
1
,3

3
8

3
4
,3

6
2

M
u

lt
i-

d
ec

ad
e

le
as

es
97

,2
30

11
,0

6
7

4
,5

0
4

5
,4

6
5

6
,2

9
9

8
,1

2
8

9
,9

6
9

1
2
,8

6
3

1
9
,5

3
5

2
7
,4

6
7

T
ot

al
17

9,
21

8
12

,3
7
4

5
,5

3
0

5
,6

2
2

6
,5

8
9

8
,7

8
6

1
0
,8

4
8

1
4
,5

1
8

2
2
,9

8
8

3
2
,3

0
8

T
im

e
fr

om
sa

le
s

to
d
el

iv
er

y
(y

ea
rs

)
P

er
p

et
u

al
72

,8
34

-2
.6

1
.5

-5
-5

-4
-3

-2
0

1
M

u
lt

i-
ce

n
tu

ry
9,

15
4

-1
.9

1
.4

-4
-4

-3
-2

-1
1

2
M

u
lt

i-
d

ec
ad

e
97

,2
30

-2
.1

1
.5

-5
-4

-3
-2

-1
0

1
T

ot
al

17
9,

21
8

-2
.4

1
.5

-5
-5

-3
-2

-1
0

1

B
u

ye
r

ag
e

(y
ea

rs
)

P
er

p
et

u
al

le
as

es
25

,4
23

42
.4

9
.8

2
5
.5

2
9
.0

3
5
.0

4
1
.0

4
8
.5

6
0
.0

6
9
.5

M
u

lt
i-

ce
n
tu

ry
le

as
es

3,
12

0
41

.9
9
.3

2
5
.0

2
9
.0

3
5
.0

4
0
.5

4
8
.0

5
9
.5

6
6
.0

M
u

lt
i-

d
ec

ad
e

le
as

es
26

,0
05

41
.9

9
.3

2
5
.0

2
9
.0

3
5
.0

4
1
.0

4
8
.0

5
9
.0

6
7
.0

T
ot

al
54

,5
48

42
.1

9
.5

2
5
.5

2
9
.0

3
5
.0

4
1
.0

4
8
.0

5
9
.5

6
8
.0

N
o
te

s:
P

u
rc

h
a
se

s
o
f

n
ew

p
ri

va
te

ly
d
ev

el
o
p

ed
a
p
a
rt

m
en

ts
fr

o
m

1
9
9
5

to
2
0
1
5

(N
=

1
7
9
,2

1
8
).

W
e

o
b
se

rv
e

b
u
y
er

a
g
e

fo
r

a
su

b
se

t
o
f

tr
a
n
sa

ct
io

n
s.

S
ee

th
e

n
o
te

s
to

T
a
b
le

1
.

F
ig

u
re

A
.3

fu
rt

h
er

d
es

cr
ib

es
ch

a
ra

ct
er

is
ti

cs
o
f

tr
a
n
sa

ct
ed

a
p
a
rt

m
en

ts
b
y

le
a
se

ty
p

e.

A.11



Table A.2: OLS regressions with tenure grouped into bins.

Sample: Full sample: All areas Areas w/ longer lease types

Location controls: 5-digit 4-digit 3-digit 5-digit 4-digit 3-digit
Dependent variable: Log price (1a) (2a) (3a) (4a) (5a) (6a)
825 to 986 years (1=yes) 0.007 0.003 -0.035** -0.029** -0.002 -0.048***

(0.017) (0.020) (0.015) (0.014) (0.016) (0.015)
87 to 99 years (1=yes) -0.159*** -0.160*** -0.148*** -0.290*** -0.252*** -0.183***

(0.019) (0.019) (0.012) (0.037) (0.037) (0.021)
56 to 63 years (1=yes) -0.427*** -0.360*** -0.369***

(0.017) (0.021) (0.029)
R2 0.942 0.903 0.857 0.943 0.903 0.859
Dependent variable mean 9.345 9.345 9.345 9.412 9.412 9.412
Dependent var.: Price per m2 (1b) (2b) (3b) (4b) (5b) (6b)
825 to 986 years (1=yes) 0.095 -0.062 -0.645** -0.368 -0.104 -0.849***

(0.259) (0.365) (0.261) (0.285) (0.295) (0.273)
87 to 99 years (1=yes) -1.858*** -1.742*** -1.622*** -3.437*** -2.591** -1.867***

(0.353) (0.447) (0.276) (0.969) (0.826) (0.479)
56 to 63 years (1=yes) -6.269*** -5.118*** -5.163***

(0.362) (0.338) (0.416)
R2 0.926 0.855 0.775 0.927 0.842 0.775
Dependent variable mean 12.374 12.374 12.374 13.262 13.262 13.262
5-digit location fixed effects Yes (1516) Yes (290)
4-digit location fixed effects Yes (630) Yes (111)
3-digit location fixed effects Yes (187) Yes (25)
Locations w/ single lease type 96% 82% 42% 0% 0% 0%
Number of regressors 1558 672 229 331 152 66

Notes: This table shows estimates for 12 OLS regressions. In the top panel (columns 1a-6a), the dependent
variable is the log of the apartment’s transaction price per square meter of floor area. In the bottom panel
(columns 1b-6b), the dependent variable is the apartment’s transaction price per square meter of floor
area (1000 S$/m2). Specifications 1-3 use the full sample of 179,218 new apartment purchases from 1995
to 2015, across all areas. Specifications 4-6 use the subsample of 31,072 transactions in areas in which
at least multi-century and perpetual leases were traded in sample. In all specifications, the dummy for
perpetual leases is the reference category. We vary the granularity of location controls, from 5 digit to
3 digit, as indicated. With 5-digit controls, 96% of 1516 locations (e.g., 12772x) contain a single lease
type (multi-decade, multi-century or perpetual). With 3-digit controls, a lower 42% of 187 locations (e.g.,
127xxx) contain a single lease type. Besides location, all specifications control for apartment size and its
square; apartment story and its square; an indicator for apartment on 1st story; an indicator for apartment
on top story (and interactions with apartment size and its square); project size and its square; a project-
specific indicator for a large land parcel; purchase-to-completion bins of width 1 year; year-of-purchase
fixed effects; and quarter-of-year fixed effects. Standard errors, in parentheses, are clustered by build-
ing. Two-way clustering by building and purchase year yields similar values. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.3: OLS regressions with tenure grouped into bins: Additional controls.

(1) (2) (3) (4) (5) (6) (7)

With 5-digit location controls:
825 to 986 years (1=yes) 0.008 0.007 0.010 0.001 0.007 0.007 -0.016

(0.017) (0.017) (0.018) (0.017) (0.017) (0.018) (0.019)
87 to 99 years (1=yes) -0.154*** -0.160*** -0.180*** -0.174*** -0.160*** -0.156*** -0.165***

(0.019) (0.019) (0.023) (0.018) (0.019) (0.020) (0.016)
56 to 63 years (1=yes) -0.432*** -0.425*** -0.402*** -0.453*** -0.423*** -0.420*** -0.623***

(0.018) (0.017) (0.018) (0.016) (0.017) (0.022) (0.030)
R2 0.944 0.942 0.945 0.949 0.942 0.942 0.945
Number of regressors 1634 1624 1682 1615 1566 1525 1176

With 3-digit location controls:
825 to 986 years (1=yes) -0.034** -0.035** -0.057*** -0.042*** -0.034** -0.035** -0.025

(0.015) (0.015) (0.013) (0.014) (0.015) (0.015) (0.017)
87 to 99 years (1=yes) -0.142*** -0.148*** -0.162*** -0.144*** -0.148*** -0.148*** -0.150***

(0.012) (0.012) (0.010) (0.011) (0.012) (0.012) (0.014)
56 to 63 years (1=yes) -0.399*** -0.367*** -0.294*** -0.379*** -0.372*** -0.374*** -0.436***

(0.029) (0.029) (0.047) (0.028) (0.029) (0.028) (0.077)
R2 0.862 0.858 0.875 0.873 0.857 0.857 0.866
Number of regressors 305 295 337 286 237 229 211

Apartment size bins Yes
Apartment story bins Yes
Location control × large land parcel Yes
Year-quarter fixed effects Yes
Month-of-year fixed effects Yes
Shared property amenities Yes
Distance to shopping mall (in log) Yes
Buyer’s age (years) Yes

Notes: This table shows estimates for 14 OLS regressions. The dependent variable is the log of the apartment’s
transaction price per square meter of floor area. All specifications use the full sample of 179,218 new
apartment purchases (or 177,689 and 54,548 observations in specifications 6 and 7 due to missing values for
amenities and buyer age, respectively). In all specifications, the dummy for perpetual leases is the reference
category. Across panels, we vary the granularity of location controls, from 5 digit to 3 digit. Besides location,
and unless noted otherwise, all specifications control for: apartment size and its square; apartment story and
its square; an indicator for apartment on 1st story; an indicator for apartment on top story (and interactions
with apartment size and its square); project size and its square; a project-specific indicator for a large
land parcel; purchase-to-completion bins of width 1 year; year-of-purchase fixed effects; and quarter-of-year
fixed effects. Specification 1 replaces apartment size and its square by apartment size bins of width 10 m2.
Specification 2 replaces apartment story and its square by a series of individual story dummies. Specification
3 adds interactions between the large land parcel indicator and the location fixed effects. Specification 4
replaces year fixed effects and quarter fixed effects by year-by-quarter fixed effects. Specification 5 replaces
quarter-of-year fixed effects by month-of-year fixed effects. Specification 6 adds indicators for swimming pool,
gym and tennis court, and further adds (log) distance to the nearest shopping mall. Specification 7 addition-
ally controls for buyer age; specifying a first-stage probit selection model and including the inverse mills ratio
in the price regression yields very similar estimates. Standard errors, in parentheses, are clustered by build-
ing. Two-way clustering by building and purchase year yields similar values. *** p<0.01, ** p<0.05, * p<0.1.

A.13



Table A.4: Pairwise equality tests between models reported in Tables 2 and 4

Panel I: t-statistic of tests, Log Price A vs. Price B as the Dependent Variable

Both models MSE Log Price vs. MSE Price Equality test of models reported in:

rt exponential -5.595 (5-digit controls) Table 2, column 1a vs. column 1b
rt logarithmic -5.554 (5-digit controls) Table 2, column 3a vs. column 3b
rt hyperbolic -5.550 (5-digit controls) Table 2, column 5a vs. column 5b
rt exponential -0.395 (3-digit controls) Table 2, column 2a vs. column 2b
rt logarithmic -0.359 (3-digit controls) Table 2, column 4a vs. column 4b
rt hyperbolic -0.355 (3-digit controls) Table 2, column 6a vs. column 6b

Panel II: t-statistic of tests, Parametric Form A vs. Parametric Form B for rt (dep.var. log price)

Model A Model B MSE Form A vs. MSE Form B

rt exponential rt logarithmic 4.791 (5-digit controls)
rt exponential rt hyperbolic 4.743 (5-digit controls)
rt logarithmic rt hyperbolic -1.814 (5-digit controls)
rt exponential rt logarithmic -5.519 (3-digit controls)
rt exponential rt hyperbolic -5.418 (3-digit controls)
rt logarithmic rt hyperbolic -2.221 (3-digit controls)

Panel III: t-statistic of tests, Parametric Form A vs. Step Function B for rt (dep.var. log price)

Model A MSE Parametric vs. MSE 5-step Equality test of models reported in:

rt exponential 5.027 (5-digit controls) Table 2, column 1a vs. Table 4, column 3
rt logarithmic 4.188 (5-digit controls) Table 2, column 3a vs. Table 4, column 3
rt hyperbolic 3.390 (5-digit controls) Table 2, column 5a vs. Table 4, column 3
rt exponential -1.684 (3-digit controls) Table 2, column 2a vs. Table 4, column 4
rt logarithmic 5.070 (3-digit controls) Table 2, column 4a vs. Table 4, column 4
rt hyperbolic 4.906 (3-digit controls) Table 2, column 6a vs. Table 4, column 4

Notes: This table reports on pairwise equality tests within and between the models reported in Tables 2 and 4. For
each pairwise test, we show the t-statistic (1), defined in Appendix A.4, i.e., the difference between the Mean
Square Error under model A and the Mean Square Error under model B, divided by the standard deviation
of this difference. As such, a negative (resp., positive) t-statistic indicates that model A (resp., model B)
exhibits the lower Mean Squared Error across out-of-sample observations. Models with 5-digit (resp., 3-digit)
location controls include 178,588 (resp., 179,202) observations. See the referenced table and column for the
Mean Squared Error under models A and B.
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Table A.5: Sensitivity analysis: Jointly estimating the year-1 discount rate γ1.

Function of time: rt exponential rt logarithmic rt hyperbolic

Location controls: 5-digit 3-digit 5-digit 3-digit 5-digit 3-digit
(1) (2) (3) (4) (5) (6)

Dependent variable: Log price
Year-1 rate, γ1 0.0249 0.0334 0.0470 0.0655 0.0642 0.0836

(0.0023) (0.0032) (0.0098) (0.0059) (0.0048) (0.0006)
Slope parameter, γ2 -0.0020 -0.0036 -0.0138 -0.0219 -0.2633 -0.3148

(0.0008) (0.0005) (0.0051) (0.0024) (0.0133) (0.0066)

Avg φ̂i 825-986y / avg φ̂i perp. 1.00 0.97 1.00 0.97 1.00 1.00

Avg φ̂i 87-99y / avg φ̂i perpetual 0.85 0.86 0.85 0.86 0.85 0.87
Model cross-valid. Mean Squared

Error (×106 S$/m2 squared) 2.1184 6.8266 2.1184 6.8258 2.1184 6.8378

Notes: This table reports the estimated year-1 discount rate, γ1, along with the slope parameter, γ2, when
the discount rate is a smooth parametric function of time, for 6 NLLS regressions. Standard errors, in
parentheses, are clustered by building. The dependent variable is the log of the apartment’s transaction
price per square meter of floor area. Across columns, the discount rate is a smooth exponential,
logarithmic, or hyperbolic function of time, and we further vary the granularity of location controls.
Other housing utility shifters and market effects as in Table 2. All specifications use the full sample of
179,218 new apartment purchases from 1995 to 2015. Solver Knitro using the interior-point algorithm
with the lower bound to the discount rate γ3 fixed at 0.01% p.a., and without constraining the slope
parameter γ2. Instead of fixing the year-1 discount rate γ1 at 4% p.a., we estimate this parameter
subject to the constraint that it lies between 0.01% and 10%. For model cross validation (Appendix
A.4), we randomly partition the data (within 5-digit or 3-digit location) into 10 folds; we take 9 folds as
the training set and 1 fold as the test set, repeating ten times as we shift the test set to the next fold.
We report the Mean Squared Error over observations in all 10 test sets.

A.15



Table A.6: Sensitivity analysis: A subsample of transactions in more established neighborhoods.

Location controls: 5-digit 3-digit

Sample composition: Full Areas w/ Full Areas w/
sample: longer sample: longer

All areas lease types All areas lease types
(1) (2) (3) (4)

Dependent variable: Log price
Function of time: rt exponential

Slope parameter, γ2 -0.0046 -0.0049 -0.0046 -0.0046
(0.0001) (0.0001) (0.0001) (0.0001)

Function of time: rt logarithmic

Slope parameter, γ2 -0.0102 -0.0123 -0.0097 -0.0104
(0.0005) (0.0002) (0.0004) (0.0005)

Function of time: rt hyperbolic

Slope parameter, γ2 -0.1537 -0.2173 -0.1430 -0.1591
(0.0119) (0.0150) (0.0078) (0.0092)

Notes: This table reports the slope parameter, γ2, when the discount rate is a smooth parametric function of
time, for 12 NLLS regressions. Standard errors, in parentheses, are clustered by building. The dependent
variable is the log of the apartment’s transaction price per square meter of floor area. Specifications in
columns 1 and 3 use the full sample of 179,218 transactions across areas. Specifications in columns 2 and
4 use the subsample of 31,072 transactions in areas in which at least multi-century and perpetual leases
were traded in sample. As indicated from left to right, we vary the granularity of location controls, from
5 digit to 3 digit. Other housing utility shifters and market effects as in Table 2. As indicated from
top to bottom, the discount rate is an exponential, logarithmic, or hyperbolic function of time. Solver
Knitro using the interior-point algorithm with γ1 and γ3 fixed at 4% and 0.01% p.a., respectively.
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Table A.7: Sensitivity analysis: Time-unlimited ownership can shift utility.

Function of time: rt exponential rt logarithmic rt hyperbolic

Dependent variable: Log price (1a) (2a) (3a)
Slope parameter, γ2 -0.0055 -0.0086 -0.1206

(0.0004) (0.0008) (0.0136)
“Ownership forever” (perpetual lease, 1=yes) -0.1718 0.0348 0.0349

(0.1131) (0.0148) (0.0143)

Dependent var.: Price per m2 (1b) (2b) (3b)
Slope parameter, γ2 -0.0041 -0.0073 -0.0974

(0.0018) (0.0039) (0.0664)
“Ownership forever” (perpetual lease, 1=yes) 0.0193 0.0213 0.0210

(0.0410) (0.0142) (0.0145)

Notes: This table shows sensitivity to including a perpetual lease dummy (“ownership forever”) in the set of
property characteristics of the utility specification, thus reporting its estimated coefficient θforever, along
with the slope parameter γ2 of the discount rate schedule. Standard errors, in parentheses, are clustered by
building. Across columns, the discount rate is a smooth exponential, logarithmic, or hyperbolic function
of time. In the top panel (columns 1a-3a), the dependent variable is the log of the apartment’s transaction
price per square meter of floor area. In the bottom panel (columns 1b-3b), the dependent variable is
the apartment’s transaction price per square meter of floor area (S$/m2). All 6 NLLS regressions are
implemented on the full sample of 179,218 new apartment purchases, and specify location controls at the
3-digit level (similar patterns obtain with 5-digit location controls). Besides ownership forever and location
controls, housing utility shifters and market effects as in Table 2. Solver Knitro using the interior-point
algorithm with γ1 and γ3 fixed at 4% and 0.01% p.a., respectively.
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Table A.8: Sensitivity analysis: Varying the year-1 discount rate γ1.

Function of time: rt exponential rt logarithmic rt hyperbolic
(1) (2) (3)

Dependent variable: Log price
γ1 fixed at 3% p.a. (lower than baseline)

Slope parameter, γ2 -0.0031 -0.0045 -0.0765
(0.0001) (0.0004) (0.0081)

γ1 fixed at 4% p.a. (Table 2)

Slope parameter, γ2 -0.0046 -0.0097 -0.1430
(0.0001) (0.0004) (0.0078)

γ1 fixed at 5% p.a. (higher than baseline)

Slope parameter, γ2 -0.0058 -0.0149 -0.1948
(0.0001) (0.0004) (0.0072)

γ1 fixed at 6% p.a. (higher than baseline)

Slope parameter, γ2 -0.0069 -0.0196 -0.2373
(0.0001) (0.0001) (0.0072)

Notes: This table shows sensitivity to fixing the year-1 discount rate γ1 at different levels, as indicated from top
to bottom. Standard errors, in parentheses, are clustered by building. Across columns, the discount rate
is a smooth exponential, logarithmic, or hyperbolic function of time. The dependent variable is the log of
the apartment’s transaction price per square meter of floor area. All 12 NLLS regressions are implemented
on the full sample of 179,218 new apartment purchases, and specify location controls at the 3-digit level
(similar patterns obtain with 5-digit controls). Other housing utility shifters and market effects as in
Table 2. Solver Knitro using the interior-point algorithm with the lower bound to the discount rate γ3
fixed at 0.01% p.a.
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Table A.9: Sensitivity analysis: Varying the lower bound to the discount rate γ3.

Function of time: rt exponential rt logarithmic rt hyperbolic
(1) (2) (3)

Dependent variable: Log price
γ3 fixed at 0.001% p.a. (lower than baseline)

Slope parameter, γ2 -0.0037 -0.0097 -0.1430
(0.0001) (0.0004) (0.0078)

γ3 fixed at 0.01% p.a. (Table 2)

Slope parameter, γ2 -0.0046 -0.0097 -0.1430
(0.0001) (0.0004) (0.0078)
γ3 fixed at 0.1% p.a. (higher than baseline)

Slope parameter, γ2 -0.0056 -0.0097 -0.1430
(0.0002) (0.0004) (0.0078)

Notes: This table shows sensitivity to fixing the lower bound to the discount rate γ3 at different levels, as indicated
from top to bottom. Standard errors, in parentheses, are clustered by building. Across columns, the
discount rate is a smooth exponential, logarithmic, or hyperbolic function of time. The dependent variable
is the log of the apartment’s transaction price per square meter of floor area. All 9 NLLS regressions are
implemented on the full sample of 179,218 new apartment purchases, and specify location controls at the 3-
digit level (similar patterns obtain with 5-digit controls). Other housing utility shifters and market effects as
in Table 2. Solver Knitro using the interior-point algorithm with the year-1 discount rate γ1 fixed at 4% p.a.
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Table A.11: Sensitivity analysis: Varying the rate acceleration penalty λ (5-step schedule).

Location controls: 5-digit 3-digit

Smoothing parameter, λ: 1514 3027 6054 1514 3027 6054
(half) (Table 4) (double) (half) (Table 4) (double)

(1) (2) (3) (4) (5) (6)
Dependent variable: Log price
Discount rate, year 1 to 100 (p.a.) 0.0253 0.0247 0.0239 0.0327 0.0320 0.0311

(0.0008) (0.0008) (0.0009) (0.0001) (0.0001) (0.0001)
Discount rate, year 101 to 200 (p.a.) 0.0167 0.0172 0.0175 0.0201 0.0196 0.0195

(0.0008) (0.0008) (0.0009) (0.0001) (0.0001) (0.0001)
Discount rate, year 201 to 300 (p.a.) 0.0106 0.0114 0.0124 0.0069 0.0081 0.0092

(0.0008) (0.0008) (0.0009) (0.0001) (0.0001) (0.0001)
Discount rate, year 301 to 400 (p.a.) 0.0072 0.0077 0.0089 0.0001 0.0017 0.0029

(0.0008) (0.0008) (0.0009) (0.0001) (0.0001) (0.0001)
Discount rate, year 401 on (p.a.) 0.0059 0.0059 0.0072 0.0013 0.0012 0.0010

(0.0008) (0.0008) (0.0009) (0.0001) (0.0001) (0.0001)

Average φ̂i 825-986y/avg. φ̂i perp. 1.00 1.00 1.00 0.97 0.97 0.97

Average φ̂i 87-99y / avg. φ̂i perp. 0.85 0.85 0.85 0.86 0.86 0.86
Obj. function components (fitted):
Sum of squared second diff. (SSSD) 0.000020 0.000014 0.000010 0.000108 0.000061 0.000041
Rate acceleration penalty, λ×SSSD 0.0299 0.0438 0.0627 0.1632 0.1856 0.2477
Residual sum of squares (RSS) 1513.42 1513.43 1513.45 3713.32 3713.41 3713.50
Objective = RSS+λ×SSSD 1513.45 1513.47 1513.51 3713.48 3713.60 3713.75
Model cross-valid. Mean Squared

Error (×106 S$/m2 squared) 2.1182 2.1183 2.1183 6.8219 6.8225 6.8232

Notes: This table shows sensitivity of discount rates as a step function of time (5 steps) when the specified
smoothing weight λ varies around 3027 (per Table 4). Standard errors, in parentheses, are clustered
by building. The dependent variable is the log of the apartment’s transaction price per square meter
of floor area. We further vary the granularity of location controls, as indicated. Other housing utility
shifters and market effects as in Table 2. All specifications use the full sample of 179,218 new apartment
purchases from 1995 to 2015. Solver Knitro using the interior-point algorithm with discount rates r1
to r5 constrained between 0 and 10% p.a. (i.e., 0.1). The objective function adds to the RSS a rate
acceleration penalty given by a smoothing parameter λ times the sum of squared second differences
(SSSD), i.e., ((r3−r2)− (r2−r1))2 +(r4−r3)− (r3−r2))2 + ... where r1, r2, r3, ... denote annual discount
rates from year 1 to 100, year 101 to 200, year 201 to 300,... As shown, the rate acceleration penalty
accounts for a small fraction of the optimized objective function, e.g., 0.04 out of 1513.47 in column 2.
For model cross validation (Appendix A.4), we randomly partition the data (within 5-digit or 3-digit
location) into 10 folds; we take 9 folds as the training set and 1 fold as the test set, repeating ten times
as we shift the test set to the next fold. We report the Mean Squared Error over observations in all 10
test sets.
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Table A.12: Monthly rental price does not vary with the landlord’s lease.

Dependent variable: Log rental price
Location controls: 5-digit 4-digit 3-digit 5-digit 4-digit 3-digit

(1) (2) (3) (4) (5) (6)
Landlord lease 825 to 986 years (1=yes) 0.005 -0.010 0.003 -0.002

(0.029) (0.017) (0.030) (0.018)
Landlord lease 87 to 99 years (1=yes) -0.036* 0.033 0.017 -0.035 0.026 0.002

(0.020) (0.021) (0.016) (0.024) (0.021) (0.015)
5-digit location fixed effects Yes Yes
4-digit location fixed effects Yes Yes
3-digit location fixed effects Yes Yes
Distance to subway (in log) Yes Yes Yes
R2 0.926 0.915 0.892 0.926 0.915 0.895
Number of regressors 731 465 201 732 466 202

Notes: This table shows estimates for 6 OLS regressions. The dependent variable is the log of the apartment’s
monthly rental price per square meter of floor area (S$ base CPI January 2014). The sample
consists of 42,699 rental contracts between February 2012 and January 2015 for privately developed
apartments aged less than ten years located across all areas; we also drop one-bedroom contracts
(which include the renting out of a single bedroom) and trim the top and bottom 1% of the rental
price distribution. In all specifications, the dummy for perpetual landlord leases is the reference
category. We vary the granularity of location controls, from 5 digit to 3 digit, as indicated. The rental
data report the apartment’s floor area in ranges (300-400, 400-500, ..., 2900-3000, above 3000 ft2) and
the number of bedrooms (one, two, three, four, five and above). The rental data do not report the
apartment’s story, and we roughly proxy for this using bins for the maximal story across buildings in
the project (1-4, 5-8, 9-12, 13-19, 20-29, 30-39, 40-49, 50-59, 60-70). Besides location, all specifications
include floor-area bins; number-of-bedroom bins; maximal-story-in-project bins; project size (in log);
a project-specific indicator for a large land parcel; age bins of width 1 year; year-of-contract fixed
effects; and quarter-of-year fixed effects. Relative to specifications 1-3, specifications 4-6 control for
distance to the nearest subway (Mass Rapid Transit, MRT) station. Standard errors, in parentheses,
are two-way clustered by project and contract year. *** p<0.01, ** p<0.05, * p<0.1.
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0 5 10 km

Perpetual lease
Multi-century lease
Multi-decade lease
CBD center

(a) Condominiums with 5-digit postal codes containing at least two lease types

Perpetual lease
Multi-century lease
Multi-decade lease
CBD center

0 5 10 km

(b) Condominiums with 3-digit postal codes containing at least two lease types

Figure A.1: Tight location controls remove variation in lease length. Condominium project locations for
leases that are not perfectly predicted by (a) 5-digit controls, and (b) 3-digit controls. For example, the
5-digit code 12772x perfectly predicts Botannia’s “956-years-from-1928” lease, so this condominium project
is not illustrated in (a); by contrast, the 3-digit code 127xxx also contains Infiniti apartments on perpetual
leases, so both the Botannia and the Infiniti condominium projects are illustrated in (b). CBD marks the
Central Business District, centered at One Raffles Place.
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Figure A.2: Bilateral distance between condominium project pairs within the same 3-digit location in the
sample (as in the multi-century-lease Botannia and perpetual-lease Infiniti example, the two neighboring
projects located at 127xxx). The distribution shows that while 3-digit locations (187 locations in all) are
less narrowly defined than 5-digit locations (1516 locations in all), they are still quite granular.
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(a) Apartment size, by lease type (b) Distance to mall, by lease type

(c) Building height, by lease type (d) Buyer age, by lease type

Figure A.3: Distributions by lease type over (a) apartment size, (b) apartment’s distance to the nearest
shopping mall (in 2015, as a further proxy for fine neighborhood characteristics), (c) apartment building
height, (d) and buyer age. An observation is: (a) a new apartment sold in the 1995-2015 period; (b), (c) an
apartment building recording sales in the 1995-2015 period; and (d) a new apartment sold in the 1995-2012
period for which buyer age is observed (He et al., 2020).
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(b) rt as a logarithmic function of time
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(c) rt as a hyperbolic function of time

Figure A.4: Sensitivity of discount rates as the sample composition varies (within panel), for different
parametric forms over time: (a) exponential, (b) logarithmic, and (c) hyperbolic, plotted on a log time
scale. The discount rate rt discounts benefits from year t + 1 to year t. Source: Table A.6 estimates
based on the subsample of 31,072 transactions in more established areas in which at least multi-century and
perpetual leases were traded in sample, besides estimates based on the full sample of 179,218 transactions
across areas. We show estimates with 5-digit or with 3-digit location controls.
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Figure A.5: Sensitivity of discount rates as the year-1 rate varies, for different parametric forms over time:
(a) exponential, (b) logarithmic, and (c) hyperbolic, plotted on a log time scale. The discount rate rt
discounts benefits from year t+ 1 to year t. Source: Table A.8 estimates based on the full sample, varying
the year-1 discount rate γ1 (within panel), and fixing location controls at the 3-digit level (similar patterns
obtain with 5-digit controls) and the lower-bound rate γ3 at 0.01% p.a.
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Figure A.6: Sensitivity of discount rates as the lower bound to the discount rate varies, plotted on a log
time scale. Exponential form over time (no change for the other parametric forms). The discount rate rt
discounts benefits from year t+ 1 to year t. Source: Table A.9 estimates based on the full sample, varying
the lower-bound rate γ3 (within panel), and fixing location controls at the 3-digit level (similar patterns
obtain with 5-digit location controls) and the year-1 rate γ1 fixed at 4% p.a.
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(a) rt with double the acceleration penalty
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Estimated discount rate as a step function of time (5 steps)

Dep. var. is Log Price, 5-digit controls
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(b) rt with half the acceleration penalty

Figure A.7: Sensitivity of discount rates as a step function of time when the specified smoothing weight λ
is (a) doubled to 6054 or (b) halved to 1514, plotted on a linear time scale. This figure should be compared
to Figure 4, panel (b), based on λ = 3027 (5-step schedule from Table 4, columns 3-4). Source: Table A.11
estimates based on the full sample, varying the location fixed effects (within panel).
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Figure A.8: Stability of discount rate schedule parameter estimates when we randomly partition the data
(within 5-digit or 3-digit location) into 10 folds and take 9 folds as the training set. See Appendix A.4.
Each panel superimposes 10 sets of estimates, one for each of 10 repetitions (training sets). Specifications
follow that of Table 4, columns 3-4 exactly, i.e., five steps one century wide until the fifth century, with (a)
5-digit location fixed effects or (b) 3-digit fixed effects. Besides this illustration, parameter estimates are
stable across training sets for all specifications reported in the paper.
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