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Abstract

This supplemental material contains further details on the listed examples of models with affine
conditional leverage, the Monte Carlo experiments assessing the finite sample performance of the
GMM estimation of the conditionally heteroskedastic factor model with asymmetries (ACHF) pro-
posed in “Conditionally Heteroskedastic Factor Models with Skewness and Leverage Effects” along
with the proofs of the propositions stated in the same paper.

1 Further details on the supporting examples for affine the condi-
tional leverage

This section gives further details on the listed examples in Section 3.2 of the main paper. In the

following examples, all of the random variables with index t are assumed to be Jt-adapted:

Example 1 The A1(3)-affine family processes1 (Dai and Singleton (2000), Singleton (2001)). Let

ft+1 be defined by

ft+1 =
√
α+ vtε1,t+1 + σ1η

√
vtε2,t+1,

vt+1 = ξv̄ + (1− ξ)vt + η
√
vtε2,t+1,

E (εj,t+1|Jt) = E (ε1,t+1ε2,t+1|Jt) = 0, j = 1, 2,

E
(
ε2j,t+1|Jt

)
= 1, j = 1, 2,

where (α, η, ξ, v̄, σ1) ∈ D, a conveniently restricted subset of R5. It follows that σ2
t ≡ V ar (ft+1|Jt) =

α+ (1 + σ2
1η

2)vt and the affine process complies with Equation (5) in the main paper since:

Cov(ft+1, σ
2
t+1|Jt) = −σ1η

2α+ σ1η
2σ2

t = π0 + π1σ
2
t .

∗Department of Economics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec, H3G 1M8
Canada; tel: (514) 848-2424 (ext. 3479); email: prosper.dovonon@concordia.ca.

1Backus, Foresi and Telmer(2001) use the Euler scheme discrete time version of the Cox, Ingersoll and Ross’ (1985)
diffusion process to propose an affine model of currency. The affine process nests the square-root process of Heston (1993)
and Cox, Ingersoll and Ross (1985).
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Example 2 The Quadratic GARCH (QGARCH(1,1)) of Sentana (1995). Let ft+1 be given by

ft+1 = σt ηt+1, ηt+1|Jt ∼ D (0, 1) ; σ2
t = θ + β σ2

t−1 + α (ft − ξ)2 , (θ, β, α, ξ) ∈ D,

where D is any symmetric distribution. It follows that the QGARCH(1,1) dynamics satisfies the affine

representation since:

Cov(ft+1, σ
2
t+1|Jt) = −2αξσ2

t = π1σ
2
t .

Example 3 Heston-Nandi’s (2000) GARCH process. Let ft+1 be given by

ft+1 = σt ηt+1, ηt+1|Jt ∼ N (0, 1) ; σ2
t+1 = ω + β σ2

t + α (ηt+1 − γσt)
2 , (ω, β, α, γ) ∈ D.

We can show that this model also satisfies the affine dynamic since:

Cov(ft+1, σ
2
t+1|Jt) = −2αγσ2

t = π1σ
2
t ,

Example 4 The Inverse Gaussian GARCH(1,1) of Christoffersen, Heston and Jacobs (2006).

The Inverse-Gaussian-GARCH(1,1) model proposed by Christoffersen, Heston and Jacobs (2006) is

shown by the authors to be embedded in the class of SR-SARV(1) models and allows for a leverage

effect that is an affine function of past conditional variance. In particular, they show for such a process

ft+1, that: Cov(ft+1, σ
2
t+1|Jt) = π1σ

2
t for some π1 where σ2

t is the conditional variance of ft+1.

2 Monte Carlo results

The main goal of this section is to assess the finite sample performance of our estimation procedure for

different values of the factor volatility persistence. Because the GMM inference results are known to be

sensitive to the set of valid instruments that are used (see e.g. Andersen and Sørensen (1996)), we first

investigate the relative performance of three sets of valid instruments. We evaluate the performance

of each instrument set by the simulated bias, the root mean square error (RMSE), the median and the

least absolute deviation (LAD) of the estimates it provides for the conditionally heteroskedastic factor

model with asymmetries. The best of these instrument sets is subsequently used in our experiments

for assessing the sensitivity of our inference procedure to the factor volatility persistence.

We simulate samples of three asset excess returns with null risk premia (µ = 0) from a single factor

model. The model considered is the following:

Yt = λft + Ut,

with λ = (1, 1, 1)′ and Ut ∼ i.i.d.N(0, ωId3), ω = 0.35, Id3 is the identity matrix of size 3. In this

model, the signal to noise ratio λi/ω is 2.86 which roughly matches the average signal to noise ratio
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found in previous empirical researches (see e.g. Fiorentini, Sentana and Shephard (2004)). The factor

process ft in all our experiments has a GARCH(1, 1) dynamics i.e. ft = σt−1ηt, ηt|Jt−1 ∼ (0, 1) and

σ2
t = 1−α−β+αf2

t +βσ2
t−1, 0 < α+β < 1. This GARCH(1, 1) process corresponds to an SR-SARV(1)

process with persistence parameter γ = α+ β.

We simulate ηt from two different distributions that distinguish two Monte Carlo designs. In

Design 1, ηt ∼ NID(0, 1) and hence the factor has a standard Gaussian GARCH(1, 1) dynamics. In

Design 2, ηt = (σ2
t−1 −Xt)/σt−1 where Xt|Jt−1 ∼ Gamma(σ2

t−1, 1). In this case, E(f3
t+1|Jt) = −2σ2

t

and Cov(ft+1, σ
2
t+1|Jt) = −2ασ2

t . Hence, Design 2 fits with the occurrence of conditional skewness

and leverage in Yi,t, i = 1, 2, 3 while the conditional skewness and leverage are both 0 in Design 1.

For each design, we consider four volatility persistence configurations: γ = 0.7 (α = 0.2, β = 0.5);

γ = 0.8 (α = 0.2, β = 0.6); γ = 0.9 (α = 0.2, β = 0.7) and γ = 0.95 (α = 0.2, β = 0.75). These

values for the volatility persistence are chosen to reflect the range of estimates in empirical researches.

In particular, the estimated volatility persistence in our empirical application in Section 5 range from

0.68 to 0.87 for daily data. Also, γ = 0.80 matches approximately the factor volatility persistence

estimate by Fiorentini, Sentana and Shephard (2004) for monthly U.K. index excess returns while

γ = 0.90 and γ = 0.95 are the usual range of the standard GARCH volatility persistence estimate in

the empirical literature for daily returns (see e.g. Harvey and Siddique (1999)). We set the number of

replications to 1,000, and the sample sizes that we consider are: T = 500, T = 1, 000, and T = 2, 000.

We perform the inference by the normalization approach described in Section 4 setting the first

asset’s factor loading to λ̄ = 1. The moment conditions (12)-(13)-(14)-(15)-(16)-(17)-(18) in the main

text are used in the estimation process with specified instruments. In Design 1, s1 = s2 = s3 = s = 0,

h1 = 0 and π0 = π1 = 0 and in Design 2, s1 = s2 = s3 = s = 0, h1 = −2.0, π0 = 0 and π1 = −0.4.

Therefore, as far as the Monte Carlo designs are concerned, λ2, λ3, ω, γ, s, h1, π0 and π1 are the only

relevant parameters of our conditionally heteroskedastic factor model with asymmetries.

We first assess the relative performance of the estimation procedure for our model in terms of the

instruments used. In particular, we consider three sets of instruments: z1,t = (1, Y 2
1,t, Y

2
1,t−1, Y

2
1,t−2),

z2,t = (1, |Yi,t|, |Yi,t−1|, |Yi,t−2|), and z3,t = (1,
∑3

i=1 |Yi,t|,
∑3

i=1 |Yi,t−1|,
∑3

i=1 |Yi,t−2|). For each set of

instruments, we simulate data from Design 1 with γ = 0.9 and evaluate the simulated bias, Root mean

square error (RMSE), median and least absolute deviation (LAD) for the parameter estimates. The

results contained in Table MC1 reveal that the three sets of instruments lead to estimates of smaller

bias, RMSE and LAD as the sample size increases. The factor loadings are estimated with very small

bias throughout, even in the smallest samples. The volatility persistence suffers more of bias in small

samples while the conditional third moment parameters are slightly less precise as they display larger
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RMSE and LAD. This table also allows some ranking of the instruments sets. It appears that z1t

leads to estimates less precise and with larger bias than z2t which in turn is marginally better than

z3t. An intuition as to why z2t and z3t dominate z1t may be related to the fact that we are in presence

of conditionally heteroskedastic processes which, in general are not guaranteed to have finite higher

moments. Both z2t and z3t are made of |Yi,t|-like components while z1t is made of Y 2
i,t-like components.

This latter, even though very attractive for the ARMA structure in the square factor process, requires

that higher moments of the processes being bounded to perform well in comparison with z2t and z3t.

Comparing z2t with z3t, we first observe that z3t–by construction–encapsulates more extensively

the heteroskedastic directions of each series and is qualitatively better than z2t. The marginal out-

performance of z2t over z3t does not offset in our opinion this interest. We keep z3t as instrument for

the next Monte Carlo experiment where we evaluate the effect of increasing persistence and for our

empirical applications as well.

The results of the second Monte Carlo experiment are displayed by Table MC2. In this experiment,

we increase the value of volatility persistence for both Design 1 and Design 2 and check the distribution

of the estimates through the usual indicators. It appears that, for the same persistence, the estimates

from Design 1 have a smaller bias and RMSE as well as a smaller LAD than the estimates from the

heavy tailed distribution which is Design 2. It is worth pointing out that, as the persistence increases,

the precision of all the estimates sharply decreases.

This Monte Carlo experiment suggests that our inference procedure is reliable in finite samples

particularly when the volatility persistence is not close to 1, whereas the inference could be inaccurate

for persistence values larger than 0.95. This observation seems to confirm a well known drawback of

the GMM’s application in volatility literature which delivers bad results when the volatility persistence

is close to 1 (see e.g. Broto and Ruiz (2004)).
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Table MC1

Simulated bias, root mean square error (RMSE), median and least absolute deviation (LAD) of GMM parameter
estimates of the conditionally heteroskedastic factor model with asymmetries. We report the results from GMM
estimates using 3 different sets of valid instruments:
z1,t = (1, Y 2

1,t, Y
2
1,t−1, Y

2
1,t−2),

z2,t = (1, |Y1,t|, |Y1,t−1|, |Y1,t−2|), and
z3,t = (1,

∑3
i=1 |Yi,t|,

∑3
i=1 |Yi,t−1|,

∑3
i=1 |Yi,t−2|).

The simulated data are obtained from Design 1 for γ = 0.9. The true parameter values are λ2 = λ3 = 1, ω =
0.35, s = h = π0 = π1 = 0.

T 500 1000 2000
Bias Rmse Med. LAD Bias Rmse Med. LAD Bias Rmse Med. LAD

z1t
λ2 -0.002 0.003 0.999 0.042 -0.002 0.001 0.998 0.028 -0.003 0.002 0.997 0.021
λ3 -0.001 0.003 0.997 0.041 -0.001 0.001 0.998 0.028 -0.003 0.002 0.997 0.020
γ -0.147 0.087 0.826 0.200 -0.077 0.036 0.867 0.135 -0.030 0.014 0.893 0.091
ω -0.024 0.002 0.326 0.030 -0.014 0.000 0.336 0.017 -0.007 0.000 0.343 0.010
s 0.001 3.199 -0.041 1.201 -0.023 2.208 -0.064 0.974 -0.002 1.337 -0.018 0.776
h 0.015 3.592 0.056 1.515 0.026 2.466 0.096 1.167 0.003 1.573 0.026 0.909
π0 0.027 1.207 -0.030 0.550 0.026 0.524 0.035 0.438 0.005 0.330 -0.004 0.352
π1 0.002 0.729 0.053 0.641 -0.042 0.506 -0.031 0.507 -0.015 0.325 0.003 0.405

z2t
λ2 -0.003 0.002 0.996 0.039 -0.002 0.001 0.997 0.026 -0.003 0.001 0.997 0.018
λ3 -0.002 0.002 0.996 0.039 -0.002 0.001 0.997 0.026 -0.002 0.000 0.998 0.017
γ -0.082 0.054 0.911 0.156 -0.044 0.023 0.902 0.111 -0.014 0.011 0.912 0.082
ω -0.023 0.001 0.327 0.025 -0.013 0.000 0.337 0.015 -0.007 0.000 0.343 0.009
s -0.014 1.412 0.003 0.930 -0.012 0.970 -0.020 0.732 -0.010 0.651 -0.011 0.581
h 0.026 2.510 0.053 1.284 0.026 1.504 0.040 0.942 0.014 0.908 0.007 0.717
π0 -0.007 0.330 -0.011 0.417 0.043 0.225 0.036 0.350 0.013 0.213 0.004 0.294
π1 0.011 0.529 0.036 0.539 -0.047 0.343 -0.041 0.433 -0.017 0.265 -0.010 0.353

z3t
λ2 -0.002 0.002 0.997 0.038 -0.002 0.001 0.997 0.025 -0.002 0.000 0.997 0.017
λ3 0.000 0.002 0.998 0.038 -0.001 0.001 0.999 0.025 -0.002 0.000 0.999 0.016
γ -0.087 0.062 0.916 0.160 -0.054 0.033 0.901 0.121 -0.018 0.013 0.903 0.082
ω -0.023 0.001 0.328 0.025 -0.013 0.000 0.337 0.015 -0.007 0.000 0.344 0.009
s -0.041 1.862 -0.058 1.059 -0.011 1.331 0.002 0.827 0.033 1.325 0.011 0.680
h 0.066 3.275 0.117 1.474 0.020 2.073 0.020 1.089 -0.027 1.401 -0.033 0.837
π0 0.005 0.494 -0.016 0.480 0.033 0.295 0.022 0.379 0.020 0.261 0.003 0.309
π1 -0.002 0.711 0.027 0.620 -0.040 0.444 -0.038 0.479 -0.024 0.326 -0.019 0.377
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Table MC2

Simulated Bias, root mean square error (RMSE), median and least absolute deviation (LAD) of GMM parameter
estimates of the conditionally heteroskedastic factor model with asymmetries. We report the results from
GMM estimates using z3,t = (1,

∑3
i=1 |Yi,t|,

∑3
i=1 |Yi,t−1|,

∑3
i=1 |Yi,t−2|) as instrument. The data are generated

according to Design 1 and Design 2. In both designs, λ2 = λ3 = 1, ω = 0.35, and s = π0 = 0 while h1 = π1 = 0
for Design 1 and h1 = −2.0 and π1 = −0.4 for Design 2. The values of γ are 0.7, 0.8, 0.9 and 0.95; T = 2, 000.

Design 1 Design 2
Bias Rmse Med. LAD Bias Rmse Med. LAD

γ = 0.70
λ2 -0.002 0.000 0.998 0.017 -0.004 0.006 0.999 0.021
λ3 -0.002 0.000 0.998 0.017 -0.009 0.017 0.997 0.025
γ -0.021 0.030 0.687 0.133 -0.033 0.033 0.675 0.137
ω -0.007 0.000 0.343 0.009 -0.006 0.001 0.343 0.010
s 0.038 0.665 0.084 0.657 -0.134 1.993 -0.186 0.995
h -0.048 0.903 -0.091 0.772 0.438 3.294 -1.483 1.318
π0 0.025 0.168 0.015 0.300 -0.083 0.412 -0.127 0.470
π1 -0.032 0.221 -0.032 0.345 0.211 0.693 -0.126 0.631

γ = 0.80
λ2 -0.002 0.000 0.997 0.017 -0.011 0.024 0.999 0.029
λ3 -0.002 0.000 0.999 0.017 -0.011 0.024 1.000 0.029
γ -0.018 0.022 0.798 0.114 -0.031 0.027 0.786 0.123
ω -0.007 0.000 0.344 0.009 -0.005 0.001 0.343 0.011
s 0.021 0.671 0.036 0.647 -0.110 1.763 -0.132 0.924
h -0.027 0.938 -0.054 0.777 0.430 3.229 -1.520 1.294
π0 0.022 0.179 0.007 0.296 -0.081 0.342 -0.119 0.414
π1 -0.029 0.241 -0.025 0.350 0.218 0.604 -0.106 0.584

γ = 0.90
λ2 -0.002 0.000 0.997 0.017 -0.046 0.112 0.997 0.064
λ3 -0.002 0.000 0.999 0.016 -0.040 0.097 0.999 0.059
γ -0.018 0.013 0.903 0.082 -0.026 0.011 0.889 0.082
ω -0.007 0.000 0.344 0.009 0.004 0.006 0.344 0.019
s 0.033 1.325 0.011 0.680 0.003 1.956 -0.123 0.881
h -0.027 1.401 -0.033 0.837 0.373 3.436 -1.458 1.314
π0 0.020 0.261 0.003 0.309 -0.051 0.314 -0.093 0.387
π1 -0.024 0.326 -0.019 0.377 0.198 0.621 -0.137 0.591

γ = 0.95
λ2 -0.003 0.001 0.997 0.019 -0.084 0.193 0.996 0.104
λ3 -0.002 0.000 0.998 0.017 -0.080 0.186 0.997 0.102
γ -0.021 0.005 0.968 0.051 -0.021 0.007 0.967 0.052
ω -0.007 0.000 0.344 0.009 0.025 0.034 0.344 0.041
s -0.001 1.657 0.000 0.737 0.064 4.551 -0.115 0.905
h -0.002 2.053 -0.038 0.963 0.475 4.723 -1.307 1.429
π0 0.017 0.288 0.013 0.316 -0.015 0.461 -0.080 0.357
π1 -0.026 0.368 -0.021 0.409 0.204 0.733 -0.087 0.614

3 Proofs of Propositions

Proof of Proposition 3.1: The expression given in (9) is obvious and arises from the sum of (1) over the time

period: τ = (t−1)m+1 through tm with the respective aggregation coefficients αl and µ(Jt) = µ. Let
(
F

(m)
(t+1)m

)
and

(
U

(m)
(t+1)m

)
be the resulting factor and the idiosyncratic shocks and letD

(m)
tm be the J

(m)
tm -conditional variance

of this factor. We have

6



D
(m)
tm = E

(
F

(m)
(t+1)mF

(m)′

(t+1)m|J (m)
tm

)
− E

(
F

(m)
(t+1)m|J (m)

tm

)
E
(
F

(m)′

(t+1)m|J (m)
tm

)
= E

(
F

(m)
(t+1)mF

(m)′

(t+1)m|J (m)
tm

)
.

We can actually show that E
(
F

(m)
(t+1)m|J (m)

tm

)
= 0 as we do below.

E
(
F

(m)
(t+1)m|Jtm

)
= E ((

∑m
l=1 αlFtm+l) |Jtm) =

∑m
l=1 αlE (Ftm+l|Jtm)

=
∑m

l=1 αlE (E (Ftm+l|Jtm+l−1) |Jtm) = 0.

The third equality holds by the law of iterated expectations and the last one comes from (2). Since J
(m)
tm is

included in Jtm by definition, the law of iterated expectations also applies the following way: E(X|J (m)
tm ) =

E
(
E(X|Jtm)|J (m)

tm

)
for any measurable variable X. Therefore, E

(
F

(m)
(t+1)m|J (m)

tm

)
= 0.

We now show that D
(m)
tm is diagonal. Let us now consider k and k′ such that k ̸= k′.

E
(
F

(m)
k,(t+1)mF

(m)
k′,(t+1)m|J (m)

tm

)
= E

(
(
∑m

l=1 αlFk,tm+l) (
∑m

l=1 αlFk′,tm+l) |J (m)
tm

)
= E

[∑m
l<l′;l,l′=1 αlαl′(Fk,tm+lFk′,tm+l′ + Fk′,tm+lFk,tm+l′)

+
∑m

l=1 α
2
l Fk,tm+lFk′,tm+l|J (m)

tm

]
.

But, from the law of iterated expectations and (2), for l < l′,
E (Fk,tm+lFk′,tm+l′ |Jtm) = E (Fk,tm+lE (Fk′,tm+l′ |Jtm+l′−1) |Jtm) = 0 and in addition, as Dt is diagonal for all
t from (2), E (Fk,tm+lFk′,tm+l|Jtm) = E (E (Fk,tm+lFk′,tm+l|Jtm+l−1) |Jtm) = E (Dk,k′,tm+l−1|Jtm) = 0.

By the law of iterated expectations as above we can deduce that E
(
F

(m)
k,(t+1)mF

(m)
k′,(t+1)m|J (m)

tm

)
= 0 and therefore

D
(m)
tm is diagonal.
Regarding the aggregated idiosyncratic shocks, by the law of iterated expectations and simple product

expansion, we can show that E
(
U

(m)
(t+1)m|J (m)

tm

)
= 0 and E

(
U

(m)
(t+1)mF

(m)′

(t+1)m|J (m)
tm

)
= 0. Also,

V ar
(
U

(m)
(t+1)m|J (m)

tm

)
= E

(
(
∑m

l=1 αlUtm+l) (
∑m

l=1 αlUtm+l)
′ |J (m)

tm

)
= E

(∑m
l<l′;l,l′=1 αlαl′(Utm+lU

′
tm+l′ + Utm+l′U

′
tm+l)

+
∑m

l=1 α
2
lUtm+lU

′
tm+l|J

(m)
tm

)
For l < l′, E

(
Utm+lU

′
tm+l′ |Jtm

)
= E

(
Utm+lE

(
U ′
tm+l′ |Jtm+l′−1

)
|Jtm

)
= 0

and E
(
Utm+lU

′
tm+l|Jtm

)
= E

(
E
(
Utm+lU

′
tm+l|Jtm+l−1

)
|Jtm

)
= E (Ω|Jtm) = Ω thus, V ar

(
U

(m)
(t+1)m|J (m)

tm

)
=

Ω
∑m

l=1 α
2
l completing the proof of Proposition 3.1�

Proof of Proposition 3.2: Since (ft+1) has a SR-SARV(1) dynamic, with vt+1 ≡ σ2
t+1 − (1 − γ) − γσ2

t , we
have: E(vt+1|Jt) = 0. For l = 1, the first conclusion of the proposition is obvious since σ2

tm is Jtm-measurable.
For l ≥ 2, by writing vt+1 for different time and making some simple substitutions, we can write:

σ2
tm+l−1 = (1− γ)(1 + γ + γ2 + · · ·+ γl−2) + γl−1σ2

tm + γl−2vtm+1 + γl−3vtm+2 + · · ·+ vtm+l−1.

By taking the expectation conditionally on Jtm and by the law of iterated expectations, we have:

E(σ2
tm+l−1|Jtm) = (1− γ)(1 + γ + γ2 + · · ·+ γl−2) + γl−1σ2

tm

= (1− γ) 1−γl−1

1−γ + γl−1σ2
tm

= 1− γl−1 + γl−1σ2
tm.
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The first conclusion is then established. Moreover,

E
(
(f

(m)
(t+1)m)2|Jtm

)
= E

(∑m
l=1(αlftm+l)

2|Jtm
)
,

since ft is conditionally non-autocorrelated

=
∑m

l=1 α
2
lE(f2

tm+l|Jtm)

=
∑m

l=1 α
2
lE(E(f2

tm+l|Jtm+l−1)|Jtm)

=
∑m

l=1 α
2
lE(σ2

tm+l−1|Jtm)

=
∑m

l=1 α
2
l [(1− γl−1) + γl−1σ2

tm]

Since σ2
tm is J

(m)
tm -measurable, E

(
(f

(m)
(t+1)m)2|J (m)

tm

)
=
∑m

l=1 α
2
l [(1− γl−1) + γl−1σ2

tm]. Hence,

σ
(m)2

tm ≡ V ar
(
f
(m)
(t+1)m|J (m)

tm

)
= S

(m)
1 + S

(m)
2 σ2

tm

with S
(m)
1 =

∑m
l=1 α

2
l [(1− γl−1) and S

(m)
2 =

∑m
l=1 α

2
l γ

l−1. This completes the proof of Proposition 3.2. �

Proof of Proposition 3.3:

Cov
(
f
(m)
(t+1)m, σ

(m)2

(t+1)m|Jtm
)

=
∑m

l=1 αlCov
(
ftm+l, σ

(m)2

(t+1)m|Jtm
)

=
∑m

l=1 αlCov
(
ftm+l, S

(m)
1 + S

(m)
2 σ2

(t+1)m|Jtm
)

(from Proposition 3.2)

=
∑m

l=1 αlS
(m)
2 Cov

(
ftm+l, σ

2
(t+1)m|Jtm

)
=

∑m
l=1 αlS

(m)
2 E

(
ftm+lσ

2
(t+1)m|Jtm

)
=

∑m
l=1 αlS

(m)
2 E

(
ftm+lE

(
σ2
(t+1)m|Jtm+l

)
|Jtm

)
=

∑m
l=1 αlS

(m)
2 E

(
ftm+l

(
1− γm−l + γm−lσ2

tm+l

)
|Jtm

)
=

∑m
l=1 αlS

(m)
2 γm−lE

(
ftm+lσ

2
tm+l|Jtm

)
=

∑m
l=1 αlS

(m)
2 γm−lE

(
E
(
ftm+lσ

2
tm+l|Jtm+l−1

)
|Jtm

)
=

∑m
l=1 αlS

(m)
2 γm−lE

(
π0 + π1σ

2
tm+l−1|Jtm

)
(from the dynamics of the conditional leverage in Equation (5))

=
∑m

l=1 αlS
(m)
2 γm−l

(
π0 + π1E

(
σ2
tm+l−1|Jtm

))
≡ ℓ

(m)
1 + ℓ

(m)
2 σ2

tm, (Proposition 3.2); ℓ
(m)
1 and ℓ

(m)
2 are two scalars.

Moreover,

Cov
(
f
(m)
(t+1)m, σ

(m)2

(t+1)m|J (m)
tm

)
= E

(
f
(m)
(t+1)mσ

(m)2

(t+1)m|J (m)
tm

)
= E

[
E
(
f
(m)
(t+1)mσ

(m)2

(t+1)m|Jtm
)
|J (m)

tm

]
= E

[
ℓ
(m)
1 + ℓ

(m)
2 σ2

tm|J (m)
tm

]
.
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Since σ2
tm is J

(m)
tm -measurable, Cov

(
f
(m)
(t+1)m, σ

(m)2

(t+1)m|J (m)
tm

)
= ℓ

(m)
1 + ℓ

(m)
2 σ2

tm and from the one to one mapping

between σ2
tm and σ

(m)2

tm from Proposition 3.2 we can deduce that there exists two scalars π
(m)
0 and π

(m)
1 such

that Cov
(
f
(m)
(t+1)m, σ

(m)2

(t+1)m|J (m)
tm

)
≡ π

(m)
0 + π

(m)
1 σ

(m)2

tm �

Proof of Proposition 3.4: In the following, Et(⋆) denotes E(⋆|Jt).

Etm

((
f
(m)
(t+1)m

)3)
= Etm

(
(
∑m

l=1 αlftm+l)
3
)

=
∑m

l=1 α
3
lEtm(f3

tm+l) + 3×
∑

1≤l<l′≤m αlα
2
l′Etm(ftm+lf

2
tm+l′),

by the specifications in (2).

=
∑m

l=1 α
3
lEtm(f3

tm+l) + 3×
∑

1≤l<l′≤m αlα
2
l′Etm

(
ftm+lEtm+l′−1(f

2
k,tm+l′)

)

=
∑m

l=1 α
3
lEtm(f3

tm+l) + 3×
∑

1≤l<l′≤m αlα
2
l′Etm

(
ftm+lEtm+lσ

2
tm+l′−1

)
=

∑m
l=1 α

3
lEtm(f3

tm+l) + 3×
∑

1≤l<l′≤m αlα
2
l′Etm

(
ftm+lγ

l′−l−1σ2
tm+l

)
=

∑m
l=1 α

3
lEtm(Etm+l−1f

3
tm+l) + 3×

∑
1≤l<l′≤m αlα

2
l′γ

l′−l−1Etm(Etm+l−1(ftm+lσ
2
tm+l))

=
∑m

l=1 α
3
lEtm(h0 + h1σ

2
tm+l−1) + 3×

∑
αlα

2
l′γ

l′−l−1Etm

(
π0 + π1σ

2
tm+l−1

)
=

∑m
l=1 α

3
l [h0 + h1(1− γl−1 + γl−1σ2

tm)]

+3×
∑

1≤l<l′≤m αlα
2
l′γ

l′−l−1
[
π0 + π1

(
1− γl−1 + γl−1σ2

tm

)]
,

from Proposition 3.2.

=
∑m

l=1 α
3
l

[
h0 + (1− γl−1)h1

]
+ 3

∑
1≤l<l′≤m αlα

2
l′γ

l′−l−1[π0 + π1(1− γl−1)]

+
[
h1

∑m
l=1 α

3
l γ

l−1 + 3π1

∑
1≤l<l′≤m αlα

2
l′γ

l′−2
]
σ2
tm

≡ B
(m)
0 +B

(m)
1 σ2

tm

Since σ2
tm is J

(m)
tm -measurable, the law of iterated expectations implies that E

(
(f

(m)
(t+1)m)3|J (m)

tm

)
= B

(m)
0 +

B
(m)
1 σ2

tm. From Proposition 3.2, E
(
(f

(m)
(t+1)m)3|J (m)

tm

)
= h

(m)
0 + h

(m)
1 σ

(m)2

tm with h
(m)
0 = B

(m)
0 − h

(m)
1 S

(m)
1 and

h
(m)
1 = B

(m)
1 /S

(m)
2 ; S

(m)
1 and S

(m)
2 are defined as in Proposition 3.2.

Also,

E

((
U

(m)
i,(t+1)m

)3
|Jtm

)
= E

((∑m
l=1 α

3
lU

3
i,tm+l

)
|Jtm

)
from the specifications in (2)

= E
((∑m

l=1 α
3
lE(U3

i,tm+l|Jtm+l−1)
)
|Jtm

)
= E

((∑m
l=1 α

3
l s

0
i

)
|Jtm

)
= s0i

(∑m
l=1 α

3
l

)
, from Assumption 2-(ii)

hence,

E

((
U

(m)
i,(t+1)m

)3
|J (m)

tm

)
= s0i

(
m∑
l=1

α3
l

)
.
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From Assumptions 1 and 2 and the specifications in (2),

E

((
Y

(m)
i,(t+1)m

)3
|Jtm

)
= E

((
λif

(m)
(t+1)m

)3
+
(
U

(m)
i,(t+1)m

)3
|Jtm

)

= λ3
iE

((
f
(m)
(t+1)m

)3
|Jtm

)
+ E

((
U

(m)
i,(t+1)m

)3
|Jtm

)

Thus, E

((
Y

(m)
i,(t+1)m

)3
|J (m)

tm

)
= λ3

ih
(m)
1 σ2

tm + λ3
ih0 + s0i

(∑m
l=1 α

3
l

)
for all i and t �
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