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Abstract

This supplement provides (i) the formal assumptions discussed in Section 2 of the main

paper, (ii) the asymptotic results described in the same section, and (iii) a Monte Carlo study.

A Assumptions

It is convenient to write the model given in equation (1) of the main paper in stacked form. It

is given by

yi = Dαi + Xiβi + Fγi + εi, (A.1)

where yi = [yi,1, ..., yi,T]
′ is T × 1, D = [D1, ..., DT]

′ is T × m, Xi = [Xi,1, ..., Xi,T]
′ is T × k,

F = [F1, ..., FT]
′ is T × r, and εi = [εi,1, ..., εi,T]

′ is T × 1.

The conditions that we will be working under are given in Assumptions ERR, RND, POS

and MOM, which are similar to the conditions of Andrews (2005). The assumptions are stated
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in terms of cross-sectionally demeaned regressors. Let us therefore define A = N−1 ∑N
i=1 Ai

and A∗i = Ai − A for any matrix Ai. We also use C to denote the sigma-field generated by

(D, F). Moreover,→p and→d signify convergence in probability and distribution, respectively.

Finally, ‖A‖ =
√

tr (A′A) denote the Frobenius (Euclidean) norm of any matrix A.

Assumption ERR.

(a) εi is conditionally independent across i given C with E(εi|C) = 0T×1.

(b) εi is conditionally uncorrelated with Xj given C for all i and j.

Assumption RND.

(a) βi = β + vi and γi = γ + ηi, where vi and ηi are conditionally independent across i given

C with E(vi|C) = 0k×1 and E(ηi|C) = 0r×1.

(b) vi and ηj are conditionally uncorrelated of each other, as well as of Xn and εn given C for

all i, j and n.

Before we make the next assumption, we need to introduce some additional notation. In

particular, we define

Ψ = lim
N→∞

1
N

N

∑
i=1

E(X∗′i MDX∗i |C), (A.2)

R = lim
N→∞

1
N

N

∑
i=1

E(X∗′i MDuiu′i MDX∗i |C), (A.3)

where ui = Xivi + Fηi + εi and MD = IT − D(D′D)−1D′.

Assumption POS.

Ψ̂ =
1
N

N

∑
i=1

X∗′i MDX∗i →p Ψ (A.4)

as N → ∞, where Ψ and R are positive definite almost surely (a.s.)

Assumption MOM. E(‖MDX∗i ‖4) < ∞ and E(‖X∗′i MDui‖4) < ∞.
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Assumptions ERR and RND are discussed in the Section 2 of the main paper. Assumption

POS is a non-collinearity condition that rules out observed common factors that are included

in both Xi,t and Dt. The reason for distinguishing between Dt and Xi,t is that while βi is subject

to the random coefficient condition in Assumption RND, αi is not. Hence, unlike βi and γi,

αi is not restricted in any way, but can be arbitrarily correlated with Xi,t. The “price” of this

generality is that we cannot infer αi, as Dt will be projected out prior to the estimation of β.

This is also the reason for why the regressors in Xi,t cannot be constant in i. We do, however,

allow regressors in Xi,t that are constant in t.

Assumption MOM is a high-level moment condition that is needed to establish both asymp-

totic mixed normality of the FE estimator and consistency of the estimated covariance matrix.

Unlike in the bulk of the previous literature (see, for example, Chudik et al., 2011, and Pe-

saran, 2006), we do not require that vi, ηi and εi,t are independent of Xi,t but only that they are

uncorrelated with Xi,t. This is why Assumption MOM is stated in terms of X∗′i MDui. Under

independence, Assumption MOM holds provided that vi, ηi and εi,t all have finite fourth-order

moments.

A major difference when compared to the bulk of the existing large-T literature is that here

we place no assumptions on the time series properties of Ft, Dt, Xi,t and εi,t. Consider Ft.

A standard assumption in the literature is that the limit of T−1 ∑T
t=1 FtF′t is positive definite

(see, for example, Bai, 2009, and Moon and Weidner, 2015), which rules out many empirically

relevant cases, such as when Ft is trending. The assumptions considered here are more general

in this regard and do not place any restrictions on the process generating Ft, which can be both

deterministic and stochastic. The number of factors, r, is also not restricted in any way, which

is quite different from the bulk of the existing literature where r is typically assumed to be

known or accurately estimated (see Bai, 2009). The only restriction we make is that Ft must be

independent of εi,t, vi and ηi, which is standard in the literature. We similarly do not make any

assumptions regarding the persistence of Xi,t and εi,t.
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B Asymptotic results

In this section, we begin by showing that the FE estimator is consistent and asymptotically

normal as N → ∞ for a fixed T, provided that Assumptions ERR, RND, POS and MOM are

met. We then show that the same applies to PC.

The point that FE works in the presence of interactive effects has been made before by Cui

et al. (2019), Kapetanios et al. (2019), and Westerlund (2019), but their results require that T

is large. Gobillon and Magnac (2016) also comment on this possibility, but do not provide

any formal results. Sarafidis and Wansbeek (2012) report Monte Carlo results showing that FE

works well if the factor loadings are uncorrelated with the regressors.1 However, no analytical

results are provided. Andrews (2005) considers a pure cross-sectional model with common

factors, which he estimates using OLS. According to the results, the estimator is consistent and

asymptotically normal provided that the errors and regressors are uncorrelated. The author

comments on the panel data case, but does not provide any results. Forchini and Peng (2016)

consider a fixed-T panel data regression model that is similar to ours, which is again estimated

using OLS. However, they require that the regressors have a factor structure, which is not

necessary here.

While obviously related, the above cited work has different focus areas. In the present

paper, we focus on fixed effects demeaning as a general, and empirically very attractive, device

to increase the robustness not only of OLS but also of other estimation approaches, such as

PC, a point that has been largely overlooked in the previous literature. Of course, in practice

fixed effects are almost always included, and so our recommendation to demean is not very

controversial but just supports the common practice. This is true when using OLS, but also

when using PC. As pointed out in the main paper, PC does not require demeaning. In spite of

this, demeaning is fairly common also in PC (see, for example, Gobillon and Magnac (2016),

and Moon and Weidner, 2015). The reason is that if fixed effects are a part of the interactive

effects, demeaning reduces the number of factors that has to be estimated. Hence, regardless of

1Similarly, Sarafidis and Robertson (2009) argue that demeaning can be useful to reduce the bias in GMM
estimation of dynamic panel data models, and report some confirmatory Monte Carlo results.
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whether one is using OLS or PC, demeaning is quite standard. Our fixed-T results complement

the existing large-T results, and imply that demeaning is useful regardless of the size of T.

B.1 The FE estimator

The FE estimator described in the main paper is simply the OLS estimator applied to the data

after subtracting the cross-sectional averages and is given by

β̂FE =

(
N

∑
i=1

X∗′i MDX∗i

)−1 N

∑
i=1

X∗′i MDy∗i . (B.5)

Theorem B.1 below reports the asymptotic distribution of
√

N(β̂FE − β) under Assumptions

ERR, RND, POS and MOM.

Theorem B.1. Under Assumptions ERR, RND, POS and MOM, as N → ∞,

√
N(β̂FE − β)→d MN(0k×1, Ψ−1RΨ−1),

where MN(·, ·) signifies a mixed normal distribution.

Proof: By using the fact that βi = β + vi and γi = γ + ηi, we obtain

y∗i = Dα∗i + X∗i β + (Xivi)
∗ + Fη∗i + ε∗i = Dα∗i + X∗i β + u∗i , (B.6)

where ui = Xivi + Fηi + εi, which in turn implies

√
N(β̂FE − β) =

(
1
N

N

∑
i=1

X∗′i MDX∗i

)−1
1√
N

N

∑
i=1

X∗′i MDu∗i

= Ψ̂−1 1√
N

N

∑
i=1

X∗′i MDui − Ψ̂−1 1√
N

N

∑
i=1

X∗′i MDu

= Ψ̂−1 1√
N

N

∑
i=1

ξi, (B.7)

where ξi = X∗′i MDui, and the last equality is due to the fact that ∑N
i=1 X∗′i = 0k×T. This last

result is the key and provides intuition for why β̂FE works even though the interactive effects
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are misspecified, which is the same as in the large-T case considered by Westerlund (2019). We

have assumed that the random components of βi, γi and εi are all independent over i, mean

zero, and uncorrelated with Xj for all i and j. The mean of βi is the parameter of interest. Hence,

if we can just eliminate γ it should be possible to exploit the assumed independence over i, and

to obtain an asymptotic normal distribution for
√

N(β̂FE− β). One way to accomplish this goal

is to demean Xi.

Let Fi be the sigma-field generated by C and (ξ1, ..., ξi). Then {(ξi,Fi) : i ≥ 1} is a mar-

tingale difference sequence (MDS), because ξi is independent across i conditional on C, and

E(ξi|Fi−1) = E(ξi|C) = 0k×1 (see, for example, Andrews, 2005, for a similar MDS construc-

tion). A conditional Lindeberg condition holds because ξi have four finite moments. Hence,

letting

R = lim
N→∞

E

[(
1√
N

N

∑
i=1

ξi

)(
1√
N

N

∑
i=1

ξi

)′]

= lim
N→∞

1
N

N

∑
i=1

E(X∗′i MDuiu′i MDX∗i |C), (B.8)

by the MDS CLT given in Proposition A.1 of Magdalinos and Phillips (2009),

1√
N

N

∑
i=1

ξi →d MN(0k×1, R) (B.9)

as N → ∞, where →d and MN(·, ·) signify convergence in distribution and a mixed normal

distribution, respectively. Theorem B.1 is a direct consequence of this result and the fact that

Ψ̂→p Ψ as N → ∞ by Assumption POS. �

While the asymptotic distribution of
√

N(β̂FE − β) is conditional on C, it is not difficult to

show that consistency holds unconditionally. Indeed, by a law of large numbers for indepen-

dent processes (see, for example, Lemma 1 of Andrews, 2005),

1
N

N

∑
i=1

ξi →p E(ξi|C) = 0k×1 (B.10)

6



as N → ∞. Hence, since ‖Ψ̂−1‖ = Op(1),

‖β̂FE − β‖ ≤ ‖Ψ̂−1‖
∥∥∥∥∥ 1

N

N

∑
i=1

ξi

∥∥∥∥∥ = op(1). (B.11)

As pointed out in the main paper, inference based on Theorem B.1 requires a consistent

estimator of Ψ−1RΨ−1. The estimator of Ψ is obviously given by Ψ̂. For the estimation of R, we

use

R̂ =
1
N

N

∑
i=1

X∗′i MDûiû′i MDX∗i , (B.12)

where ûi = MD(y∗i − X∗i β̂FE). Theorem B.2 shows that Ψ̂−1R̂Ψ̂−1 is a consistent estimator for

Ψ−1RΨ−1.

Theorem B.2. Under the conditions of Theorem B.1, as N → ∞,

Ψ̂−1R̂Ψ̂−1 →p Ψ−1RΨ−1.

Proof: From (B.6),

ûi = MD(y∗i − X∗i β̂FE) = MD[(Xivi)
∗ + Fη∗i + ε∗i − X∗i (β̂FE − β)]

= MD[ui − u− X∗i (β̂FE − β)] = MDui + Op(N−1/2), (B.13)

where the last equality holds because of Theorem B.1 and the fact that ‖u‖ = Op(N−1/2) by

the same MDS CLT arguments used in Proof of Theorem B.1. It follows that

R̂ =
1
N

N

∑
i=1

X∗′i MDûiû′i MDX∗i =
1
N

N

∑
i=1

X∗′i MDuiu′i MDX∗i + Op(N−1/2)→p R (B.14)

as N → ∞. Hence, since Ψ̂→p Ψ by Assumption POS, we can show that

Ψ̂−1R̂Ψ̂−1 →p Ψ−1RΨ−1, (B.15)
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and so we are done. �

A major point about Theorem B.2 is that the covariance matrix of β̂FE is very easily es-

timable. This stands in sharp contrast to the large-T framework that typically involves some

kind of heteroskedasticity and autocorrelation consistent (HAC) correction (see Bai, 2009),

which is not only difficult to implement but is also known to lead to poor small-sample prop-

erties.

We now put Theorem B.2 to work in testing the null hypothesis H0 : Hβ = h, where H is a

g× k matrix of rank g ≤ k and h is a g× 1 vector. Consider the Wald test statistic

W = N(Hβ̂FE − h)′(HΨ̂−1R̂Ψ̂−1H′)−1(Hβ̂FE − h). (B.16)

Suppose that H0 is true. Then, because of the consistency of Ψ̂−1R̂Ψ̂−1 (Theorem B.2) and the

asymptotic normality of
√

N(Hβ̂FE − h) under H0 (Theorem B.1), we can show that

W =
√

N(Hβ̂FE − h)′(HΨ−1RΨ−1H′)−1
√

N(Hβ̂FE − h) + op(1)→d χ2(g) (B.17)

as N → ∞. If g = 1, then we can similarly show that

t =
√

N(Hβ̂FE − h)√
HΨ̂−1R̂Ψ̂−1H′

=

√
N(Hβ̂FE − h)√
HΨ−1RΨ−1H′

+ op(1)→d N(0, 1) (B.18)

as N → ∞ under H0.

B.2 The PC estimator

As mentioned in the main paper, the results of Section B.1 are not unique to the FE estimator but

apply to all estimators of the same basic form and where the regressors satisfy the conditions

that we here place on Xi. Let us now illustrate this using the PC estimator of Bai (2009). While

not necessary, it is convenient to assume that r is known and that it is not larger than T, as this

will allow us to invoke some of the results of Bai (2009).

The PC estimator of β is defined in equation (11) of Bai (2009). The demeaned version of
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this estimator is given by

β̂PC =

(
N

∑
i=1

X∗′i MW X∗i

)−1 N

∑
i=1

X∗′i MWy∗i . (B.19)

where W = [D, F̂] with F̂ being an T × r matrix of estimated PC factors. The definition of F̂ is

given in equation (12) of Bai (2009), which in our case reads

1
NT

N

∑
i=1

MD(yi − X∗i β̂PC)(yi − X∗i β̂PC)
′MD F̂ = F̂VN, (B.20)

where VN is a diagonal matrix that consists of the r largest eigenvalues of the T × T matrix

(NT)−1 ∑N
i=1 MD(yi − X∗i β̂PC)(yi − X∗i β̂PC)

′MD, arranged in decreasing order.

We begin by analyzing F̂. By using the same arguments as in Proof of Proposition 1 of Bai

(2009), we can show that ‖β− β̂PC‖ = op(1). By using this and the fact that

MD(yi − X∗i β̂PC) = MDX∗i (β− β̂PC) + MDu∗i (B.21)

by (B.6), we can show that

F̂VN =
1

NT

N

∑
i=1

MD(yi − X∗i β̂PC)(yi − X∗i β̂PC)
′MD F̂

=
1

NT

N

∑
i=1

MDu∗i u∗′i MD F̂ + op(1)

= QF̂ + op(1), (B.22)

where

Q = lim
N→∞

1
NT

N

∑
i=1

E(MDuiu′i MD|C). (B.23)

This is a new eigenvalue-eigenvector relation, where asymptotically each column of F̂ is an

eigenvector of Q. The columns of F̂ are therefore asymptotically equal to the first r eigenvectors

associated with the first r largest eigenvalues of Q, which are the limits of the eigenvalues that
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sit on the main diagonal of VN. Let F0 be the limit of F̂. It follows that

‖F̂VN −QF0‖ = op(1). (B.24)

Since PF̂ = PF̂VN
, similarly to the proof of Lemma A.7 of Bai (2009), this last result implies

‖MF̂ −MQF0‖ = ‖PF̂ − PQF0‖ = ‖PF̂VN
− PQF0‖ = op(1), (B.25)

and so we obtain

‖MW −MW0‖ = op(1), (B.26)

where W0 = [D, QF0]. It is important to note that F̂ is not consistent for (the space spanned

by) F, as this requires T to be large. It is, however, asymptotically uncorrelated of vi, ηi and εi,

which is enough for our purposes, as we will now demonstrate.

Let us now consider β̂PC. Making use of (B.6),

√
N(β̂PC − β) =

(
1
N

N

∑
i=1

X∗′i MW X∗i

)−1
1√
N

N

∑
i=1

X∗′i MWu∗i . (B.27)

By adding and subtracting, the numerator can be written as

1√
N

N

∑
i=1

X∗′i MWu∗i =
1√
N

N

∑
i=1

X∗′i MW0u∗i +
1√
N

N

∑
i=1

X∗′i (MW −MW0)u∗i . (B.28)

Denote by X j
i the j-th column of Xi . In this notation, the j-th row of the last term on the right

can be written as

1√
N

N

∑
i=1

X j∗′
i (MW −MW0)u∗i =

1√
N

N

∑
i=1

tr [(MW −MW0)u∗i X j∗′
i ]

≤ tr [(MW −MW0)2]1/2tr

( 1√
N

N

∑
i=1

u∗i X j∗′
i

)2
1/2

= op(1), (B.29)
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where the inequality holds because [tr (A′B)]2 ≤ tr (A′A)tr (B′B), and the last equality is due

to tr [(MW −MW0)2] = ‖MW −MW0‖ = op(1). It follows that

1√
N

N

∑
i=1

X∗′i MWu∗i =
1√
N

N

∑
i=1

X∗′i MW0u∗i + op(1). (B.30)

We can similarly show that

1
N

N

∑
i=1

X∗′i MW X∗i =
1
N

N

∑
i=1

X∗′i MW0 X∗i +
1
N

N

∑
i=1

X∗′i (MW −MW0)X∗i

=
1
N

N

∑
i=1

X∗′i MW0 X∗i + op(1), (B.31)

which in turn implies

√
N(β̂PC − β) =

(
1
N

N

∑
i=1

X∗′i MW0 X∗i

)−1
1√
N

N

∑
i=1

X∗′i MW0u∗i + op(1). (B.32)

As alluded to in the above, MW0 Xi is uncorrelated of vi, ηi and εi. Hence, if we assume that

1
N

N

∑
i=1

X∗′i MW0 X∗i →p lim
N→∞

1
N

N

∑
i=1

E(X∗′i MW0 X∗i |C)

as N → ∞, where the limiting matrix is positive definite a.s., such that Assumption POS holds,

then all the conditions of Section A are met. The asymptotic results reported in Section B.1 for

FE therefore apply also to PC.

B.3 The Wald test for uncorrelated coefficients

As discussed in the main paper, the Wald test given in (B.16) can be used to test the Assump-

tion RND (b) requirement that errors vi and ηi should be uncorrelated with Xi,t. In the liter-

ature it is very common to assume that any correlation is driven by Xi = T−1 ∑T
t=1 Xi,t (see

Hsiao, 2003, chapter 4.3, for a detailed discussion), and therefore so shall we. The formal con-

ditions are stated in Assumptions TEST, POS’ and MOM’ below, where Zi = [MDX∗i , (X′i ⊗

MDXi)
∗, (X∗′i ⊗ F̂)] and F̂ = MD(y− Xβ̂FE).

11



Assumption TEST.

(a) βi = β + vi and γi = γ + ηi with γ 6= 0r×1 and

 vi

ηi

 =

 Λ1

Λ2

Xi +

 wi

zi

 ,

where Λ1 and Λ2 are k× k and r× k, respectively.

(b) wi and zi are conditionally independent across i given C with E(wi|C) = 0k×1 and E(zi|C) =

0r×1.

(c) wi and zi are conditionally uncorrelated of each other as well as of X j and ε j given C for

all i and j.

Let

Φ = lim
N→∞

1
N

N

∑
i=1

E(Z∗′i Z∗i |C), (B.33)

S = lim
N→∞

1
N

N

∑
i=1

E(Z∗′i MDeie′i MDZ∗i |C), (B.34)

where ei = Xiwi + Fzi + εi.

Assumption POS’.

Φ̂ =
1
N

N

∑
i=1

Z∗′i Z∗i →p Φ (B.35)

as N → ∞, where Φ and S are positive definite a.s.

Assumption MOM’. E(‖Z∗i ‖4) < ∞ and E(‖Z∗′i MDei‖4) < ∞.

The null hypothesis of interest is given by H0 : Λ1 = 0k×k and Λ2 = 0r×k, which can be

tested using the following version of the Wald test considered in Section B.1 of this supplement
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and that is described in Section 2 of the main paper:

WRND = N(HRND θ̂FE)
′(HRNDΦ̂−1ŜΦ̂−1H′RND)

−1HRND θ̂FE, (B.36)

where HRND = [0(k+1)k×k, I(k+1)k] and θ̂FE is the FE slope estimator in a regression of MDy∗i

onto Zi. Also,

Ŝ =
1
N

N

∑
i=1

Z′i MD êi ê′i MDZi, (B.37)

where êi = MD(y∗i − Z∗i θ̂FE). We would like to point out here that, despite the notation, F̂ is not

intended as an estimator of F. In fact, F̂ may not even have the same dimension as F. However,

we can show that asymptotically F̂ is going to be highly correlated with Fγ, which is enough

to ensure that the test is consistent.

Theorem B.3. Suppose that Assumptions ERR, POS’ and TEST hold. Then, under H0, as N → ∞,

WRND →d χ2[(k + 1)k].

Proof: Assumption TEST (a) can be inserted into (B.6), giving

y∗i = Dα∗i + X∗i β + (Xivi)
∗ + Fη∗i + ε∗i

= Dα∗i + X∗i β + (XiΛ1Xi)
∗ + FΛ2X∗i + u∗i

= Dα∗i + X∗i β + (X′i ⊗ Xi)
∗λ1 + (X∗′i ⊗ F)λ2 + e∗i , (B.38)

where λ1 = vec Λ1 and λ2 = vec Λ2. Because wi and zi have exactly the same properties as

vi and ηi under uncorrelatedness, e∗i will behave just as u∗i in (B.6). We can, therefore, think of

(B.38) as an augmented version of (B.6) with (X′i ⊗ Xi)
∗ and (X∗′i ⊗ F) as additional regressors.

The problem is that F is unobserved, which means that (B.38) is not really feasible. In order to
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account for this, note that in analogy to (B.13),

MD(yi − Xi β̂FE) = MD[ui − Xi(β̂FE − β)] = MD(ui − XiΨ̂−1ξ), (B.39)

implying that

F̂ = MD(y− Xβ̂FE) = MD(u− XΨ̂−1ξ), (B.40)

which shows that F̂ is correlated with F, unless of course γ = 0r×1, which is ruled out by

Assumption TEST (a).

Let Zi = [MDX∗i , (X′i ⊗MDXi)
∗, (X∗′i ⊗ F̂)] and θ = [β′, λ′1, λ′2]

′. Under H0 the FE estimator

θ̂FE of θ can be written as

√
N(θ̂FE − θ) =

(
1
N

N

∑
i=1

Z′i Zi

)−1
1√
N

N

∑
i=1

Zi MDe∗i

=

(
1
N

N

∑
i=1

Z′i Zi

)−1
1√
N

N

∑
i=1

Zi MDei, (B.41)

where the first equality is due to the fact that Λ2 = 0r×k under H0, while second equality is due

to ∑N
i=1 Zi = 0T×(k+2)k. As for the remaining term on the right-hand side, by the MDS CLT (see

Proof of Theorem B.1),

1√
N

N

∑
i=1

Zi MDei →d MN(0(k+2)k×1, S) (B.42)

as N → ∞, where

S = lim
N→∞

1
N

N

∑
i=1

E(Z′i MDeie′i MDZi|C).
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It follows that if we let

Φ̂ =
1
N

N

∑
i=1

Z′i Zi,

Φ = lim
N→∞

1
N

N

∑
i=1

E(Z′i MDZi|C),

then, under H0,

√
N(θ̂FE − θ) = Φ̂−1 1√

N

N

∑
i=1

Zi MDei →d MN(0(k+2)k×1, Φ−1SΦ−1). (B.43)

Let êi = MD(y∗i − Z∗i θ̂FE). By using the same steps as in Proof of Theorem B.2, it is not

difficult to show that under H0,

Ŝ =
1
N

N

∑
i=1

Z′i MD êi ê′i MDZi →p S. (B.44)

Hence, letting HRND = [0(k+1)k×k, I(k+1)k], we have that under H0,

WRND = N(HRND θ̂FE)
′(HRNDΦ̂−1ŜΦ̂−1H′RND)

−1HRND θ̂FE

= (
√

NHRND θ̂FE)
′(HRNDΦ−1SΦ−1H′RND)

−1
√

NHRND θ̂FE + op(1)

→d χ2[(k + 1)k] (B.45)

as N → ∞. �

Theorem B.3 confirms that asymptotically WRND is correctly sized under the null hypoth-

esis. Under the alternative hypothesis Λ1 6= 0k×k or Λ2 6= 0r×k, or both, in which case
√

N(θ̂FE− θ) = Op(
√

N) implying WRND = Op(N). The power of the test therefore approaches

one as N → ∞. It is therefore consistent. It is important to point out, thought, that this sup-

poses that the Assumption TEST is satisfied, so that the correlation between vi and ηi on the

one hand and Xi,t on the other hand is in fact driven by Xi. A more general approach would

be to test if vi and ηi are uncorrelated with Xi,1, ..., Xi,T (see Hsiao, 2003, chapter 4.3). However,
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this approach is feasible only if T is really small, and unreported Monte Carlo results confirm

that the performance depends critically on T. In this paper, we therefore focus on Xi, which is

a restriction. Moreover, any dependence on Xi must be linear, for otherwise the test is unlikely

to detect it.

C Monte Carlo study

This section presents our Monte Carlo results, which are divided into three parts. The full set

of results is very large. In Section C.1, we therefore present a small but representative subset of

the results for the case when Xi,t is a treatment dummy. If the purpose is to just get a feeling for

the results, it is enough to read this section. Sections C.2 and C.3 contain additional results. In

particular, while Section C.2 report some results that where omitted from Section C.1, Section

C.3 presents results for a model with more general types of regressors.

C.1 Main results

We consider the same three estimators as in Section 3 of the main paper, which are implemented

in exactly the same way as in that same section.2 The data generating process is similar to the

one used by Gobillon and Magnac (2016), and can be seen as a restricted version of (A.1) that

sets β = Dt = r = 1, αi ∼ N(1, 1), vi ∼ N(0, 1) and Xi,t = BiCt, where Bi = 1(i ≤ N0)

and Ct = 1(t ≥ T0). Two specifications of N0 are considered; N0 = 0.1N, which reflects

the empirical illustration in Section 3 of the main paper, and N0 = 0.5N, as in, for example,

Friedberg (1998), Kim and Oka (2014), and Wolfers (2006). In both cases, T0 = 0.5T. Also,

following studies such as Chudik et al. (2011), Kapetanios et al. (2011), and Pesaran (2006), εi,t is

allowed to be both serially correlated and heteroskedastic through the following autoregressive

2In their Monte Carlo study, Gobillon and Magnac (2016) assume that the number of factors are known, which
is never the case in practice. By contrast, the use of information criteria to select the number of common factors is
very common in the empirical literature. Our use of the CP criterion of Bai (2009) reflects this. The results reported
here should therefore be highly relevant for applied work.
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(AR) specification:

εi,t = ρεi,t−1 + ui,t, (C.46)

where ρ = 0.5, ui,t ∼ N(0, σ2
i ), σ2

i ∼ U(1, 2) and εi,0 = 0. While we do not comment on this in

the main paper, the empirical results suggest that the estimated factors can be well described

by highly persistent AR processes. Motivated in part by this, in part by existing Monte Carlo

studies (see, for example, Chudik and Pesaran, 2015, Moon and Weidner, 2015, and Pesaran,

2006), Ft is generated as

Ft = (1− φ) + φFt−1 + et, (C.47)

where φ = 0.8, et ∼ N(0, 1) and F0 = 0. As for γi, similarly to Gobillon and Magnac (2016),

we set γi = γ + µ · 1(i ≤ N0) + N(0, 1), where γ = 1 and µ ∈ {0, 1} determines the size of the

break in the mean. If µ = 0, there is no break and as a consequence γi is independent of Xi,t. If,

on the other hand, µ = 1, the mean is breaking, and therefore γi is correlated with Xi,t and the

correlation between the two is 0.3.

We focus on the bias, the root mean square error (RMSE), and the 5% size of a double-

sided t-test for testing β = 1. We also report 5% rejection frequencies for the Wald test for

uncorrelated loadings. When µ = 0, these rejection frequencies represent size, whereas when

µ = 1, they represent power. All results are based on 1,000 replications of samples with T ∈

{6, 10, 20} and N ∈ {30, 50, 100, 200}.

Tables 1 and 2 report the results for the case without and with a break in the mean of the

loadings, respectively. We begin by considering the former set of results. The first thing to note

about Table 1 is the poor performance of the PC estimator based on raw data. The bias is gener-

ally at or above one, which means that the bias as a percentage of the size of the true coefficient

(β = 1) is close to 100%. The bias and RMSE do come down with increases in N and T, as

expected given the existing joint limit theory of the PC estimator (see Bai, 2009, and Moon and

Weidner, 2015), albeit only very slowly. Demeaning removes most of this poor performance.
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Indeed, the demeaned PC estimator is essentially unbiased and the RMSE decreases very fast

with increases in T and especially in N. As expected, the FE estimator also performs well. In

fact, the performance of FE is almost indistinguishable from that of demeaned PC. The only

notable difference is that the RMSE is generally slightly higher for PC than for FE, although the

difference gets smaller as N and T grow.

The fact that PC and FE tend to perform very similarly only under demeaning suggests that

it is not the augmentation by the estimated PC factors that drives the results, but rather the

demeaning. The intuition is that if T is small, accurate estimation of the factors is not possible,

and therefore the factor estimation error has a dominating effect. On the other hand, we know

from Section B that demeaning works even if T is small, provided that the uncorrelatedness

condition is met. In this case, the estimated PC factors are just redundant regressors, whose

inclusion should be asymptotically irrelevant, although in small samples it is expected to lead

to variance inflation.

Another difference between demeaned PC and FE is that the size distortions are generally

much higher for the former estimator than for the latter. We also see that while decreasing

in T, for PC the distortions have a tendency to accumulate and to become very serious as N

increases. This is in agreement with the results reported by Moon and Weidner (2015) (see also

Chudik et al., 2011), who show that T as large as 300 may be needed for the distortions of PC

to go away. The FE results look much better. In particular, while there are some distortions

among the smaller values of N when N0 = 0.1N, these disappear very quickly as N increases,

and when N0 = 0.5N size accuracy is almost perfect.3 These results for the FE-based t-test are

reflected also in the Wald test for uncorrelated loadings, which generally performs well, except

when N0 = 0.1N and N is small.

The introduction of a break in the mean of the loadings generally leads to a substantial drop

in performance for all three estimators. This can be seen by comparing the results reported in

Table 1 with those reported in Table 2. We also see that while demeaned PC and FE generally

3There are some minor distortions also when N0 = 0.5N. These are, however, generally not larger than that
they can be attributed to simulation uncertainty. Indeed, with 1,000 replications the 95% confidence interval for
the size of the 5% level tests studied here (in %) is [3.6, 6.4].

18



perform very similarly when T is small, as T increases so does the relative performance of PC.

This is expected, because the accuracy of the estimated PC factors is increasing in T. Hence,

when T is small accurate estimation of the factors is not possible, and so the performance is

again driven by the demeaning. As T increases, however, the accuracy of the factor estimates

increases. At this point, the estimated factors stop being just redundant regressors, and so the

relative performance of PC increases. Demeaning is still the key, though, which is obvious from

the difference in the PC results depending on whether the data have been demeaned.

An important observation from Table 2 is that, except perhaps for the smallest values of

N, the Wald test for uncorrelated loadings has good discriminatory power against the type of

mean breaks considered here, which is expected given the discussion in Section 3 of the main

paper. We also see that power increases steadily as N grows. This result is reassuring because

we know from before that undetected breaks can have a substantial effect on performance. The

results reported in Table 2 suggest that in large-N samples breaks are very likely to be detected.

If the Wald test does not reject, we use FE, while if the test rejects, we use demeaned PC, which

is relatively more accurate, especially if T is large.

The above conclusions apply not only to the particular setup considered here but also to

all variations of it that we have considered, the results of which are again reported in Sections

C.2 and C.3. In Section C.2, we take the same data generating process as here but vary the

persistence of εi,t, the size of the breaks in γi, and the specification of Ft. While the results

obviously differ, the conclusions do not. As an indication of this, we compute the correlation

between all the bias results for FE and demeaned PC, on the one hand, and demeaned PC and

PC based on raw data, on the other hand. While the former correlation is 0.90 (0.97) with 10%

(50%) treated units, the latter correlation is −0.48 (−0.59). In other words, the performance of

PC is driven mainly by the demeaning. Given that the theoretical results of Section B are not

restricted to the treatments effects case, in Section C.3 we consider different specifications of

Xi,t. Again, the conclusions are unaffected.
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C.2 Additional results for the treatment effects case

As already mentioned, the results reported in the previous section are just a small fraction of

the full set of results. The basic data generating process considered in this section is the same

as before, except that we now consider more variations of it.

V1. The heterogeneity of the slope, βi: We consider βi ∼ N(1, 1), as in Section C.1, and βi =

β = 1.

V2. The persistence of εi,t, as measured by ρ: While in Section C.1, ρ = 0.5, here we consider

ρ ∈ {0, 0.5, 1}. Hence, εi,t can be serially uncorrelated (ρ = 0), persistent but stationary

(ρ = 0.5), or unit root non-stationary (ρ = 1). Following Gobillon and Magnac (2016), we

also consider εi,t ∼ U(−
√

3,
√

3).

V3. The size of the break in the factor loading, γi, as measured by µ: While in Section C.1,

µ ∈ {0, 1}, here we consider µ ∈ {0, 0.5, 1}, similarly to Gobillon and Magnac (2016).

V4. The mean of the factor loadings, γ: While in Section C.1, γ = 1, here we set γ = 0.

V5. The number of factors, r: While in Section C.1, r = 1, here we consider r ∈ {2, 3}.

V6. The factor, Ft: Motivated by the empirical illustration, in Section C.1 we generated Ft as

a highly persistent AR process. Here, we consider three additional specifications; Ft ∼

U(0.5, 1.5), Ft ∼ N(1, 1) and Ft = 5 · sin(πt/T), where the first and third are taken from

Gobillon and Magnac (2016).

V1–V6 are all the variations that we have considered. However, since some of the results were

very similar, we do not report the results for all the parameterizations. For example, since the

results for βi = 1 resembled those for βi ∼ N(1, 1), here we only report results for the latter

parametrization. Similarly, the results for ρ = 1 (εi,t ∼ U(−
√

3,
√

3)) were similar to those

obtained for ρ = 0.5 (ρ = 0), and so we only report the results for ρ ∈ {0, 0.5}. We also do not

report the results for µ = 0.5 and Ft ∼ N(1, 1), as the conclusions were the same as for µ = 1

and Ft ∼ U(0.5, 1.5), respectively. The rest of the data generating process is the same as in

Section C.1, including the values of N and T that we consider, and the number of replications.
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Tables 3–15 contain the results, and have the same structure as Tables 1 and 2. The con-

clusions are consistent with those reached in Section C.1. In particular, PC based on raw data

generally leads to the worst performance by far. Demeaning leads to a marked improvement.

Indeed, provided that the loadings are not breaking, the demeaned PC estimator is essentially

unbiased and the RMSE decreases very fast with increases in T and especially in N. The FE

estimator performs very similarly to demeaned PC. A break in the loadings leads to a marked

loss of performance. This is true for all three estimators; however, it is only the demeaned PC

results that have a clear tendency to improve as N increases, which is again consistent with the

results reported in Section C.1.

Comparing across the different parameterizations, we see that while the persistence of the

regression error affects the performance of PC based on raw data, the demeaned PC and FE

estimators are basically unaffected. Similarly, while the results depend on the specification of

the factors, specially when the loadings are breaking, the effect is largest for non-demeaned PC.

The specification that leads to the worst performance is Ft = 5 · sin(πt/T) when the loadings

are breaking. The performance is, however, not all that different from the highly persistent AR

case considered in the paper, and so the conclusions are the same. As expected, while the bias

is unaffected, increasing the number of common factors leads to an increase in RMSE.

As with the estimators, the performance of the Wald test for uncorrelated slopes is consis-

tent with the one reported in the main paper. Size accuracy is good. There are some distortions

when N0 = 0.1N, but these disappear quite quickly as N grows. Power is also good and it

increases with the sample size. The Wald test supposes that Assumption TEST is met, which in

turn requires that the mean of the loadings is nonzero. In order to assess the effect of a violation

of this assumption, in Table 15 we report some results for the case when γ = 0. We see that

the results are almost identical to those reported in Tables 1 and 2 for the case when γ = 1,

suggesting that nonzero mean loading condition is not essential for test performance.

In contrast to the other tables, in addition to PC and FE, Table 15 reports the results obtained

when applying OLS directly to the raw data. This is to illustrate that demeaning can be costly

if the mean of the loadings is zero, in which case demeaning is no longer necessary for OLS
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to be consistent and asymptotically normal. In agreement with this, we see that OLS based on

raw data generally leads to the lowest RMSE when γ = 0. The difference is, however, very

small. Moreover, while the RMSE goes down, the size distortions go up when the demeaning

is removed. Hence, even if it is known that the loadings have zero mean, it is not clear that one

would prefer to apply OLS to the raw data.

C.3 Results with general regressors

In Sections C.1 and C.2, the data generating process is tailored to the treatment effects example,

and resembles the one in Gobillon and Magnac (2016). As we pointed out earlier, however, our

theoretical results are by no means restricted to the treatments effects case, but applies more

broadly when estimating panel regressions with interactive effects. In this section, we therefore

consider more types of regressors. The data generating process can be seen as version of the

one used earlier. Just as before, we set Dt = k = r = 1, αi ∼ N(1, 1) and

Ft = (1− φ) + φFt−1 + et, (C.48)

where φ = 0.8, F0 = 0 and et ∼ N(0, 1). In the main paper, we allowed the support of γi

to differ between the treated and non-treated units, which in turn induced a correlation with

Xi,t. In this section, we instead set βi = 1 + vi and γi = 1 + ηi, where vi and ηi are allowed to

depend on Xi, as in Assumption TEST. Specifically, vi

ηi

 =

 Λ1

Λ2

Xi +

 wi

zi

 , (C.49)

where (wi, zi)
′ ∼ N(02×1, I2). If vi (ηi) is uncorrelated with Xi, we set Λ1 = 0 (Λ2 = 0), whereas

if vi (ηi) is correlated with Xi, then we set Λ1 = 0.5 (Λ2 = 0.5). As for Xi,t, we consider four

experiments.

X1. Xi,t = vi,t, where vi,t = 0.5vi,t−1 + ui,t + ∑K
j=i+1 0.5(ui−j,t + ui+j,t) with K = 10, vi,0 = 0

and ui,t ∼ N(0, 1).
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X2. Xi,t = ΓiFt + vi,t, where Γi ∼ N(1, 1) and vi,t is as in X1.

X3. Xi,t = 0.5Xi,t−1 + ΓiFt + vi,t, where Xi,0 = 0, and Γi and vi,t are the same as in X2 and X1,

respectively.

X4. Xi,t = BiCt, where Bi = 1(i ≤ 0.5N) and Ct = 1(t ≥ 0.5T).

The data generating process of vi,t is taken from Bai and Ng (2002), and is chosen to showcase

the generality of the types of regressors that can be accommodated. In particular, by generating

the data in this way, vi,t is not only correlated over time, but also correlated with 2K of its

neighbouring cross-section units. The correlation is, however, only weak.4 Hence, since in this

case Xi,t = vi,t, in X1 Xi,t is weakly correlated. By contrast, in X2, Xi,t has an interactive effects

specification, and so the cross-section dependence is of the strong type. Moreover, because ×

Ft and vi,t are generated as AR processes, Xi,t has a moving average (MA) representation. By

contrast, in X3, we generate Xi,t as an ARMA process. Finally, in X4, Xi,t is generated as a

treatment dummy. Note that Xi = 0.5Bi. Hence, by making ηi correlated with Xi we achieve

the same goal as when changing the support of γi. Just as before, the results are based on

making 1,000 replications of samples where T ∈ {6, 10, 20} and N ∈ {30, 50, 100, 200}.

The main purpose of the exercise is to assess the small-sample accuracy of our theoretical

predictions. Hence, unlike in Sections C.1 and C.2, here we are not particularly interested in

the performance of the PC approach used by Gobillon and Magnac (2016), but focus on the FE

estimator based on demeaning and its infeasible counterpart based on taking Ft as known. As

in the main paper, we report bias, root mean squared error (RMSE), and the size of a double-

sided t-test for testing β = 1.

The WRND test for uncorrelated coefficients is also simulated. Three versions are consid-

ered, one for each of the hull hypotheses of Λ1 = 0, Λ2 = 0 and Λ1 = Λ2 = 0. As mentioned

in Section A, provided that Assumption POS is met, for estimation purposes there is no need

for any additional restrictions on the types of regressors that can be included in Xi,t. However,

because of the way that Xi enters the augmented test regression, when using WRND Assump-

tion POS’ has to be met. In particular and as we point out in Section 3 of the main paper, in X4,
4See Chudik et al. (2011) for a discussion of the concepts of weak and strong cross-section dependence.
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we have MDX∗i = (Bi − B)(C − C1T×1) and (X′i ⊗ MDXi)
∗ = C(Bi − B)(C − C1T×1), where

C = [C1, ..., CT]
′ with B and C being the averages of Bi and Ct, respectively. Hence, MDX∗i is

proportional to (X′i ⊗ MDXi)
∗, which means that Φ̂ is singular, leading to a violation of As-

sumption POS’. The solution to this problem is to simply drop (X′i ⊗ MDXi)
∗ from the test

regression, and to base the test on the significance of (X∗′i ⊗ F̂) only, which implies that the

Wald test only has power in the direction of Λ2 6= 0. Hence, in X4, we only test if Λ2 = 0.

Table 16 reports the X1 results for different combinations of N, T, Λ1 and Λ2. As expected

given our asymptotic results, we see that when Λ1 = Λ2 = 0 the results for the two estimators

are almost indistinguishable. This is true regardless of whether one is looking at the bias,

RMSE or size. Because Λ1 = Λ2 = 0 the rejection frequencies of all three Wald tests represent

size. Consistent with this we see that, while there are some distortions among the smaller

values of N, especially for the joint test, as N increases the rejection frequencies approach the

nominal 5% level. By contrast, when one of Λ1 or Λ2 is nonzero, then the rejection frequencies

of the relevant tests increase markedly, and they continue to increase as N grows. Interestingly,

the estimators continue to perform very similarly with only minor differences, although the

performance of both estimators deteriorates quite substantially when Λ1 = 0.5. The fact that

the infeasible estimator works well when Λ2 = 0.5 but not when Λ1 = 0.5 is expected, because

conditioning on Ft only takes care of the problem if it is the loadings that are correlated. Hence,

the problems experienced by the FE estimator when Λ1 = 0.5 are by no means unique, but

apply to all known estimators, including PC. It is therefore quite reassuring to note that the

Wald test seems to have high power in the direction of Λ1 6= 0.

The results reported in Tables 17 and 18 for X2 and X3 are qualitatively very similar to those

reported in Table 16 for X1, and therefore the conclusions are the same. First, while the effect

of Λ2 = 0.5 on the FE estimator is generally larger than before, the estimators still perform

quite similarly when Λ1 = 0, especially when N is large. This is true when looking at bias and

RMSE. However, if we look at size, we see that FE can be quite distorted, and that it is only

when both N and T are large that the distortions come down to acceptable levels. Second, none

of the estimators work when Λ1 = 0.5. Third, the Wald tests seem to work well with decent
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size accuracy and high power in the direction of both Λ1 6= 0 and Λ2 6= 0.

The results for X4 are reported in Table 19. The first thing to note is that the bias and RMSE

results are higher than in X1–X3, which is partly expected given the relatively low variation in

Xi,t. However, the results do improve with increases in T and particularly in N. The effect of

Λ1 = 0.5 is not as pronounced as before, which is again partly expected given the relatively

low variation in Xi,t. We also see that in contrast to before, now the size distortions of the t-tests

are increasing in N. The Wald test for testing if Λ2 = 0 performs as expected, with rejection

frequencies that are close to 5% when Λ2 = 0 and well above 5% when Λ2 = 0.5. Note also

that in treatment effects models with the treatment dummy as the only regressor, we cannot

infer whether or not Λ1 = 0. This problem is, however, less of an issue in models with multiple

regressors, as here MDX∗i and (X′i ⊗MDXi)
∗ are unlikely to be perfectly collinear.
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Table 1: Simulation results without break in the loadings (µ = 0).

Bias RMSE 5% size
N T PC PC∗ FE PC PC∗ FE PC PC∗ FE WAL

10% treated units (N0 = 0.1N)
30 6 1.078 −0.044 −0.012 2.20 1.54 1.44 28.1 32.1 23.4 21.0
50 6 0.955 −0.025 −0.020 1.94 1.17 1.07 29.2 27.6 12.6 13.4

100 6 0.798 0.014 −0.034 1.47 0.81 0.78 32.7 25.4 9.1 8.2
200 6 0.706 −0.008 −0.005 1.24 0.54 0.53 38.1 23.5 6.5 8.0
30 10 1.377 0.064 0.050 2.48 1.48 1.46 42.6 42.6 22.4 20.4
50 10 1.117 0.058 0.044 2.04 1.11 1.11 39.5 33.2 13.7 14.3

100 10 0.895 −0.059 −0.051 1.59 0.72 0.79 41.9 23.2 9.9 10.1
200 10 0.865 −0.007 −0.004 1.46 0.51 0.56 51.1 19.8 6.6 8.4
30 20 1.221 −0.069 −0.032 2.25 1.41 1.33 54.1 53.9 20.7 21.3
50 20 0.898 −0.054 −0.048 1.75 0.93 1.06 49.6 38.5 14.4 13.3

100 20 0.793 −0.017 −0.024 1.52 0.66 0.78 47.9 30.5 8.4 8.0
200 20 0.582 −0.004 −0.037 1.11 0.47 0.57 50.6 27.2 7.3 9.1

50% treated units (N0 = 0.5N)
30 6 1.406 −0.015 −0.020 2.05 0.81 0.70 32.7 22.4 6.7 6.4
50 6 1.400 −0.006 0.001 2.01 0.64 0.61 39.5 19.3 5.6 4.5

100 6 1.326 0.039 0.025 1.93 0.46 0.43 46.5 17.1 4.8 5.8
200 6 1.185 −0.001 −0.017 1.77 0.32 0.28 58.8 12.5 4.6 4.9
30 10 1.676 −0.028 −0.010 2.28 0.85 0.80 48.1 32.5 7.9 7.2
50 10 1.577 0.010 0.017 2.15 0.62 0.58 52.8 20.1 7.1 7.0

100 10 1.571 −0.014 −0.015 2.15 0.44 0.46 60.0 12.2 6.0 6.4
200 10 1.532 −0.002 −0.004 2.06 0.30 0.30 73.7 10.1 4.6 5.4

30 20 1.828 0.069 0.020 2.36 0.87 0.79 73.1 43.2 7.3 7.4
50 20 1.687 0.038 0.018 2.20 0.65 0.62 68.7 33.4 6.0 5.6

100 20 1.650 −0.001 0.012 2.13 0.42 0.42 75.2 19.5 4.6 4.3
200 20 1.597 0.017 −0.002 2.05 0.29 0.31 80.6 14.4 3.4 5.1

Notes: “PC∗” and “PC” refer to the PC estimators based on the demeaned and raw data,
respectively, “FE” is the OLS estimator based on the demeaned data, and “WAL” refers
to the rejection frequency of the Wald test for testing the null hypothesis that the loadings
are uncorrelated with Xi. µ refers to the size of the break in the mean of the factor loading
(γi). If µ = 0, the rejection frequencies of the Wald test represent size, while if µ = 1 they
represent power. “RMSE” refers to the root mean square error, and the reported sizes are
for a double-sided t-test for testing β = 1. N0 refers to the number of treated units.
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Table 2: Simulation results with a break in the loadings (µ = 1).

Bias RMSE 5% size
N T PC PC∗ FE PC PC∗ FE PC PC∗ FE WAL

10% treated units (N0 = 0.1N)
30 6 2.773 0.217 0.291 4.23 1.73 1.76 35.7 34.7 29.8 39.5
50 6 2.424 0.267 0.274 3.77 1.58 1.72 41.4 34.9 27.7 37.0

100 6 2.266 0.278 0.394 3.49 1.21 1.48 50.4 34.9 30.9 51.7
200 6 2.044 0.204 0.345 3.27 0.92 1.34 59.4 36.5 41.8 76.3
30 10 3.123 0.223 0.346 4.41 1.77 1.90 52.4 46.4 27.7 39.1
50 10 3.229 0.248 0.489 4.49 1.46 1.76 50.8 35.6 27.0 41.6

100 10 2.829 0.134 0.415 4.04 1.00 1.59 61.5 30.2 33.5 55.2
200 10 2.618 0.116 0.428 3.73 0.68 1.41 71.9 26.7 47.2 81.9
30 20 3.178 0.088 0.303 4.42 1.70 1.98 65.5 55.9 32.1 39.4
50 20 3.202 0.090 0.363 4.35 1.26 1.83 69.7 45.0 29.7 46.4

100 20 2.638 0.084 0.323 3.84 0.82 1.64 65.8 38.4 36.9 57.5
200 20 2.125 0.032 0.385 3.44 0.51 1.56 65.3 27.3 51.3 84.0

50% treated units (N0 = 0.5N)
30 6 3.170 0.199 0.242 4.36 1.40 1.47 30.7 31.8 28.8 48.7
50 6 3.253 0.277 0.346 4.29 1.20 1.30 38.0 30.6 37.4 65.9

100 6 3.007 0.274 0.341 4.18 1.16 1.32 46.8 37.8 54.9 89.2
200 6 2.946 0.300 0.387 4.14 1.09 1.33 60.2 47.2 72.4 98.9
30 10 3.758 0.374 0.456 4.75 1.51 1.63 44.4 45.7 32.2 56.0
50 10 3.686 0.300 0.385 4.69 1.34 1.53 46.8 41.0 42.6 78.3

100 10 3.598 0.195 0.364 4.51 0.98 1.40 57.3 33.2 60.2 95.1
200 10 3.397 0.189 0.387 4.42 0.81 1.39 67.5 38.3 74.3 99.9
30 20 3.830 0.236 0.388 4.64 1.38 1.58 70.5 54.9 34.3 58.4
50 20 3.804 0.164 0.286 4.57 1.18 1.53 69.9 49.5 47.7 79.8

100 20 3.746 0.134 0.338 4.54 0.88 1.48 71.9 40.1 67.1 97.3
200 20 3.666 0.105 0.287 4.43 0.68 1.33 78.8 36.4 78.3 100.0

Notes: See Table 1 for an explanation.
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Table 3: Simulation results with µ = 0, Ft ∼ U(0.5, 1.5) and ρ = 0.5.

Bias RMSE 5% size
N T PC∗ PC FE PC∗ PC FE PC∗ PC FE WAL

10% treated units (N0 = 0.1N)
30 6 0.058 1.392 0.063 1.33 2.01 0.99 31.6 36.2 21.8 18.6
50 6 −0.009 1.150 −0.017 1.03 1.62 0.80 27.9 28.3 14.8 12.5

100 6 0.010 1.095 0.000 0.73 1.36 0.55 22.6 36.2 9.9 7.3
200 6 0.005 1.013 −0.007 0.51 1.20 0.38 21.1 49.7 7.0 6.9
30 10 0.066 1.415 0.018 1.30 1.96 0.93 42.0 45.2 20.8 20.3
50 10 −0.010 1.175 −0.020 1.01 1.58 0.72 28.4 38.9 13.7 11.6

100 10 −0.005 0.990 −0.016 0.69 1.22 0.53 19.7 43.8 9.9 8.3
200 10 −0.005 0.941 −0.006 0.49 1.09 0.35 16.9 61.7 6.3 7.6
30 20 0.004 1.050 0.002 1.32 1.69 0.80 50.0 53.9 21.9 19.2
50 20 0.030 0.956 0.049 1.09 1.46 0.63 44.5 54.8 11.7 11.9

100 20 0.017 0.752 0.012 0.69 1.11 0.44 32.8 53.2 8.9 8.8
200 20 −0.009 0.720 −0.008 0.46 0.94 0.31 26.0 64.9 5.9 6.2

50% treated units (N0 = 0.5N)
30 6 −0.009 1.821 0.007 0.73 1.95 0.54 22.3 45.1 7.1 7.3
50 6 −0.035 1.727 −0.021 0.54 1.81 0.41 16.4 49.7 5.8 5.3

100 6 −0.008 1.742 −0.012 0.39 1.79 0.30 11.7 67.6 5.1 4.5
200 6 −0.001 1.752 −0.004 0.29 1.78 0.21 10.0 87.8 5.3 4.9
30 10 0.014 1.889 0.035 0.70 1.99 0.51 27.8 64.4 7.4 8.0
50 10 0.002 1.789 −0.001 0.57 1.86 0.38 18.2 70.3 5.2 6.6

100 10 −0.012 1.745 0.001 0.42 1.79 0.28 11.8 84.2 5.7 6.4
200 10 −0.002 1.743 −0.008 0.28 1.77 0.20 8.1 96.3 5.0 5.2
30 20 −0.006 1.822 −0.010 0.85 1.92 0.45 45.3 86.7 8.0 8.1
50 20 0.004 1.816 0.021 0.65 1.88 0.35 33.5 94.1 6.6 5.5

100 20 0.013 1.820 −0.002 0.46 1.85 0.23 20.9 98.0 4.3 7.5
200 20 0.003 1.822 −0.006 0.30 1.84 0.17 12.2 99.4 4.0 5.4

Notes: See Table 1 for an explanation.
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Table 4: Simulation results with µ = 1, Ft ∼ U(0.5, 1.5) and ρ = 0.5.

Bias RMSE 5% size
N T PC∗ PC FE PC∗ PC FE PC∗ PC FE WAL

10% treated units (N0 = 0.1N)
30 6 0.039 3.227 0.021 1.27 3.63 0.98 31.1 49.1 21.7 27.3
50 6 −0.004 3.112 0.023 1.02 3.44 0.81 28.6 55.6 15.3 26.4

100 6 −0.012 3.069 −0.012 0.76 3.27 0.60 26.4 75.8 13.0 30.8
200 6 −0.002 3.043 0.016 0.62 3.16 0.44 30.4 94.5 10.6 49.6

30 10 −0.039 3.459 −0.004 1.30 3.76 0.96 40.6 65.1 22.2 31.1
50 10 −0.015 3.110 −0.004 1.07 3.36 0.73 32.1 73.3 14.3 31.0

100 10 0.004 3.065 −0.031 0.79 3.21 0.56 25.5 91.6 12.1 42.5
200 10 0.028 3.105 0.009 0.60 3.19 0.42 25.7 99.1 11.1 66.8

30 20 0.002 3.215 0.023 1.40 3.59 0.85 55.6 83.3 22.7 33.0
50 20 0.057 3.065 0.029 1.15 3.37 0.66 47.3 88.4 15.9 42.3

100 20 −0.022 3.018 0.002 0.85 3.23 0.48 40.9 95.5 10.3 55.5
200 20 0.011 2.961 0.015 0.69 3.19 0.36 45 95.3 9.8 81.2

50% treated units (N0 = 0.5N)
30 6 0.039 3.956 0.034 0.76 4.01 0.58 24.1 42.7 9.5 27.2
50 6 −0.004 3.936 −0.007 0.64 3.98 0.48 18.8 40.0 9.3 35.4

100 6 0.011 3.917 0.008 0.47 3.94 0.38 16.3 54.7 12.6 59.5
200 6 −0.009 3.928 −0.002 0.42 3.95 0.32 21.6 70.8 21.1 83.8
30 10 0.003 3.946 0.009 0.74 3.99 0.53 29.6 59.1 8.6 33.0
50 10 −0.002 3.896 −0.024 0.63 3.93 0.43 22.1 61.4 8.2 49.3

100 10 −0.008 3.913 −0.009 0.54 3.93 0.34 21.5 71.2 11.8 74.6
200 10 0.015 3.914 −0.007 0.48 3.93 0.27 25.0 84.5 14.6 95.7
30 20 0.031 3.954 0.021 0.95 3.99 0.46 50.1 88.2 7.9 44.7
50 20 −0.028 3.931 −0.005 0.83 3.96 0.37 46.6 90.4 9.1 62.1

100 20 0.024 3.940 −0.010 0.75 3.95 0.27 47.0 91.8 7.8 91.0
200 20 0.015 3.964 0.011 0.73 3.97 0.22 53.8 95.0 11.9 99.2

Notes: See Table 1 for an explanation.
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Table 5: Simulation results with µ = 0, Ft ∼ U(0.5, 1.5) and ρ = 0.

Bias RMSE 5% size
N T PC∗ PC FE PC∗ PC FE PC∗ PC FE WAL

10% treated units (N0 = 0.1N)
30 6 0.009 0.764 0.004 1.20 1.54 0.79 45.6 42.3 23.8 18.9
50 6 −0.024 0.325 −0.012 0.95 1.02 0.60 40.7 33.2 13.2 14.5

100 6 −0.019 −0.025 −0.038 0.67 0.48 0.42 33.1 23.7 8.3 8.0
200 6 −0.014 −0.014 0.000 0.49 0.29 0.30 26.3 22.8 6.9 7.3
30 10 0.055 0.817 0.035 1.14 1.53 0.71 59.9 50.5 22.6 20.4
50 10 −0.007 0.240 0.003 0.87 0.88 0.55 48.8 36.7 15.6 11.1

100 10 0.001 −0.015 −0.008 0.47 0.39 0.38 32.0 30.0 9.2 9.4
200 10 −0.009 −0.028 −0.011 0.29 0.27 0.28 29.9 30.5 7.2 7.0
30 20 −0.024 0.146 0.004 0.79 0.86 0.64 48.8 44.4 22.6 18.6
50 20 0.005 0.005 0.006 0.53 0.52 0.48 43.9 41.9 14.1 14.6

100 20 0.004 −0.008 0.007 0.35 0.34 0.35 41.0 41.6 9.0 8.7
200 20 −0.013 −0.030 −0.014 0.25 0.25 0.25 40.5 42.0 6.2 7.2

50% treated units (N0 = 0.5N)
30 6 0.023 1.137 0.009 0.60 1.50 0.30 47.4 38.1 5.6 6.4
50 6 −0.015 1.475 0.009 0.54 1.73 0.24 52.7 44.0 7.0 7.9

100 6 0.007 0.137 −0.002 0.25 0.51 0.18 20.6 14.4 6.6 6.9
200 6 0.024 0.430 0.006 0.49 0.91 0.24 38.9 23.0 6.3 6.2
30 10 −0.005 0.190 0.002 0.33 0.59 0.18 31.1 14.8 5.0 6.2
50 10 −0.004 0.000 −0.002 0.13 0.11 0.13 7.1 5.3 5.2 5.3

100 10 −0.002 0.010 0.006 0.36 0.20 0.17 36.5 7.5 5.7 4.7
200 10 0.002 0.000 −0.001 0.15 0.11 0.13 11.4 6.7 5.2 6.4
30 20 0.000 0.000 −0.001 0.10 0.08 0.10 9 7.3 6.7 5.1
50 20 −0.005 0.002 0.003 0.24 0.11 0.12 31.5 9.3 6.5 5.4

100 20 −0.002 −0.001 −0.003 0.10 0.08 0.09 8.7 6.0 5.5 4.3
200 20 0.004 0.004 0.003 0.07 0.06 0.07 6.9 6.6 4.8 5.7

Notes: See Table 1 for an explanation.
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Table 6: Simulation results with µ = 1, Ft ∼ U(0.5, 1.5) and ρ = 0.

Bias RMSE 5% size
N T PC∗ PC FE PC∗ PC FE PC∗ PC FE WAL

10% treated units (N0 = 0.1N)
30 6 −0.054 2.376 −0.006 1.21 3.17 0.82 49.0 40.1 24.6 28.4
50 6 −0.004 1.222 −0.023 1.02 2.24 0.66 41.1 35.2 16.5 27.5

100 6 −0.020 0.001 −0.006 0.76 0.59 0.50 33.7 26.2 13.4 36.0
200 6 0.025 −0.018 0.024 0.57 0.30 0.37 33.1 22.0 12.8 52.6
30 10 0.000 3.007 0.011 1.13 3.52 0.72 59.0 49.3 23.7 34.3
50 10 0.008 0.940 0.013 0.87 1.97 0.57 48.1 37.7 16.6 35.0

100 10 0.025 −0.014 0.010 0.55 0.42 0.44 37.7 28.9 12.6 48.7
200 10 −0.006 −0.045 −0.013 0.34 0.28 0.33 34.7 27.7 13.2 71.9
30 20 −0.009 0.592 0.021 0.78 1.64 0.64 47.4 44.6 23.3 40.5
50 20 −0.011 −0.015 −0.015 0.58 0.61 0.52 45.6 39.0 16.2 46.1

100 20 0.007 −0.018 0.017 0.40 0.37 0.38 46.4 40.4 13.6 65.1
200 20 −0.005 −0.040 −0.012 0.27 0.24 0.27 40.9 36.8 8.8 89.6

50% treated units (N0 = 0.5N)
30 6 0.004 3.754 0.014 0.72 3.93 0.47 28.8 23.2 12.8 28.2
50 6 −0.018 3.163 0.007 0.59 3.60 0.38 23.7 20.2 11.0 40.6

100 6 0.019 1.647 0.015 0.42 2.64 0.32 13.5 17.5 17.1 64.3
200 6 0.018 0.174 0.000 0.36 1.14 0.27 10.4 25.8 26.6 85.3
30 10 −0.034 3.947 −0.012 0.77 4.00 0.40 43.3 31.4 10.9 40.2
50 10 −0.010 3.435 0.008 0.69 3.73 0.33 37.0 22.2 11.6 61.2

100 10 −0.019 2.121 0.011 0.65 2.94 0.27 33.9 24.8 15.2 84.7
200 10 0.044 0.504 −0.007 0.83 1.59 0.23 66.0 36.3 26.0 98.7
30 20 0.021 3.412 −0.004 0.81 3.72 0.33 51.9 50.1 8.1 54.2
50 20 −0.011 2.388 0.003 0.91 3.13 0.26 61.6 48.3 9.1 77.5

100 20 −0.062 0.947 0.011 1.03 2.06 0.21 88.3 43.3 13.3 96.7
200 20 −0.048 0.009 −0.001 1.08 0.85 0.17 97.5 54.7 16.5 100.0

Notes: See Table 1 for an explanation.
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Table 7: Simulation results with µ = 0, Ft as in the main paper and ρ = 0.

Bias RMSE 5% size
N T PC∗ PC FE PC∗ PC FE PC∗ PC FE WAL

10% treated units (N0 = 0.1N)
30 6 0.103 0.789 0.054 1.38 2.06 1.24 44.2 39.5 22.2 19.7
50 6 0.042 0.467 0.046 1.13 1.55 0.99 38.6 31.1 15.1 14.4

100 6 0.008 0.110 0.003 0.80 0.70 0.72 30.4 24.6 10.4 8.5
200 6 −0.014 0.075 0.009 0.53 0.52 0.51 26.6 26.0 7.7 6.3
30 10 0.100 0.974 0.043 1.30 2.17 1.33 58.8 44.7 23.3 22.2
50 10 −0.046 0.290 −0.035 0.89 1.34 1.01 43.5 33.2 16.2 14.0

100 10 −0.023 0.079 −0.028 0.48 0.73 0.78 28.6 28.4 10.2 11.6
200 10 0.002 0.039 0.014 0.31 0.43 0.53 27.8 31.4 7.5 7.6

30 20 −0.011 0.253 −0.087 0.86 1.35 1.34 46.9 42.2 23.8 21.4
50 20 0.015 0.145 0.038 0.53 1.03 1.07 37.8 38.2 15.9 14.0

100 20 −0.021 0.035 −0.015 0.37 0.63 0.70 39.8 39.1 8.3 10.8
200 20 0.000 0.006 0.005 0.26 0.28 0.51 36.5 36.2 7.2 7.4

50% treated units (N0 = 0.5N)
30 6 0.000 1.299 0.015 0.79 2.08 0.66 29.1 33.8 6.1 6.3
50 6 −0.033 1.035 −0.014 0.67 1.86 0.54 22.4 30.6 7.1 5.0

100 6 −0.014 0.673 −0.001 0.46 1.47 0.37 14.2 34.9 5.0 5.1
200 6 0.002 0.320 0.005 0.32 1.11 0.24 8.2 39.8 4.3 4.7

30 10 0.017 1.588 −0.001 0.78 2.17 0.64 42.0 41.0 6.3 5.9
50 10 0.005 1.257 −0.019 0.65 2.03 0.54 30.8 34.9 5.9 6.5

100 10 0.015 0.818 −0.007 0.46 1.69 0.38 17.0 33.8 5.8 5.6
200 10 −0.016 0.526 −0.006 0.26 1.36 0.27 10.0 42.4 5.5 5.5
30 20 −0.025 1.419 −0.026 0.74 2.16 0.73 47.0 48.4 6.8 6.1
50 20 0.021 0.993 0.023 0.51 1.82 0.53 32.6 44.2 6.8 7.0

100 20 −0.004 0.732 −0.003 0.28 1.61 0.40 24.1 43.4 6.4 5.6
200 20 −0.003 0.599 0.002 0.14 1.52 0.28 22.9 46.9 5.9 4.9

Notes: See Table 1 for an explanation.
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Table 8: Simulation results with µ = 1, Ft as in the main paper and ρ = 0.

Bias RMSE 5% size
N T PC∗ PC FE PC∗ PC FE PC∗ PC FE WAL

10% treated units (N0 = 0.1N)
30 6 0.312 2.087 0.345 1.78 3.72 1.76 45.1 39.7 30.6 38.0
50 6 0.320 1.132 0.391 1.53 2.78 1.51 39.3 31.3 30.1 37.4

100 6 0.232 0.506 0.292 1.24 1.86 1.40 37.7 29.0 34.2 55.3
200 6 0.195 0.268 0.340 0.95 1.14 1.27 36.8 31.4 52.6 79.0
30 10 0.187 2.639 0.327 1.63 4.22 1.78 62.8 42.7 31.2 42.9
50 10 0.145 1.580 0.316 1.22 3.31 1.76 46.4 32.2 33.2 42.7

100 10 −0.021 0.771 0.287 0.51 2.37 1.53 32.1 29.6 36.1 58.7
200 10 −0.005 0.355 0.363 0.33 1.44 1.41 29.5 33.3 56.4 83.8
30 20 0.074 1.420 0.435 1.01 3.25 1.92 47.0 35.5 34.4 42.4
50 20 −0.002 0.954 0.354 0.55 2.67 1.76 41.6 34.8 32.9 43.8

100 20 0.012 0.701 0.315 0.38 2.26 1.58 39.6 36.6 40.6 62.2
200 20 −0.010 0.332 0.286 0.26 1.55 1.49 38.1 37.8 60.3 85.5

50% treated units (N0 = 0.5N)
30 6 0.351 3.137 0.410 1.45 4.29 1.47 36.8 29.9 36.9 51.0
50 6 0.241 2.517 0.295 1.21 3.87 1.28 32.9 27.5 46.8 70.2

100 6 0.261 1.928 0.296 1.17 3.45 1.23 30.6 30.7 63.7 90.2
200 6 0.248 1.300 0.305 1.11 2.82 1.22 28.7 40.1 78.6 98.4
30 10 0.238 3.455 0.315 1.44 4.59 1.52 54.8 32.0 40.1 61.1
50 10 0.238 3.255 0.339 1.27 4.47 1.46 47.7 26.0 52.5 74.9

100 10 0.137 2.896 0.375 0.90 4.23 1.40 34.0 28.4 70.1 97.5
200 10 0.058 2.002 0.288 0.53 3.56 1.35 25.6 36.1 82.8 99.9
30 20 0.113 3.527 0.302 1.22 4.48 1.52 56.1 39.8 42.7 64.6
50 20 0.106 3.171 0.241 0.79 4.29 1.40 42.0 38.8 52.2 80.0

100 20 0.013 2.880 0.322 0.42 4.22 1.44 33.7 34.1 74.0 98.0
200 20 −0.013 2.800 0.366 0.18 4.21 1.37 32.1 37.9 84.8 100.0

Notes: See Table 1 for an explanation.
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Table 9: Simulation results with µ = 0, Ft = 5 · sin(πt/T) and ρ = 0.5.

Bias RMSE 5% size
N T PC∗ PC FE PC∗ PC FE PC∗ PC FE WAL

10% treated units (N0 = 0.1N)
30 6 −0.046 2.643 −0.062 1.42 3.28 1.42 34.4 35.7 21.8 20.0
50 6 −0.009 2.467 −0.030 1.15 2.93 1.11 29.7 43.9 12.2 13.5

100 6 −0.025 2.294 −0.018 0.78 2.60 0.78 26.9 69.0 9.4 9.7
200 6 0.020 2.104 0.018 0.56 2.34 0.55 28.0 87.9 6.2 8.0

30 10 −0.006 3.194 0.047 1.29 3.75 1.12 39.9 53.2 21.6 21.4
50 10 −0.032 3.036 −0.027 0.99 3.49 0.89 30.7 60.6 15.1 11.5

100 10 −0.006 2.900 −0.042 0.68 3.15 0.59 21.1 83.7 8.9 9.2
200 10 0.005 2.848 0.010 0.49 2.99 0.43 19.3 97.3 6.1 5.6

30 20 0.024 3.272 0.022 1.30 3.98 0.89 51.0 68.8 20.1 18.4
50 20 −0.044 3.184 0.006 1.00 3.71 0.69 42.4 76.8 13.5 11.9

100 20 0.014 3.165 −0.008 0.68 3.53 0.48 31.6 88.8 9.5 7.8
200 20 −0.002 2.960 −0.009 0.45 3.29 0.35 23.7 91.9 7.4 6.8

50% treated units (N0 = 0.5N)
30 6 0.001 3.213 −0.009 0.82 3.32 0.81 23.7 27.2 7.5 6.9
50 6 0.039 3.181 0.050 0.65 3.24 0.64 18.0 29.3 5.8 6.6

100 6 0.005 3.177 0.005 0.47 3.21 0.44 18.9 41.5 5.1 5.2
200 6 −0.005 3.198 −0.014 0.32 3.21 0.33 14.3 63.9 6.8 5.5
30 10 0.051 3.613 0.027 0.76 3.71 0.61 29.4 43.2 5.2 6.5
50 10 0.024 3.612 0.000 0.59 3.67 0.50 17.7 40.2 7.6 6.8

100 10 0.017 3.578 0.002 0.39 3.61 0.33 10.3 41.5 4.4 4.5
200 10 0.000 3.568 0.001 0.30 3.58 0.24 10.5 55.1 5.5 4.9

30 20 0.004 3.933 −0.002 0.82 4.03 0.47 44.7 62.7 6.9 7.1
50 20 −0.023 3.871 0.002 0.63 3.93 0.36 32.7 58.2 5.4 5.6

100 20 0.000 3.888 −0.007 0.43 3.92 0.26 19.1 61.0 5.4 5.6
200 20 −0.001 3.902 0.006 0.29 3.92 0.18 10.7 65.8 4.6 5.4

Notes: See Table 1 for an explanation.
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Table 10: Simulation results with µ = 1, Ft = 5 · sin(πt/T) and ρ = 0.5.

Bias RMSE 5% size
N T PC∗ PC FE PC∗ PC FE PC∗ PC FE WAL

10% treated units (N0 = 0.1N)
30 6 −1.349 6.246 −1.749 2.01 6.53 2.23 42.2 27.0 45.1 53.2
50 6 −1.184 6.118 −1.678 1.74 6.31 2.03 39.7 32.0 45.1 59.6

100 6 −0.943 6.201 −1.632 1.33 6.30 1.80 48.1 50.3 58.9 81.3
200 6 −0.821 6.210 −1.684 1.05 6.26 1.77 61.4 69.2 87.9 97.5
30 10 −0.660 7.036 −1.034 1.45 7.28 1.50 41.9 36.4 35.7 52.0
50 10 −0.503 7.042 −0.996 1.17 7.21 1.30 35.6 35.7 33.1 58.8

100 10 −0.304 7.174 −1.000 0.79 7.25 1.17 26.6 40.4 43.7 82.9
200 10 −0.201 7.053 −1.011 0.54 7.09 1.10 23.8 62.5 66.8 98.1
30 20 −0.192 7.628 −0.496 1.29 7.88 0.98 53.0 48.3 28.2 51.3
50 20 −0.148 7.730 −0.526 1.04 7.89 0.86 43.8 47.1 22.8 61.7

100 20 −0.026 7.777 −0.465 0.67 7.86 0.68 29.9 47.0 22.1 83.6
200 20 −0.037 7.788 −0.502 0.50 7.83 0.61 29.0 52.3 33.7 98.4

50% treated units (N0 = 0.5N)
30 6 −1.448 6.552 −1.655 1.71 6.60 1.83 43.7 11.3 57.8 74.5
50 6 −1.377 6.549 −1.634 1.56 6.58 1.75 47.7 10.1 74.2 90.7

100 6 −1.382 6.541 −1.690 1.49 6.55 1.75 66.1 11.0 96.7 99.8
200 6 −1.240 6.516 −1.667 1.31 6.52 1.70 90.7 18.7 100.0 100.0
30 10 −0.791 7.277 −0.977 1.10 7.33 1.15 45.5 15.1 39.3 73.1
50 10 −0.682 7.266 −0.977 0.94 7.29 1.09 38.2 12.6 54.0 90.7

100 10 −0.555 7.289 −1.001 0.73 7.30 1.05 33.6 8.4 84.9 99.8
200 10 −0.485 7.304 −1.008 0.59 7.31 1.04 43.3 9.6 99.3 100.0
30 20 −0.247 7.835 −0.500 0.86 7.88 0.69 46.9 25.7 21.0 78.6
50 20 −0.262 7.840 −0.502 0.70 7.87 0.62 35.0 16.1 31.7 92.6

100 20 −0.197 7.829 −0.490 0.50 7.84 0.55 24.6 15.2 48.0 99.6
200 20 −0.197 7.851 −0.508 0.38 7.86 0.54 18.9 16.4 80.1 100.0

Notes: See Table 1 for an explanation.
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Table 11: Simulation results with µ = 0, Ft = 5 · sin(πt/T) and ρ = 0.

Bias RMSE 5% size
N T PC∗ PC FE PC∗ PC FE PC∗ PC FE WAL

10% treated units (N0 = 0.1N)
30 6 0.014 1.878 0.005 1.37 2.80 1.28 44.8 36.8 22.7 20.3
50 6 0.051 0.964 0.047 1.06 1.95 0.98 40.5 35.5 13.4 14.3

100 6 0.007 0.308 −0.004 0.75 0.99 0.70 31.1 32.4 9.5 8.6
200 6 −0.002 0.105 −0.012 0.54 0.47 0.51 30.1 29.0 8.0 6.7
30 10 0.028 2.552 0.048 1.13 3.50 0.88 60.9 41.6 20.1 18.7
50 10 0.036 1.453 0.000 0.85 2.60 0.70 46.4 34.7 14.6 12.2

100 10 −0.021 0.483 0.023 0.45 1.40 0.51 32.6 37.2 9.5 7.8
200 10 −0.004 0.121 0.000 0.28 0.52 0.35 32.8 37.7 7.5 6.4

30 20 0.018 2.054 0.045 0.75 3.37 0.72 49.9 38.8 22.4 19.8
50 20 −0.008 1.243 −0.018 0.51 2.52 0.55 42.6 43.0 14.0 12.4

100 20 0.003 0.281 0.014 0.36 1.03 0.39 42.2 46.3 9.1 8.7
200 20 −0.006 0.090 −0.007 0.26 0.39 0.29 43.2 46.8 7.2 6.8

50% treated units (N0 = 0.5N)
30 6 −0.046 3.172 −0.028 0.85 3.28 0.73 32.0 21.6 8.8 7.5
50 6 −0.008 3.167 0.013 0.66 3.24 0.58 23.9 12.0 7.6 6.2

100 6 0.024 3.164 0.027 0.47 3.21 0.40 13.0 14.2 6.2 4.9
200 6 −0.016 3.136 −0.006 0.35 3.18 0.29 7.7 17.5 4.2 4.0
30 10 0.002 3.615 0.020 0.74 3.71 0.49 44.1 18.8 5.5 6.5
50 10 0.033 3.626 0.024 0.63 3.68 0.39 30.7 8.6 5.9 6.1

100 10 0.005 3.637 −0.007 0.47 3.67 0.27 16.3 5.2 5.2 5.4
200 10 −0.005 3.632 −0.005 0.31 3.66 0.19 7.1 6.1 4.4 3.9
30 20 −0.012 3.953 −0.006 0.74 4.05 0.37 48.3 19.1 8.1 7.1
50 20 −0.009 3.903 −0.003 0.57 3.97 0.27 36.9 12.8 6.4 5.0

100 20 −0.015 3.838 −0.013 0.33 3.91 0.19 24.3 10.5 5.4 6.4
200 20 −0.002 3.475 −0.002 0.14 3.71 0.14 26.0 19.9 5.4 5.5

Notes: See Table 1 for an explanation.
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Table 12: Simulation results with µ = 1, Ft = 5 · sin(πt/T) and ρ = 0.

Bias RMSE 5% size
N T PC∗ PC FE PC∗ PC FE PC∗ PC FE WAL

10% treated units (N0 = 0.1N)
30 6 −1.255 5.938 −1.750 1.98 6.40 2.17 50.1 17.5 47.2 57.3
50 6 −1.073 5.345 −1.666 1.65 5.99 1.92 49.1 18.2 51.8 62.5

100 6 −1.029 4.304 −1.674 1.43 5.17 1.81 46.3 35.0 70.6 84.0
200 6 −0.804 1.885 −1.642 1.18 3.16 1.71 45.0 51.0 91.8 98.4
30 10 −0.393 7.209 −1.044 1.27 7.51 1.40 61.7 9.6 41.8 54.2
50 10 −0.161 6.836 −1.020 0.93 7.23 1.25 50.1 7.0 43.3 62.0

100 10 −0.008 4.862 −0.986 0.50 5.97 1.12 35.1 18.2 54.7 83.9
200 10 0.021 1.095 −0.990 0.28 2.55 1.05 31.7 44.0 80.1 98.8
30 20 −0.017 7.046 −0.505 0.81 7.66 0.88 53.2 9.5 31.2 54.2
50 20 0.000 5.609 −0.497 0.52 6.70 0.73 45.4 14.6 26.6 63.6

100 20 0.001 1.996 −0.497 0.36 3.84 0.63 42.1 36.9 31.6 87.7
200 20 −0.001 0.240 −0.505 0.25 0.68 0.58 44.5 52.3 49.8 99.0

50% treated units (N0 = 0.5N)
30 6 −1.490 6.513 −1.702 1.74 6.57 1.85 50.7 6.1 66.8 76.7
50 6 −1.490 6.507 −1.682 1.66 6.55 1.77 47.7 3.4 86.6 93.4

100 6 −1.533 6.528 −1.659 1.62 6.57 1.70 46.7 2.7 98.6 99.8
200 6 −1.547 6.479 −1.665 1.59 6.54 1.69 55.9 9.1 100.0 100.0
30 10 −0.694 7.333 −0.975 1.05 7.37 1.09 56.4 3.0 53.1 76.9
50 10 −0.672 7.305 −1.003 0.95 7.33 1.07 47.1 1.0 74.3 93.1

100 10 −0.650 7.289 −1.004 0.85 7.31 1.04 38.9 1.0 96.1 100.0
200 10 −0.699 7.276 −1.006 0.82 7.31 1.03 45.0 7.4 99.9 100.0
30 20 −0.201 7.787 −0.494 0.78 7.85 0.61 50.7 2.3 33.7 76.7
50 20 −0.215 7.812 −0.497 0.62 7.86 0.57 41.8 1.3 47.0 93.2

100 20 −0.184 7.640 −0.488 0.43 7.77 0.52 29.6 3.3 73.4 100.0
200 20 −0.033 7.354 −0.495 0.22 7.60 0.51 33.8 25.6 95.7 100.0

Notes: See Table 1 for an explanation.

39



Table 13: Simulation results with r ∈ {2, 3}, µ = 0 and N0 = 0.1N.

Bias RMSE 5% size
N T PC PC∗ FE PC PC∗ FE PC PC∗ FE WAL

Two factors (r = 2)
30 6 0.537 −0.025 −0.013 2.17 1.50 1.41 28.3 30.7 19.1 20.2
50 6 0.552 −0.026 −0.046 1.65 1.18 1.07 31.5 26.0 13.6 13.0

100 6 0.421 −0.048 −0.030 1.41 0.80 0.77 32.0 22.2 8.5 7.8
200 6 0.402 −0.018 −0.016 1.23 0.55 0.53 38.3 21.2 5.7 5.2
30 10 0.701 0.077 0.090 2.20 1.49 1.45 37.6 42.2 20.9 18.3
50 10 0.539 0.009 −0.021 1.91 1.12 1.15 37.8 32.1 13.1 12.4

100 10 0.467 −0.031 −0.025 1.33 0.71 0.78 38.2 23.2 7.7 8.0
200 10 0.413 0.020 0.020 1.21 0.48 0.56 43.8 18.6 7.1 8.8
30 20 0.642 0.051 0.079 1.91 1.32 1.37 52.6 50.6 17.8 18.9
50 20 0.375 −0.001 −0.031 1.37 0.92 1.11 43.7 36.1 12.6 12.9

100 20 0.253 −0.016 −0.016 0.98 0.64 0.81 41.4 32.1 9.3 8.1
200 20 0.164 −0.001 −0.007 0.76 0.42 0.54 39.1 26.4 7.3 5.5

Three factors (r = 3)
30 6 0.509 −0.097 −0.050 2.37 1.67 1.65 32.3 31.0 19.3 18.2
50 6 0.566 −0.004 0.027 2.05 1.22 1.23 31.3 27.1 13.5 14.4

100 6 0.467 0.022 0.010 1.62 0.87 0.86 35.0 21.1 9.4 9.1
200 6 0.464 −0.020 0.003 1.56 0.58 0.62 42.2 21.7 7.1 6.6
30 10 0.691 0.023 0.034 2.61 1.56 1.69 41.4 40.0 20.1 19.8
50 10 0.658 0.015 0.019 2.12 1.08 1.21 40.7 30.2 12.9 13.4

100 10 0.430 0.018 0.006 1.69 0.76 0.91 41.4 24.7 9.9 9.8
200 10 0.458 −0.009 0.002 1.32 0.50 0.64 44.6 20.4 6.8 6.5
30 20 0.570 −0.011 −0.025 2.08 1.31 1.56 51.1 45.4 18.4 19.2
50 20 0.363 −0.023 −0.006 1.51 0.91 1.26 44.2 39.1 13.1 12.3

100 20 0.189 −0.017 −0.022 0.95 0.61 0.92 39.7 30.4 8.6 7.8
200 20 0.145 −0.015 0.022 0.73 0.41 0.65 40.4 29.9 7.0 7.1

Notes: See Table 1 for an explanation.
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Table 14: Simulation results with with r ∈ {2, 3}, µ = 1 and N0 = 0.1N.

Bias RMSE 5% size
N T PC PC∗ FE PC PC∗ FE PC PC∗ FE WAL

Two factors (r = 2)
30 6 1.672 0.036 0.003 4.23 2.09 2.18 37.6 38.7 36.5 55.7
50 6 1.343 −0.083 −0.084 3.67 1.73 1.99 39.1 35.4 37.4 62.4

100 6 1.510 0.155 0.124 3.55 1.50 1.86 48.5 37.4 44.3 83.0
200 6 1.170 0.031 0.025 3.13 1.32 1.77 53.3 44.7 59.0 95.4
30 10 1.816 −0.059 0.028 4.22 2.09 2.39 48.4 52.6 40.6 63.9
50 10 1.705 0.024 0.010 4.01 1.64 2.13 48.2 42.4 39.8 74.9

100 10 1.551 0.035 0.117 3.68 1.12 1.92 53.1 33.7 51.1 91.9
200 10 1.327 0.012 0.035 3.27 0.88 1.93 62.1 35.8 62.6 99.6
30 20 1.427 −0.027 −0.040 3.58 1.81 2.37 57.8 56.9 38.5 65.3
50 20 1.458 0.000 0.016 3.41 1.44 2.29 57.2 45.6 40.3 82.4

100 20 1.016 −0.014 −0.036 2.73 0.79 2.08 52.1 38.8 52.7 96.5
200 20 0.945 0.014 0.065 2.58 0.53 2.00 54.0 34.7 66.7 99.5

Three factors (r = 3)
30 6 1.833 0.102 0.102 5.08 2.39 2.53 39.4 40.7 38.2 61.4
50 6 1.624 0.054 0.076 4.50 2.01 2.31 44.2 39.6 39.6 70.4

100 6 1.187 −0.061 −0.023 4.01 1.86 2.30 51.1 39.9 50.5 89.1
200 6 1.192 0.008 −0.042 3.80 1.59 2.13 59.4 48.6 62.8 96.9
30 10 1.959 0.090 0.067 5.21 2.36 2.73 47.1 52.0 41.7 68.1
50 10 1.589 0.013 0.001 4.61 1.83 2.54 50.9 45.9 40.2 82.9

100 10 1.540 −0.027 0.113 4.31 1.29 2.37 55.7 40.0 51.7 96.3
200 10 1.384 0.034 0.019 4.00 1.02 2.29 66.0 43.5 64.1 99.2
30 20 1.523 0.001 −0.113 4.27 1.94 2.84 61.5 57.8 42.8 77.3
50 20 1.420 −0.034 0.013 4.02 1.29 2.64 56.4 46.1 44.0 88.2

100 20 1.178 −0.014 −0.010 3.43 0.88 2.52 53.2 38.2 56.0 98.8
200 20 0.935 0.004 0.021 2.91 0.60 2.49 55.0 39.2 68.1 100.0

Notes: See Table 1 for an explanation.
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Table 16: Simulation results for X1.

Bias RMSE 5% size Wald
N T FE INF FE INF FE INF W1 W2 W1&2

No correlation: Λ1 = Λ2 = 0
30 6 0.189 0.165 0.242 0.209 7.8 7.9 9.2 9.6 12.8
50 6 0.142 0.137 0.179 0.172 7.4 7.1 9.8 6.1 10.3

100 6 0.099 0.096 0.124 0.121 5.3 4.8 7.8 5.2 7.4
200 6 0.068 0.069 0.084 0.085 5.1 4.0 6.4 6.5 6.6
30 10 0.186 0.164 0.235 0.206 8.4 7.2 10.9 10.1 14.0
50 10 0.135 0.127 0.173 0.161 7.2 6.4 8.3 6.1 11.1

100 10 0.092 0.089 0.117 0.114 6.4 6.4 6.1 6.3 8.5
200 10 0.066 0.066 0.083 0.082 5.0 5.0 5.9 6.6 6.8
30 20 0.164 0.153 0.204 0.191 7.4 6.9 10.4 9.2 13.3
50 20 0.122 0.118 0.153 0.148 5.7 5.4 7.7 5.9 9.0

100 20 0.089 0.087 0.111 0.109 5.6 5.3 8.4 6.8 8.5
200 20 0.062 0.062 0.077 0.077 5.8 5.6 4.9 6.1 5.8

Loading correlation: Λ1 = 0, Λ2 = 0.5
30 6 0.203 0.165 0.262 0.209 10.6 7.9 10.1 44.8 45.5
50 6 0.160 0.137 0.205 0.172 10.4 7.1 10.5 69.6 67.5

100 6 0.116 0.096 0.147 0.121 9.8 4.8 8.7 90.1 89.1
200 6 0.081 0.069 0.101 0.085 9.6 4.0 6.9 98.8 98.1
30 10 0.196 0.164 0.247 0.206 8.9 7.2 11.2 48.1 48.2
50 10 0.151 0.127 0.192 0.161 10.4 6.4 9.7 74.2 72.0

100 10 0.103 0.089 0.130 0.114 8.6 6.4 6.4 93.8 92.1
200 10 0.074 0.066 0.092 0.082 7.9 5.0 6.8 99.7 99.2
30 20 0.169 0.153 0.212 0.191 8.3 6.9 10.1 44.3 42.7
50 20 0.128 0.118 0.160 0.148 6.8 5.4 7.8 70.3 68.3

100 20 0.093 0.087 0.116 0.109 6.4 5.3 7.8 93.4 90.6
200 20 0.065 0.062 0.082 0.077 6.8 5.6 5.0 99.8 99.4

Slope correlation: Λ1 = 0.5, Λ2 = 0
30 6 0.663 0.650 0.839 0.818 57.4 58.1 72.6 9.4 72.2
50 6 0.555 0.563 0.703 0.709 58.4 57.3 93.3 6.2 91.7

100 6 0.422 0.428 0.522 0.530 59.1 56.9 100.0 5.5 99.9
200 6 0.294 0.302 0.373 0.385 51.2 50.1 100.0 6.7 100.0
30 10 0.537 0.532 0.676 0.670 50.9 52.8 63.4 10.0 62.6
50 10 0.453 0.453 0.557 0.559 56.6 56.3 88.7 6.3 86.0

100 10 0.324 0.325 0.409 0.411 51.2 49.9 99.6 7.0 99.2
200 10 0.246 0.248 0.308 0.311 52.4 52.6 100.0 5.7 100.0
30 20 0.402 0.404 0.501 0.503 44.3 46.7 51.8 8.7 48.7
50 20 0.337 0.341 0.420 0.423 45.4 43.3 78.3 5.8 73.5

100 20 0.255 0.257 0.317 0.319 47.4 47.8 98.4 5.1 97.1
200 20 0.186 0.186 0.234 0.235 46.5 47.1 100.0 5.8 100.0

Notes: “FE” and “INF” refer to the fixed effects OLS estimator and the
infeasible OLS estimator based on knowing Ft. “W1”, “W2” and “W1&2” refer
to the Wald tests for testing Λ1 = 0, Λ2 = 0 and Λ1 = Λ2 = 0, respectively.
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Table 17: Simulation results for X2.

Bias RMSE 5% size Wald
N T FE INF FE INF FE INF W1 W2 W1&2

No correlation: Λ1 = Λ2 = 0
30 6 0.212 0.176 0.268 0.221 8.7 8.0 11.4 9.5 15.6
50 6 0.141 0.136 0.182 0.171 6.3 5.9 10.1 7.1 12.8

100 6 0.107 0.100 0.133 0.126 6.0 5.5 9.5 8.4 11.6
200 6 0.075 0.071 0.093 0.089 6.1 4.7 6.3 5.7 6.9
30 10 0.189 0.158 0.241 0.197 7.9 5.3 10.6 7.4 13.4
50 10 0.134 0.123 0.169 0.153 6.1 5.4 8.9 7.6 10.9

100 10 0.097 0.091 0.121 0.114 5.7 5.3 6.6 6.4 6.9
200 10 0.068 0.063 0.085 0.080 5.5 5.0 5.8 6.0 7.0
30 20 0.189 0.152 0.238 0.190 8.3 5.9 12.6 8.4 16.2
50 20 0.135 0.122 0.171 0.153 6.5 6.4 9.0 7.8 12.4

100 20 0.095 0.088 0.118 0.110 6.3 5.9 8.4 5.9 9.1
200 20 0.064 0.060 0.080 0.075 5.0 3.7 5.2 7.0 7.1

Loading correlation: Λ1 = 0, Λ2 = 0.5
30 6 0.270 0.176 0.349 0.221 16.2 8.0 14.0 54.5 55.8
50 6 0.187 0.136 0.259 0.171 14.5 5.9 12.2 71.7 71.0

100 6 0.143 0.100 0.188 0.126 15.3 5.5 10.6 88.4 88.2
200 6 0.114 0.071 0.157 0.089 19.8 4.7 7.4 97.8 97.7
30 10 0.249 0.158 0.333 0.197 16.4 5.3 13.2 59.8 60.1
50 10 0.182 0.123 0.240 0.153 14.4 5.4 10.9 73.4 71.0

100 10 0.141 0.091 0.182 0.114 16.6 5.3 7.2 94.2 92.6
200 10 0.106 0.063 0.141 0.080 18.9 5.0 6.5 98.9 98.9
30 20 0.244 0.152 0.315 0.190 15.7 5.9 15.4 56.8 57.9
50 20 0.180 0.122 0.230 0.153 15.6 6.4 11.0 74.3 71.7

100 20 0.130 0.088 0.167 0.110 16.0 5.9 8.0 94.4 92.7
200 20 0.111 0.060 0.146 0.075 24.0 3.7 5.1 99.9 99.4

Slope correlation: Λ1 = 0.5, Λ2 = 0
30 6 0.908 0.811 1.170 1.014 59.9 62.6 85.6 8.9 86.2
50 6 0.808 0.742 1.030 0.937 65.2 64.6 97.0 8.3 97.3

100 6 0.686 0.634 0.880 0.796 68.4 68.3 100.0 7.2 99.9
200 6 0.627 0.571 0.804 0.720 75.9 73.6 100.0 5.0 100.0
30 10 0.878 0.754 1.120 0.941 63.5 64.4 84.8 7.9 82.7
50 10 0.767 0.687 0.964 0.850 68.9 67.5 96.8 8.9 96.0

100 10 0.684 0.611 0.860 0.764 72.9 71.4 99.9 6.3 99.9
200 10 0.625 0.556 0.786 0.695 79.0 76.4 100.0 5.5 100.0
30 20 0.767 0.634 0.975 0.795 61.3 60.5 79.3 9.2 78.8
50 20 0.673 0.579 0.851 0.729 65.0 61.6 91.0 7.6 88.9

100 20 0.627 0.551 0.786 0.688 74.0 71.6 99.7 7.3 99.3
200 20 0.614 0.533 0.758 0.655 81.7 79.9 100.0 6.1 100.0

Notes: See Table 16 for an explanation.
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Table 18: Simulation results for X3.

Bias RMSE 5% size Wald
N T FE INF FE INF FE INF W1 W2 W1&2

No correlation: Λ1 = Λ2 = 0
30 6 0.228 0.183 0.290 0.232 9.8 8.6 13.6 10.2 17.8
50 6 0.152 0.140 0.195 0.176 6.4 6.6 12.3 6.7 13.1

100 6 0.115 0.105 0.143 0.132 6.9 6.0 9.8 7.6 10.8
200 6 0.082 0.076 0.103 0.095 6.6 5.3 7.0 5.1 6.6
30 10 0.207 0.169 0.267 0.212 9.8 7.6 12.5 8.1 15.6
50 10 0.145 0.130 0.183 0.162 6.4 5.5 10.1 7.2 12.0

100 10 0.105 0.097 0.131 0.121 6.7 5.4 7.2 6.5 7.7
200 10 0.074 0.070 0.093 0.087 6.1 6.1 6.4 5.8 7.3
30 20 0.202 0.158 0.255 0.197 8.3 5.6 13.1 8.5 17.2
50 20 0.143 0.128 0.182 0.160 6.0 6.5 11.1 7.5 12.1

100 20 0.100 0.092 0.125 0.115 6.4 5.4 9.0 6.2 10.2
200 20 0.068 0.064 0.086 0.079 5.0 4.1 5.9 6.4 6.6

Loading correlation: Λ1 = 0, Λ2 = 0.5
30 6 0.325 0.183 0.418 0.232 21.7 8.6 18.6 71.0 72.6
50 6 0.244 0.140 0.332 0.176 20.3 6.6 15.3 85.4 85.7

100 6 0.195 0.105 0.262 0.132 24.8 6.0 12.9 94.2 93.9
200 6 0.169 0.076 0.235 0.095 32.8 5.3 10.5 97.7 97.7
30 10 0.301 0.169 0.407 0.212 20.6 7.6 17.2 76.7 77.5
50 10 0.231 0.130 0.309 0.162 21.1 5.5 14.5 84.9 84.1

100 10 0.184 0.097 0.245 0.121 24.9 5.4 10.7 95.6 95.9
200 10 0.147 0.070 0.200 0.087 29.5 6.1 9.5 98.4 98.4
30 20 0.291 0.158 0.376 0.197 19.8 5.6 18.6 71.3 73.2
50 20 0.219 0.128 0.282 0.160 20.5 6.5 13.9 87.2 85.5

100 20 0.161 0.092 0.210 0.115 22.1 5.4 9.3 97.9 97.8
200 20 0.145 0.064 0.195 0.079 30.6 4.1 7.3 99.2 99.2

Slope correlation: Λ1 = 0.5, Λ2 = 0
30 6 1.635 1.478 2.145 1.862 68.8 71.9 96.8 8.8 97.0
50 6 1.482 1.395 1.915 1.767 71.6 72.2 99.9 7.9 100.0

100 6 1.266 1.246 1.655 1.585 74.1 75.3 100.0 7.1 100.0
200 6 1.144 1.097 1.482 1.397 79.1 77.9 100.0 5.6 100.0
30 10 1.682 1.463 2.194 1.849 73.7 72.5 96.4 8.5 96.9
50 10 1.466 1.337 1.873 1.674 76.1 75.5 99.7 8.2 99.9

100 10 1.312 1.226 1.671 1.546 79.6 77.2 100.0 5.5 100.0
200 10 1.204 1.142 1.539 1.442 82.3 81.3 100.0 5.2 100.0
30 20 1.529 1.279 1.968 1.616 72.3 72.4 94.8 9.8 94.4
50 20 1.329 1.164 1.700 1.472 75.5 75.2 98.7 7.1 98.2

100 20 1.249 1.130 1.573 1.413 81.6 80.6 100.0 7.3 100.0
200 20 1.220 1.097 1.517 1.357 87.4 86.0 100.0 6.7 100.0

Notes: See Table 16 for an explanation.
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Table 19: Simulation results for X4.

Bias RMSE 5% size Wald
N T FE INF FE INF FE INF W1 W2 W1&2

No correlation: Λ1 = Λ2 = 0
30 6 0.536 0.386 0.686 0.494 6.2 8.4 6.7 − −
50 6 0.416 0.302 0.544 0.387 6.1 6.1 5.6 − −

100 6 0.288 0.212 0.373 0.276 4.4 6.1 5.2 − −
200 6 0.207 0.151 0.269 0.194 7.7 5.2 5.9 − −
30 10 0.561 0.352 0.730 0.448 8.5 9.3 6.5 − −
50 10 0.411 0.272 0.529 0.344 6.3 6.0 5.0 − −

100 10 0.276 0.183 0.366 0.231 5.2 5.0 5.4 − −
200 10 0.205 0.124 0.266 0.158 4.3 4.7 5.1 − −
30 20 0.522 0.309 0.689 0.390 7.2 8.3 7.5 − −
50 20 0.395 0.237 0.515 0.298 5.3 6.9 5.6 − −

100 20 0.271 0.164 0.362 0.207 6.0 5.7 4.8 − −
200 20 0.200 0.117 0.267 0.149 5.5 6.5 5.1 − −

Loading correlation: Λ1 = 0, Λ2 = 0.5
30 6 0.595 0.386 0.776 0.494 8.6 8.4 10.3 − −
50 6 0.470 0.302 0.615 0.387 9.0 6.1 11.5 − −

100 6 0.361 0.212 0.473 0.276 9.8 6.1 16.2 − −
200 6 0.311 0.151 0.408 0.194 17.3 5.2 28.8 − −
30 10 0.599 0.352 0.800 0.448 9.5 9.3 10.1 − −
50 10 0.482 0.272 0.630 0.344 9.4 6.0 13.6 − −

100 10 0.363 0.183 0.488 0.231 11.0 5.0 19.8 − −
200 10 0.311 0.124 0.415 0.158 17.6 4.7 35.2 − −
30 20 0.565 0.309 0.748 0.390 9.2 8.3 12.8 − −
50 20 0.461 0.237 0.610 0.298 8.4 6.9 14.6 − −

100 20 0.373 0.164 0.499 0.207 13.2 5.7 21.4 − −
200 20 0.323 0.117 0.431 0.149 19.3 6.5 37.4 − −

Slope correlation: Λ1 = 0.5, Λ2 = 0
30 6 0.585 0.445 0.746 0.563 9.3 12.9 6.7 − −
50 6 0.464 0.365 0.598 0.460 8.7 12.8 5.6 − −

100 6 0.353 0.297 0.445 0.366 12.3 16.3 5.2 − −
200 6 0.306 0.268 0.373 0.316 18.9 30.7 5.9 − −
30 10 0.599 0.410 0.774 0.512 10.2 12.9 6.5 − −
50 10 0.461 0.337 0.588 0.419 8.8 13.5 5.0 − −

100 10 0.359 0.289 0.450 0.348 11.8 22.0 5.4 − −
200 10 0.301 0.259 0.369 0.296 20.4 32.2 5.1 − −
30 20 0.547 0.366 0.716 0.457 10.0 13.0 7.5 − −
50 20 0.439 0.320 0.559 0.388 9.2 15.8 5.6 − −

100 20 0.342 0.274 0.426 0.323 12.8 22.8 4.8 − −
200 20 0.294 0.251 0.363 0.286 22.0 39.0 5.1 − −

Notes: See Table 16 for an explanation.
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