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Abstract

This supplement provides (i) the formal assumptions discussed in Section 2 of the main

paper, (ii) the asymptotic results described in the same section, and (iii) a Monte Carlo study.

A Assumptions

It is convenient to write the model given in equation (1) of the main paper in stacked form. It

is given by
yi = Da; + X;B; + Fyi + ¢, (A.1)

where Yyi = [yi,lr"-/yi,T], isTx1, D = [Dl,..., DT]I is T x m, Xi = [Xi,lr---/ Xi,T]/ is T x k,
F = [Fl, ...,FT]/ isT xr, and & = [8,‘{1, ...,Ei,T]/ isT x 1.
The conditions that we will be working under are given in Assumptions ERR, RND, POS

and MOM, which are similar to the conditions of Andrews (2005). The assumptions are stated
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in terms of cross-sectionally demeaned regressors. Let us therefore define A = N~1YN | A;
and A} = A; — A for any matrix A;. We also use C to denote the sigma-field generated by
(D, F). Moreover, —, and — signify convergence in probability and distribution, respectively.

Finally, ||A|| = /tr (A’A) denote the Frobenius (Euclidean) norm of any matrix A.
Assumption ERR.
(a) ¢; is conditionally independent across i given C with E(¢g;|C) = Ory1.

(b) ¢&; is conditionally uncorrelated with X; given C for all i and j.

Assumption RND.

(@) Bi = B+ v;and v; = v + 17;, where v; and 7; are conditionally independent across i given

C with E(Ui|C) = Okx1 and E(UI‘C) = 0px1.

(b) v; and 7; are conditionally uncorrelated of each other, as well as of X, and ¢, given C for

all i, j and n.

Before we make the next assumption, we need to introduce some additional notation. In

particular, we define

N U

Y = I%%N;E(X;* MpX;|C), (A.2)
s 1 N */ / *

R = ﬁﬂﬁ;ﬂxi MpuuiMpX;|C), (A.3)

where u; = X;v; + Fnj; + ¢; and Mp = It — D(D'D)~'D".

Assumption POS.
L1 N
Y=g Y X{'MpX; —, ¥ (A4)
i=1

as N — co, where ¥ and R are positive definite almost surely (a.s.)

Assumption MOM. E(||MpX;||*) < oo and E(|| X}’ Mpu;||*) < co.
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Assumptions ERR and RND are discussed in the Section 2 of the main paper. Assumption
POS is a non-collinearity condition that rules out observed common factors that are included
in both X;; and D;. The reason for distinguishing between D; and X;; is that while f; is subject
to the random coefficient condition in Assumption RND, «; is not. Hence, unlike B; and v;,
«; is not restricted in any way, but can be arbitrarily correlated with X;;. The “price” of this
generality is that we cannot infer a;, as D; will be projected out prior to the estimation of B.
This is also the reason for why the regressors in X;; cannot be constant in i. We do, however,
allow regressors in X; ; that are constant in ¢.

Assumption MOM is a high-level moment condition that is needed to establish both asymp-
totic mixed normality of the FE estimator and consistency of the estimated covariance matrix.
Unlike in the bulk of the previous literature (see, for example, Chudik et al., 2011, and Pe-
saran, 2006), we do not require that v;, #; and ¢;; are independent of X; ; but only that they are
uncorrelated with X;;. This is why Assumption MOM is stated in terms of X’ Mpu;. Under
independence, Assumption MOM holds provided that v;, 17; and ¢; ; all have finite fourth-order
moments.

A major difference when compared to the bulk of the existing large-T literature is that here
we place no assumptions on the time series properties of F;, D;, X;; and ¢;;. Consider F;.
A standard assumption in the literature is that the limit of T-' Y[ | F;F/ is positive definite
(see, for example, Bai, 2009, and Moon and Weidner, 2015), which rules out many empirically
relevant cases, such as when F; is trending. The assumptions considered here are more general
in this regard and do not place any restrictions on the process generating F;, which can be both
deterministic and stochastic. The number of factors, r, is also not restricted in any way, which
is quite different from the bulk of the existing literature where r is typically assumed to be
known or accurately estimated (see Bai, 2009). The only restriction we make is that F; must be
independent of ¢; 4, v; and #;, which is standard in the literature. We similarly do not make any

assumptions regarding the persistence of X;; and ¢; ;.



B Asymptotic results

In this section, we begin by showing that the FE estimator is consistent and asymptotically
normal as N — oo for a fixed T, provided that Assumptions ERR, RND, POS and MOM are
met. We then show that the same applies to PC.

The point that FE works in the presence of interactive effects has been made before by Cui
et al. (2019), Kapetanios et al. (2019), and Westerlund (2019), but their results require that T
is large. Gobillon and Magnac (2016) also comment on this possibility, but do not provide
any formal results. Sarafidis and Wansbeek (2012) report Monte Carlo results showing that FE
works well if the factor loadings are uncorrelated with the regressors.! However, no analytical
results are provided. Andrews (2005) considers a pure cross-sectional model with common
factors, which he estimates using OLS. According to the results, the estimator is consistent and
asymptotically normal provided that the errors and regressors are uncorrelated. The author
comments on the panel data case, but does not provide any results. Forchini and Peng (2016)
consider a fixed-T panel data regression model that is similar to ours, which is again estimated
using OLS. However, they require that the regressors have a factor structure, which is not
necessary here.

While obviously related, the above cited work has different focus areas. In the present
paper, we focus on fixed effects demeaning as a general, and empirically very attractive, device
to increase the robustness not only of OLS but also of other estimation approaches, such as
PC, a point that has been largely overlooked in the previous literature. Of course, in practice
fixed effects are almost always included, and so our recommendation to demean is not very
controversial but just supports the common practice. This is true when using OLS, but also
when using PC. As pointed out in the main paper, PC does not require demeaning. In spite of
this, demeaning is fairly common also in PC (see, for example, Gobillon and Magnac (2016),
and Moon and Weidner, 2015). The reason is that if fixed effects are a part of the interactive

effects, demeaning reduces the number of factors that has to be estimated. Hence, regardless of

1Similarly, Sarafidis and Robertson (2009) argue that demeaning can be useful to reduce the bias in GMM
estimation of dynamic panel data models, and report some confirmatory Monte Carlo results.



whether one is using OLS or PC, demeaning is quite standard. Our fixed-T results complement

the existing large-T results, and imply that demeaning is useful regardless of the size of T.

B.1 The FE estimator

The FE estimator described in the main paper is simply the OLS estimator applied to the data

after subtracting the cross-sectional averages and is given by

N -y
Bre = (Z XT/MDXEK> Y X' Mpy;. (B.5)

i=1 i=1

Theorem B.1 below reports the asymptotic distribution of v/N/( E re — B) under Assumptions
ERR, RND, POS and MOM.

Theorem B.1. Under Assumptions ERR, RND, POS and MOM, as N — oo,
VN(Bre — B) =4 MN (01, ¥ 'RY ),

where MIN (-, -) signifies a mixed normal distribution.

Proof: By using the fact that §; = B + v; and 7; = 7y + 17;, we obtain
yi = Daj + Xi B+ (Xivi)" + Fi + ¢ = Dag + X{'B +uj, (B.6)

where u; = X;v; + Fy; + €;, which in turn implies

\/_A 1 al */ * b 1 al */ *
N(Brg — B) = (NZXI. MDXZ.> \/—N;Xi Mpu;

i=1

. .1 XN 1 N
- 1ﬁ21X*’MDuZ ¥ 1\/_ZX*’MDu
1=
N 1 N
=¥ 1—=%g, (B.7)
vN i3

where ¢; = X'Mpu;, and the last equality is due to the fact that YN, X*' = Ogx7. This last

result is the key and provides intuition for why B re works even though the interactive effects
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are misspecified, which is the same as in the large-T case considered by Westerlund (2019). We
have assumed that the random components of B;, y; and ¢; are all independent over i, mean
zero, and uncorrelated with X; for alli and j. The mean of §; is the parameter of interest. Hence,
if we can just eliminate <y it should be possible to exploit the assumed independence over i, and
to obtain an asymptotic normal distribution for v/N( E re — B). One way to accomplish this goal
is to demean X;.

Let F; be the sigma-field generated by C and (¢, ...,§;). Then {(&;, F;) : i > 1} is a mar-
tingale difference sequence (MDS), because ¢; is independent across i conditional on C, and
E(Ci|Fi—1) = E(i|C) = Ok« (see, for example, Andrews, 2005, for a similar MDS construc-

tion). A conditional Lindeberg condition holds because ¢; have four finite moments. Hence,

letting
, 1N 1 &Y
R = &%E _N 122151 e Z Gi
al /
= 1\1]31 NZ (X' Mpuu:MpX;|C), (B.8)

by the MDS CLT given in Proposition A.1 of Magdalinos and Phillips (2009),

N
% S & —+g MN (g1, R) (B.9)
i=1

as N — oo, where —; and MN(-, ) signify convergence in distribution and a mixed normal
distribution, respectively. Theorem B.1 is a direct consequence of this result and the fact that

¥ —p ¥ as N — oo by Assumption POS. |

While the asymptotic distribution of v/N (Bre — B) is conditional on C, it is not difficult to
show that consistency holds unconditionally. Indeed, by a law of large numbers for indepen-

dent processes (see, for example, Lemma 1 of Andrews, 2005),

Z Gi —p E (GilC) = Okx1 (B.10)



as N — co. Hence, since |[¥7| = 0,(1),

1Bre — BIl < II¥ 7Y = 0p(1). (B.11)

1 N
Wi

As pointed out in the main paper, inference based on Theorem B.1 requires a consistent
estimator of ¥ ~!RY¥ . The estimator of ¥ is obviously given by ¥. For the estimation of R, we

use
~ 1 X
R=% Y X Mpuii;Mp X}, (B.12)
i=1

where i1; = Mp(y; — X B re). Theorem B.2 shows that ¥-1R¥ 1 is a consistent estimator for

Y-IRY
Theorem B.2. Under the conditions of Theorem B.1, as N — oo,

Y IRY ! =, ¥ IRY L

Proof: From (B.6),

it = Mp(y; — X} Bre) = Mp[(X0:)" + Fnif +€f — X; (Bre — B)]

= Mplu; — 1 — X} (Bre — B)] = Mpu; + Op(N~1/2), (B.13)

where the last equality holds because of Theorem B.1 and the fact that [|i|| = O,(N~1/2) by

the same MDS CLT arguments used in Proof of Theorem B.1. It follows that
5 1 1Y 12
R= Y X' Mpuit;MpX; = ~ Y X' MpuuiMpX; +Op(N"/?) -, R (B.14)
i=1 i=1

as N — oo. Hence, since ¥ —p ¥ by Assumption POS, we can show that

Y IRY ! =, ¥ IRY !, (B.15)



and so we are done. |

A major point about Theorem B.2 is that the covariance matrix of BFE is very easily es-
timable. This stands in sharp contrast to the large-T framework that typically involves some
kind of heteroskedasticity and autocorrelation consistent (HAC) correction (see Bai, 2009),
which is not only difficult to implement but is also known to lead to poor small-sample prop-
erties.

We now put Theorem B.2 to work in testing the null hypothesis Hy : HB = h, where H is a

g X k matrix of rank ¢ < kand K is a ¢ X 1 vector. Consider the Wald test statistic
W = N(HBrg —h) (H¥'RY'H') "} (HBrg — h). (B.16)

Suppose that Hy is true. Then, because of the consistency of ¥-1R¥ ! (Theorem B.2) and the

asymptotic normality of N (H BFE — h) under Hy (Theorem B.1), we can show that
W = VN(HBre — 1) (HY 'RY 'H') "W N(HBre — h) +0,(1) —4 x*(g) (B.17)

as N — oo. If ¢ = 1, then we can similarly show that

o VN(HBre =) _ VN(HBre — )
VHY-1RY-1H' VHY 'RY'H’

+0,(1) =4 N(0,1) (B.18)

as N — oo under Hj,.

B.2 The PC estimator

As mentioned in the main paper, the results of Section B.1 are not unique to the FE estimator but
apply to all estimators of the same basic form and where the regressors satisfy the conditions
that we here place on X;. Let us now illustrate this using the PC estimator of Bai (2009). While
not necessary, it is convenient to assume that r is known and that it is not larger than T, as this
will allow us to invoke some of the results of Bai (2009).

The PC estimator of § is defined in equation (11) of Bai (2009). The demeaned version of



this estimator is given by

-1
N N
Bpc = (Z X;“MWX:‘> Y X My (B.19)
i=1 i=1

where W = [D, F] with F being an T x r matrix of estimated PC factors. The definition of Fis

given in equation (12) of Bai (2009), which in our case reads

1 Y - 5 5 =
T & Mp(yi — Xi Bec) (vi — X Bpc)' MpF = FVy, (B.20)
i=1
where Vy is a diagonal matrix that consists of the r largest eigenvalues of the T x T matrix
(NT)"'N, Mp(y; — Xfﬁpc)(yi - X;k,gpc)’MD, arranged in decreasing order.

We begin by analyzing F. By using the same arguments as in Proof of Proposition 1 of Bai

(2009), we can show that || — Bpc|| = 0p(1). By using this and the fact that

Mp(y; — X{Bpc) = MpX; (B — Brc) + Mpu; (B.21)
by (B.6), we can show that
ol 1 al * * 9 ! ol
W = $7 Y Mp(yi — X; Brc)(vi — X{Bpc) MpF
i—1
1 i BN
= — MDu*u MDF + Op(l)
NT =
= QF +0,(1), (B.22)
where
1 Y .
Q= 1\1]13;0 NT Y E(Mpuju;Mp|C). (B.23)

i=1

This is a new eigenvalue-eigenvector relation, where asymptotically each column of F is an
eigenvector of Q. The columns of F are therefore asymptotically equal to the first r eigenvectors

associated with the first r largest eigenvalues of Q, which are the limits of the eigenvalues that



sit on the main diagonal of Vy. Let F? be the limit of F. It follows that

IFV — QFY|| = 0,(1). (B.24)
Since Pz = Pp, , similarly to the proof of Lemma A.7 of Bai (2009), this last result implies
IMg — Mgpol| = [|Pz — Popoll = [[Pgy,, — Popoll = 0p(1), (B.25)

and so we obtain
|Mw — Mol = op(l), (B.26)

where W0 = [D, QF?]. It is important to note that F is not consistent for (the space spanned
by) F, as this requires T to be large. It is, however, asymptotically uncorrelated of v;, ; and ¢;,
which is enough for our purposes, as we will now demonstrate.

Let us now consider E pc. Making use of (B.6),

7w 1 al */ * - 1 al */ *
VN(Bpc — B) = (N Y X MWXi) ﬁgxz Mywu; . (B.27)

i=1

By adding and subtracting, the numerator can be written as

1
— X*/Mwu = X*/M ou + — X*/ MW M o)uik. (B.28)
N 12 h Z w /— 2 WP

Denote by X{ the j-th column of X; . In this notation, the j-th row of the last term on the right

can be written as

1 N %/ 1 N */
— VY XMy — Mo ut = — Y tr[(Mpy — Myo)u! X
mi;z(w Wo)z N; [(W Wo)zl]
N 2 1/2
1 «
< tr[(My — My )2 2tr <—Zujx{ ’)
N5
= o0p(1), (B.29)
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where the inequality holds because [tr (A’B)]?> < tr (A’ A)tr (B'B), and the last equality is due
to tr [(Mw — Myo)?] = ||Mw — Myyo|| = 0,(1). It follows that

1 Y 1 X
i Y X' Mwuf = Vi Y X Mygou; + 0p(1). (B.30)
i=1 i=1
We can similarly show that
1Y 1Y 1Y
S L XIMwXS = =) X MyoX] 4+ ) X (M — Myo) X7
N = N = N =
L XMy X 0, (1) (B31)
- N / i HVIW0A p\t)s .
1=
which in turn implies
VNBre—B) = [ = ix*'m X T %x*'m ot + 0p(1) (B.32)
PC Ni:l i WO \/Nizl i WU p : :

As alluded to in the above, My X; is uncorrelated of v;, 77; and ¢;. Hence, if we assume that

N—oo

1 1
N Y X MyoX; —p lim N Y E(X{' My X[[C)
i=1 i=1

as N — oo, where the limiting matrix is positive definite a.s., such that Assumption POS holds,
then all the conditions of Section A are met. The asymptotic results reported in Section B.1 for

FE therefore apply also to PC.

B.3 The Wald test for uncorrelated coefficients

As discussed in the main paper, the Wald test given in (B.16) can be used to test the Assump-
tion RND (b) requirement that errors v; and #; should be uncorrelated with X;;. In the liter-
ature it is very common to assume that any correlation is driven by X; = T~ YL | X;, (see
Hsiao, 2003, chapter 4.3, for a detailed discussion), and therefore so shall we. The formal con-
ditions are stated in Assumptions TEST, POS" and MOM’ below, where Z; = [MDX;k , (Y: &
MpX)*, (X;' @ F)] and F = Mp(y — XPBre).

11



Assumption TEST.

(@) Bi =B +wviand y; = v +n; with v # 0,51 and

i V) zZ;

where Aj and Aj are k X k and r x k, respectively.

(b) w; and z; are conditionally independent across i given C with E(w;|C) = 0«1 and E(z;|C) =

0r><1-

(c) w; and z; are conditionally uncorrelated of each other as well as of X; and ¢; given C for

alli and j.
Let
® = lim — E Z*'Z B.33
AL N ZZ; ©), (B.33)
= lim — E Z*/ Z , B.34
§ = lim & Z Mpe;e;MpZ;|C) (B.34)

where e; = X;w; + Fz; + ¢;.

Assumption POS’.
N
Z 277 =, @ (B.35)
i=1

as N — co, where ® and S are positive definite a.s.
Assumption MOM'. E(||Z}[|*) < oo and E(||Z}' Mpe;||*) < oo

The null hypothesis of interest is given by Hy : A; = Ogxx and Ay = 0,k, which can be

tested using the following version of the Wald test considered in Section B.1 of this supplement

12



and that is described in Section 2 of the main paper:
Wrnp = N(HrnpOre) (Hrnp® 'S Hynp) ™ Hrnobre, (B.36)

where HRND = [Ok41)kxks [k+1)%) and Orr is the FE slope estimator in a regression of Mpy;

onto Z;. Also,
1 X
§= L ZiMpegMpZ,, (B.37)
i=1

wheree; = Mp(y; — Z; Orr). We would like to point out here that, despite the notation, F is not
intended as an estimator of F. In fact, F may not even have the same dimension as F. However,
we can show that asymptotically F is going to be highly correlated with Fry, which is enough

to ensure that the test is consistent.

Theorem B.3. Suppose that Assumptions ERR, POS” and TEST hold. Then, under Hy, as N — oo,

WrnD —a X2[(k + 1)k].

Proof: Assumption TEST (a) can be inserted into (B.6), giving

yi = Daj + Xi B+ (Xiv))" + Frpi +¢j
= DDC?< + Xl*ﬁ + (XiAlyi)* + PAZYj + I/l;|<

= Daj + X; B+ (X; © X;)"M + (X; @ F)Aa +ef, (B.38)

where Ay = vec/Aj and Ay = vec A,. Because w; and z; have exactly the same properties as
v; and 77; under uncorrelatedness, e} will behave just as u} in (B.6). We can, therefore, think of
(B.38) as an augmented version of (B.6) with (X;® X;)* and (X; ® F) as additional regressors.

The problem is that F is unobserved, which means that (B.38) is not really feasible. In order to

13



account for this, note that in analogy to (B.13),

Mp (y;i — XiBre) = Mp[u; — Xi(Bre — B)] = Mp(u; — X;¥7'%), (B.39)
implying that
F = Mp(y — XBre) = Mp (i — X¥'7), (B.40)

which shows that F is correlated with F, unless of course Y = 0,x1, which is ruled out by
Assumption TEST (a).
Let Z; = [MpX?, (X; ® MpX;)*, (X} ® F)] and 6 = [B/, A}, A4]". Under H, the FE estimator

§pE of 6 can be written as

-1
N 1 N 1 XN
VN(Orr—0)= =Y Zz — Y Z:Mpe:
(FE ) NZZ 171 /—Nl_zl 1 D&

=1

(1 i , )1 1 %
==Y'Zz ]| —Y ZMpe,, (B41)
NZ= VN5

=1

where the first equality is due to the fact that Ay = 0, under Hy, while second equality is due
to Zfil Z; = 07y (k42)k- As for the remaining term on the right-hand side, by the MDS CLT (see
Proof of Theorem B.1),

1 N
— Y ZiMpe; =4 MN(Oei2)kx1,S) (B.42)

O\

as N — oo, where

1
S = lim —
ngloNi

=

E(Z;MDe,-efMDZi |C)

I
—_

14



It follows that if we let

~ 1 % .
o=—Y 72z,
Ni:l l
1y
@zl\llgr;ONZE(ZiMDZAC),

then, under Hy,

. ~ .1 XN P
VN(Opg — ) = ® 1ﬁZziMDei —4 MN(O(ty2)11, @715071). (B.43)
=1

Let ¢ = Mp(y — Z/0rg). By using the same steps as in Proof of Theorem B.2, it is not

difficult to show that under Hy),
1 X
S = N Y ZiMpeie;MpZ; —, S. (B.44)
i=1
Hence, letting Hrnp = [O(k+1)kxks [(k+1)k), We have that under Hy,

WRrND = N(HRNDé\FE)/(HRNDEI\)ilgc/I\)ilHI,QND)71HRND§FE
= (\/NHRNDé\pE)/(HRNDq)_lsq)_lH;QND)_l\/WHRND@FE + Op(l)

—a X2 [(k+1)k] (B.45)

as N — oo. [ |

Theorem B.3 confirms that asymptotically Wrnp is correctly sized under the null hypoth-
esis. Under the alternative hypothesis A1 # Ogxx or Ay # 0,4k, or both, in which case
VN(Org —0) = O,(V/N) implying Wrnp = Op(N). The power of the test therefore approaches
one as N — oo. It is therefore consistent. It is important to point out, thought, that this sup-
poses that the Assumption TEST is satisfied, so that the correlation between v; and #; on the
one hand and X;; on the other hand is in fact driven by X;. A more general approach would

be to test if v; and #; are uncorrelated with X 4, ..., X; t (see Hsiao, 2003, chapter 4.3). However,
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this approach is feasible only if T is really small, and unreported Monte Carlo results confirm
that the performance depends critically on T. In this paper, we therefore focus on X;, which is
a restriction. Moreover, any dependence on X; must be linear, for otherwise the test is unlikely

to detect it.

C Monte Carlo study

This section presents our Monte Carlo results, which are divided into three parts. The full set
of results is very large. In Section C.1, we therefore present a small but representative subset of
the results for the case when X; ; is a treatment dummy. If the purpose is to just get a feeling for
the results, it is enough to read this section. Sections C.2 and C.3 contain additional results. In
particular, while Section C.2 report some results that where omitted from Section C.1, Section

C.3 presents results for a model with more general types of regressors.

C.1 Main results

We consider the same three estimators as in Section 3 of the main paper, which are implemented
in exactly the same way as in that same section.? The data generating process is similar to the
one used by Gobillon and Magnac (2016), and can be seen as a restricted version of (A.1) that
sets B = Dy =r =1, a4, ~ N(1,1), v; ~ N(0,1) and X;; = B;Ct, where B; = 1(i < Np)
and C; = 1(t > Tp). Two specifications of Ny are considered; Ny = 0.1N, which reflects
the empirical illustration in Section 3 of the main paper, and Ny = 0.5N, as in, for example,
Friedberg (1998), Kim and Oka (2014), and Wolfers (2006). In both cases, Tp = 0.5T. Also,
following studies such as Chudik et al. (2011), Kapetanios et al. (2011), and Pesaran (2006), ¢; ; is

allowed to be both serially correlated and heteroskedastic through the following autoregressive

2In their Monte Carlo study, Gobillon and Magnac (2016) assume that the number of factors are known, which
is never the case in practice. By contrast, the use of information criteria to select the number of common factors is
very common in the empirical literature. Our use of the CP criterion of Bai (2009) reflects this. The results reported
here should therefore be highly relevant for applied work.
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(AR) specification:

€ = PE€it—1 T+ Uit (C.46)

where p = 0.5, u;; ~ N(0,0?), 0 ~ U(1,2) and ¢;o = 0. While we do not comment on this in
the main paper, the empirical results suggest that the estimated factors can be well described
by highly persistent AR processes. Motivated in part by this, in part by existing Monte Carlo
studies (see, for example, Chudik and Pesaran, 2015, Moon and Weidner, 2015, and Pesaran,

2006), F; is generated as

Fr=(1-¢)+¢F 1+e, (C.47)

where ¢ = 0.8, ¢4 ~ N(0,1) and Fy = 0. As for 7, similarly to Gobillon and Magnac (2016),
wesety; =+ u-1(i < Nop) + N(0,1), where v = 1 and u € {0,1} determines the size of the
break in the mean. If 4 = 0, there is no break and as a consequence +; is independent of X; ;. If,
on the other hand, y = 1, the mean is breaking, and therefore ; is correlated with X;; and the
correlation between the two is 0.3.

We focus on the bias, the root mean square error (RMSE), and the 5% size of a double-
sided t-test for testing B = 1. We also report 5% rejection frequencies for the Wald test for
uncorrelated loadings. When u = 0, these rejection frequencies represent size, whereas when
i = 1, they represent power. All results are based on 1,000 replications of samples with T &
{6,10,20} and N € {30, 50,100,200}

Tables 1 and 2 report the results for the case without and with a break in the mean of the
loadings, respectively. We begin by considering the former set of results. The first thing to note
about Table 1 is the poor performance of the PC estimator based on raw data. The bias is gener-
ally at or above one, which means that the bias as a percentage of the size of the true coefficient
(B = 1) is close to 100%. The bias and RMSE do come down with increases in N and T, as
expected given the existing joint limit theory of the PC estimator (see Bai, 2009, and Moon and

Weidner, 2015), albeit only very slowly. Demeaning removes most of this poor performance.
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Indeed, the demeaned PC estimator is essentially unbiased and the RMSE decreases very fast
with increases in T and especially in N. As expected, the FE estimator also performs well. In
fact, the performance of FE is almost indistinguishable from that of demeaned PC. The only
notable difference is that the RMSE is generally slightly higher for PC than for FE, although the
difference gets smaller as N and T grow.

The fact that PC and FE tend to perform very similarly only under demeaning suggests that
it is not the augmentation by the estimated PC factors that drives the results, but rather the
demeaning. The intuition is that if T is small, accurate estimation of the factors is not possible,
and therefore the factor estimation error has a dominating effect. On the other hand, we know
from Section B that demeaning works even if T is small, provided that the uncorrelatedness
condition is met. In this case, the estimated PC factors are just redundant regressors, whose
inclusion should be asymptotically irrelevant, although in small samples it is expected to lead
to variance inflation.

Another difference between demeaned PC and FE is that the size distortions are generally
much higher for the former estimator than for the latter. We also see that while decreasing
in T, for PC the distortions have a tendency to accumulate and to become very serious as N
increases. This is in agreement with the results reported by Moon and Weidner (2015) (see also
Chudik et al., 2011), who show that T as large as 300 may be needed for the distortions of PC
to go away. The FE results look much better. In particular, while there are some distortions
among the smaller values of N when Ny = 0.1N, these disappear very quickly as N increases,
and when Ny = 0.5N size accuracy is almost perfect.?> These results for the FE-based t-test are
reflected also in the Wald test for uncorrelated loadings, which generally performs well, except
when Ny = 0.1N and N is small.

The introduction of a break in the mean of the loadings generally leads to a substantial drop
in performance for all three estimators. This can be seen by comparing the results reported in

Table 1 with those reported in Table 2. We also see that while demeaned PC and FE generally

3There are some minor distortions also when Ny = 0.5N. These are, however, generally not larger than that
they can be attributed to simulation uncertainty. Indeed, with 1,000 replications the 95% confidence interval for
the size of the 5% level tests studied here (in %) is [3.6, 6.4].
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perform very similarly when T is small, as T increases so does the relative performance of PC.
This is expected, because the accuracy of the estimated PC factors is increasing in T. Hence,
when T is small accurate estimation of the factors is not possible, and so the performance is
again driven by the demeaning. As T increases, however, the accuracy of the factor estimates
increases. At this point, the estimated factors stop being just redundant regressors, and so the
relative performance of PC increases. Demeaning is still the key, though, which is obvious from
the difference in the PC results depending on whether the data have been demeaned.

An important observation from Table 2 is that, except perhaps for the smallest values of
N, the Wald test for uncorrelated loadings has good discriminatory power against the type of
mean breaks considered here, which is expected given the discussion in Section 3 of the main
paper. We also see that power increases steadily as N grows. This result is reassuring because
we know from before that undetected breaks can have a substantial effect on performance. The
results reported in Table 2 suggest that in large-N samples breaks are very likely to be detected.
If the Wald test does not reject, we use FE, while if the test rejects, we use demeaned PC, which
is relatively more accurate, especially if T is large.

The above conclusions apply not only to the particular setup considered here but also to
all variations of it that we have considered, the results of which are again reported in Sections
C.2 and C.3. In Section C.2, we take the same data generating process as here but vary the
persistence of ¢;;, the size of the breaks in <;, and the specification of F;. While the results
obviously differ, the conclusions do not. As an indication of this, we compute the correlation
between all the bias results for FE and demeaned PC, on the one hand, and demeaned PC and
PC based on raw data, on the other hand. While the former correlation is 0.90 (0.97) with 10%
(50%) treated units, the latter correlation is —0.48 (—0.59). In other words, the performance of
PC is driven mainly by the demeaning. Given that the theoretical results of Section B are not
restricted to the treatments effects case, in Section C.3 we consider different specifications of

X; 1. Again, the conclusions are unaffected.
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C.2 Additional results for the treatment effects case

As already mentioned, the results reported in the previous section are just a small fraction of

the full set of results. The basic data generating process considered in this section is the same

as before, except that we now consider more variations of it.

V1.

V2.

V3.

V4.

V5.

V6.

The heterogeneity of the slope, B;: We consider B; ~ N(1,1), as in Section C.1, and B; =
B=1

The persistence of €;;, as measured by p: While in Section C.1, p = 0.5, here we consider
p € {0,0.5,1}. Hence, ¢;; can be serially uncorrelated (p = 0), persistent but stationary
(p = 0.5), or unit root non-stationary (o = 1). Following Gobillon and Magnac (2016), we
also consider €;; ~ U(—+/3,/3).

The size of the break in the factor loading, 7;, as measured by y: While in Section C.1,

i € {0,1}, here we consider u € {0,0.5,1}, similarly to Gobillon and Magnac (2016).
The mean of the factor loadings, y: While in Section C.1, v = 1, here we set v = 0.
The number of factors, r: While in Section C.1, r = 1, here we consider r € {2,3}.

The factor, F;: Motivated by the empirical illustration, in Section C.1 we generated F; as
a highly persistent AR process. Here, we consider three additional specifications; F; ~
u(0.5,1.5), F; ~ N(1,1) and F; = 5 - sin(7tt/T), where the first and third are taken from
Gobillon and Magnac (2016).

V1-V6 are all the variations that we have considered. However, since some of the results were

very similar, we do not report the results for all the parameterizations. For example, since the

results for f; = 1 resembled those for B; ~ N(1,1), here we only report results for the latter

parametrization. Similarly, the results for p = 1 (;; ~ U(—\/§, \/5)) were similar to those

obtained for p = 0.5 (0 = 0), and so we only report the results for p € {0,0.5}. We also do not

report the results for p = 0.5 and F; ~ N(1,1), as the conclusions were the same as for y = 1

and F; ~ U(0.5,1.5), respectively. The rest of the data generating process is the same as in

Section C.1, including the values of N and T that we consider, and the number of replications.
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Tables 3-15 contain the results, and have the same structure as Tables 1 and 2. The con-
clusions are consistent with those reached in Section C.1. In particular, PC based on raw data
generally leads to the worst performance by far. Demeaning leads to a marked improvement.
Indeed, provided that the loadings are not breaking, the demeaned PC estimator is essentially
unbiased and the RMSE decreases very fast with increases in T and especially in N. The FE
estimator performs very similarly to demeaned PC. A break in the loadings leads to a marked
loss of performance. This is true for all three estimators; however, it is only the demeaned PC
results that have a clear tendency to improve as N increases, which is again consistent with the
results reported in Section C.1.

Comparing across the different parameterizations, we see that while the persistence of the
regression error affects the performance of PC based on raw data, the demeaned PC and FE
estimators are basically unaffected. Similarly, while the results depend on the specification of
the factors, specially when the loadings are breaking, the effect is largest for non-demeaned PC.
The specification that leads to the worst performance is F; = 5 - sin(7t/T) when the loadings
are breaking. The performance is, however, not all that different from the highly persistent AR
case considered in the paper, and so the conclusions are the same. As expected, while the bias
is unaffected, increasing the number of common factors leads to an increase in RMSE.

As with the estimators, the performance of the Wald test for uncorrelated slopes is consis-
tent with the one reported in the main paper. Size accuracy is good. There are some distortions
when Ny = 0.1N, but these disappear quite quickly as N grows. Power is also good and it
increases with the sample size. The Wald test supposes that Assumption TEST is met, which in
turn requires that the mean of the loadings is nonzero. In order to assess the effect of a violation
of this assumption, in Table 15 we report some results for the case when y = 0. We see that
the results are almost identical to those reported in Tables 1 and 2 for the case when v = 1,
suggesting that nonzero mean loading condition is not essential for test performance.

In contrast to the other tables, in addition to PC and FE, Table 15 reports the results obtained
when applying OLS directly to the raw data. This is to illustrate that demeaning can be costly

if the mean of the loadings is zero, in which case demeaning is no longer necessary for OLS
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to be consistent and asymptotically normal. In agreement with this, we see that OLS based on
raw data generally leads to the lowest RMSE when y = 0. The difference is, however, very
small. Moreover, while the RMSE goes down, the size distortions go up when the demeaning
is removed. Hence, even if it is known that the loadings have zero mean, it is not clear that one

would prefer to apply OLS to the raw data.

C.3 Results with general regressors

In Sections C.1 and C.2, the data generating process is tailored to the treatment effects example,
and resembles the one in Gobillon and Magnac (2016). As we pointed out earlier, however, our
theoretical results are by no means restricted to the treatments effects case, but applies more
broadly when estimating panel regressions with interactive effects. In this section, we therefore
consider more types of regressors. The data generating process can be seen as version of the

one used earlier. Just as before, weset Dy =k =r=1,a; ~ N(1,1) and
F = (1 — (P) + ¢F_1 + ey, (C.48)

where ¢ = 0.8, F = 0 and e; ~ N(0,1). In the main paper, we allowed the support of 7;
to differ between the treated and non-treated units, which in turn induced a correlation with
X; . In this section, we instead set §; = 1+ v; and 7; = 1 + 77;, where v; and 7; are allowed to

depend on X, as in Assumption TEST. Specifically,

_ X+ | |, (C.49)
1i Ay zZi

where (w;, z;)" ~ N (02«1, ). If v; (17;) is uncorrelated with X;, we set A; = 0 (A, = 0), whereas
if v; (17;) is correlated with X;, then we set A; = 0.5 (Ay = 0.5). As for X+, we consider four

experiments.

X1. X;y = vjy, where v;; = 0.5v;;_1 + u;; + Zf:i—kl O-S(Mi—j,t + ui+]~,t) with K = 10, v;9 = 0
and u;y ~ N(0,1).
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X2. Xj; =TF +v;;, whereT'; ~ N(1,1) and v;; is as in X1.

X3. Xiy = 0.5X;;_1 +I';Fs +v;4, where X; o = 0, and I'; and v;; are the same as in X2 and X1,

respectively.
X4. X;; = B;C, where B; = 1(i < 0.5N) and C; = 1(t > 0.5T).

The data generating process of v;; is taken from Bai and Ng (2002), and is chosen to showcase
the generality of the types of regressors that can be accommodated. In particular, by generating
the data in this way, v;; is not only correlated over time, but also correlated with 2K of its
neighbouring cross-section units. The correlation is, however, only weak.* Hence, since in this
case X;; = v, in X1 X; ; is weakly correlated. By contrast, in X2, X; ; has an interactive effects
specification, and so the cross-section dependence is of the strong type. Moreover, because x
F; and v;; are generated as AR processes, X;; has a moving average (MA) representation. By
contrast, in X3, we generate X;; as an ARMA process. Finally, in X4, X;; is generated as a
treatment dummy. Note that X; = 0.5B;. Hence, by making #; correlated with X; we achieve
the same goal as when changing the support of ;. Just as before, the results are based on
making 1,000 replications of samples where T € {6,10,20} and N € {30,50,100,200}.

The main purpose of the exercise is to assess the small-sample accuracy of our theoretical
predictions. Hence, unlike in Sections C.1 and C.2, here we are not particularly interested in
the performance of the PC approach used by Gobillon and Magnac (2016), but focus on the FE
estimator based on demeaning and its infeasible counterpart based on taking F; as known. As
in the main paper, we report bias, root mean squared error (RMSE), and the size of a double-
sided t-test for testing p = 1.

The Wgrnp test for uncorrelated coefficients is also simulated. Three versions are consid-
ered, one for each of the hull hypotheses of Ay =0, A, = 0and A; = Ay = 0. As mentioned
in Section A, provided that Assumption POS is met, for estimation purposes there is no need
for any additional restrictions on the types of regressors that can be included in X; ;. However,
because of the way that X; enters the augmented test regression, when using Wrnp Assump-

tion POS” has to be met. In particular and as we point out in Section 3 of the main paper, in X4,

4See Chudik et al. (2011) for a discussion of the concepts of weak and strong cross-section dependence.
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we have MpX? = (B; — B)(C — Clrx1) and (X; ® MpX;)* = C(B; — B)(C — Clry), where
C = [Cq,...,Cr] with Band C being the averages of B; and C;, respectively. Hence, Mp X} is
proportional to (Y: ® MpX;)*, which means that @ is singular, leading to a violation of As-
sumption POS’. The solution to this problem is to simply drop (X; ® MpX;)* from the test
regression, and to base the test on the significance of (X; ' F ) only, which implies that the
Wald test only has power in the direction of A, # 0. Hence, in X4, we only test if Ay = 0.

Table 16 reports the X1 results for different combinations of N, T, A; and A,. As expected
given our asymptotic results, we see that when A; = A, = 0 the results for the two estimators
are almost indistinguishable. This is true regardless of whether one is looking at the bias,
RMSE or size. Because A1 = Ay = 0 the rejection frequencies of all three Wald tests represent
size. Consistent with this we see that, while there are some distortions among the smaller
values of N, especially for the joint test, as N increases the rejection frequencies approach the
nominal 5% level. By contrast, when one of A; or A; is nonzero, then the rejection frequencies
of the relevant tests increase markedly, and they continue to increase as N grows. Interestingly,
the estimators continue to perform very similarly with only minor differences, although the
performance of both estimators deteriorates quite substantially when A; = 0.5. The fact that
the infeasible estimator works well when A, = 0.5 but not when A; = 0.5 is expected, because
conditioning on F; only takes care of the problem if it is the loadings that are correlated. Hence,
the problems experienced by the FE estimator when A; = 0.5 are by no means unique, but
apply to all known estimators, including PC. It is therefore quite reassuring to note that the
Wald test seems to have high power in the direction of A; # 0.

The results reported in Tables 17 and 18 for X2 and X3 are qualitatively very similar to those
reported in Table 16 for X1, and therefore the conclusions are the same. First, while the effect
of Ap = 0.5 on the FE estimator is generally larger than before, the estimators still perform
quite similarly when A; = 0, especially when N is large. This is true when looking at bias and
RMSE. However, if we look at size, we see that FE can be quite distorted, and that it is only
when both N and T are large that the distortions come down to acceptable levels. Second, none

of the estimators work when Ay = 0.5. Third, the Wald tests seem to work well with decent
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size accuracy and high power in the direction of both A; # 0 and A, # 0.

The results for X4 are reported in Table 19. The first thing to note is that the bias and RMSE
results are higher than in X1-X3, which is partly expected given the relatively low variation in
X; 1. However, the results do improve with increases in T and particularly in N. The effect of
Ay = 0.5 is not as pronounced as before, which is again partly expected given the relatively
low variation in X; ;. We also see that in contrast to before, now the size distortions of the t-tests
are increasing in N. The Wald test for testing if A, = 0 performs as expected, with rejection
frequencies that are close to 5% when A, = 0 and well above 5% when A; = 0.5. Note also
that in treatment effects models with the treatment dummy as the only regressor, we cannot
infer whether or not A; = 0. This problem is, however, less of an issue in models with multiple

regressors, as here Mp X and (Y; ® MpX;)* are unlikely to be perfectly collinear.
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Table 1: Simulation results without break in the loadings (1 = 0).

Bias RMSE 5% size
N T PC PC* FE PC PC* FE PC PC* FE WAL

10% treated units (Ny = 0.1N)
30 6 1.078 —0.044 —0.012 220 154 144 28.1 321 234 21.0
50 6 0.955 —0.025 —-0.020 194 117 1.07 292 27.6 12.6 13.4
100 6 0.798 0.014 —0.034 1.47 0.81 0.78 327 254 9.1 8.2
200 6 0.706 —0.008 —0.005 1.24 0.54 0.53 38.1 235 6.5 8.0
30 10 1.377 0.064  0.050 248 148 146 426 426 224 20.4
50 10 1.117  0.058 0.044 204 1.11 1.11 39.5 332 13.7 14.3
100 10 0.895 —0.059 —0.051 1.59 0.72 0.79 419 232 99 10.1
200 10 0.865 —0.007 —0.004 146 0.51 0.56 51.1 19.8 6.6 8.4
30 20 1.221 —0.069 —0.032 225 141 133 54.1 539 20.7 21.3
50 20 0.898 —0.054 —0.048 1.75 093 1.06 49.6 385 144 13.3
100 20 0.793 —0.017 —0.024 1.52 0.66 0.78 479 305 84 8.0
200 20 0.582 —0.004 —0.037 1.11 047 057 50.6 272 73 9.1

50% treated units (Ny = 0.5N)
30 6 1.406 —0.015 —0.020 2.05 0.81 0.70 327 224 6.7 6.4
50 6 1.400 —0.006 0.001 201 0.64 0.61 395 193 5.6 4.5
100 6 1.326  0.039  0.025 1.93 0.46 043 465 17.1 4.8 5.8
200 6 1.185 —0.001 —-0.017 1.77 0.32 0.28 58.8 125 4.6 4.9
30 10 1.676 —0.028 —0.010 228 0.85 0.80 48.1 325 79 7.2
50 10 1.577  0.010 0.017 2.15 0.62 0.58 52.8 20.1 7.1 7.0
100 10 1571 —-0.014 —-0.015 215 044 046 60.0 122 6.0 6.4
200 10 1.532 —0.002 —0.004 2.06 0.30 0.30 73.7 101 4.6 5.4
30 20 1.828 0.069 0.020 236 087 0.79 731 432 7.3 7.4
50 20 1.687 0.038  0.018 220 0.65 0.62 68.7 334 6.0 5.6
100 20 1.650 —0.001 0.012 213 042 042 752 195 4.6 4.3
200 20 1.597 0.017 —0.002 2.05 029 0.31 80.6 144 34 5.1

Notes: “PC*” and “PC” refer to the PC estimators based on the demeaned and raw data,
respectively, “FE” is the OLS estimator based on the demeaned data, and “WAL” refers

to the rejection frequency of the Wald test for testing the null hypothesis that the loadings
are uncorrelated with X;. u refers to the size of the break in the mean of the factor loading
(74)- If u = 0, the rejection frequencies of the Wald test represent size, while if y = 1 they
represent power. “RMSE” refers to the root mean square error, and the reported sizes are
for a double-sided t-test for testing B = 1. Ny refers to the number of treated units.
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Table 2: Simulation results with a break in the loadings (¢ = 1).

Bias RMSE 5% size
N T PC PC* FE PC PC* FE PC PC* FE WAL
10% treated units (Ny = 0.1N)
30 6 2.773 0217 0.291 423 1.73 1.76 35.7 347 29.8 39.5
50 6 2424 0.267 0.274 3.77 158 1.72 414 349 277 37.0
100 6 2266 0.278 0.394 349 121 148 50.4 349 309 51.7
200 6 2.044 0.204 0.345 327 092 134 594 36.5 418 76.3
30 10 3.123 0.223 0.346 441 1.77 1.90 524 46.4 277 39.1
50 10 3.229 0.248 0.489 449 146 1.76 50.8 35.6 27.0 41.6
100 10 2.829 0.134 0415 404 1.00 1.59 615 30.2 33.5 55.2
200 10 2,618 0.116 0.428 373 0.68 141 719 267 472 81.9
30 20 3.178 0.088 0.303 442 170 1.98 655 559 32.1 39.4
50 20 3.202 0.090 0.363 435 126 1.83 69.7 45.0 29.7 46.4
100 20 2.638 0.084 0.323 3.84 0.82 1.64 65.8 384 369 57.5
200 20 2.125 0.032 0.385 344 051 1.56 65.3 273 51.3 84.0
50% treated units (Ny = 0.5N)
30 6 3.170 0.199 0.242 436 140 147 30.7 31.8 288 48.7
50 6 3.253 0.277 0.346 429 120 1.30 38.0 30.6 374 65.9
100 6 3.007 0.274 0.341 418 1.16 1.32 46.8 37.8 549 89.2
200 6 2946 0.300 0.387 414 1.09 1.33 60.2 472 724 98.9
30 10 3.758 0.374 0.456 475 151 1.63 444 457 322 56.0
50 10 3.686 0.300 0.385 469 134 1.53 46.8 41.0 426 78.3
100 10 3.598 0.195 0.364 451 098 1.40 57.3 332 60.2 95.1
200 10 3.397 0.189 0.387 442 081 1.39 67.5 383 743 99.9
30 20 3.830 0.236 0.388 464 138 1.58 70.5 549 343 58.4
50 20 3.804 0.164 0.286 457 118 1.53 69.9 495 477 79.8
100 20 3.746 0.134 0.338 454 0.88 1.48 719 401 67.1 97.3
200 20 3.666 0.105 0.287 443 0.68 1.33 788 364 783 100.0

Notes: See Table 1 for an explanation.
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Table 3: Simulation results with u = 0, F; ~ U(0.5,1.5) and p = 0.5.

Bias RMSE 5% size
N T PC* PC FE PC* PC FE PC* PC FE WAL

10% treated units (Ny = 0.1N)

30 6 0.058 1.392 0.063 133 2.01 099 316 36.2 21.8 18.6
5 6 —0.009 1.150 —-0.017 1.03 1.62 0.80 279 283 14.8 12.5
100 6 0.010 1.095 0.000 073 136 055 22,6 36.2 99 7.3

200 6 0.005 1.013 —-0.007 051 1.20 0.38 21.1 49.7 7.0 6.9
30 10 0.066 1.415 0.018 1.30 196 093 420 452 20.8 20.3
50 10 -0.010 1.175 —-0.020 1.01 1.58 0.72 284 389 13.7 11.6
100 10 —0.005 0.990 —-0.016 0.69 1.22 0.53 19.7 43.8 99 8.3
200 10 —0.005 0.941 —-0.006 049 1.09 035 169 61.7 6.3 7.6
30 20 0.004 1.050 0.002 1.32 1.69 080 50.0 539 21.9 19.2
50 20 0.030 0.956 0.049 1.09 146 0.63 445 548 11.7 119
100 20 0.017 0.752 0.012 069 1.11 044 328 532 89 8.8
200 20 —0.009 0.720 —0.008 0.46 094 031 26.0 649 59 6.2

50% treated units (Ny = 0.5N)

30 6 —0.009 1.821 0.007 073 195 054 223 451 7.1 73
5 6 —0.035 1727 —-0.021 054 1.81 041 164 49.7 58 53
100 6 —-0.008 1.742 -—-0.012 0.39 1.79 030 11.7 67.6 5.1 4.5

200 6 —0.001 1.752 —-0.004 029 1.78 0.21 10.0 87.8 53 49
30 10 0.014 1.889 0.035 070 1.99 051 278 644 74 8.0
50 10 0.002 1789 —-0.001 057 186 038 182 703 5.2 6.6
100 10 —0.012 1.745 0.001 042 179 028 11.8 842 57 6.4
200 10 —0.002 1.743 —0.008 0.28 1.77 0.20 81 963 5.0 52
30 20 —0.006 1.822 —0.010 0.85 192 045 453 86.7 8.0 8.1
50 20 0.004 1.816 0.021 0.65 1.88 0.35 335 941 6.6 55
100 20 0.013 1.820 —0.002 046 1.85 023 209 98.0 4.3 7.5
200 20 0.003 1.822 —-0.006 030 1.84 0.17 122 994 4.0 54

Notes: See Table 1 for an explanation.
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Table 4: Simulation results with u = 1, F; ~ U(0.5,1.5) and p = 0.5.

Bias RMSE 5% size
N T PC* PC FE PC* PC FE PC* PC FE WAL

10% treated units (Ny = 0.1N)

30 6 0.039 3.227 0.021 127 3.63 098 31.1 49.1 21.7 27.3
5 6 —0.004 3.112 0.023 1.02 344 0.81 28.6 55.6 153 26.4
100 6 —0.012 3.069 —0.012 0.76 3.27 0.60 264 75.8 13.0 30.8

200 6  —0.002 3.043 0.016 0.62 3.16 044 304 945 10.6 49.6
30 10 —0.039 3459 —-0.004 130 3.76 096 40.6 65.1 222 31.1
50 10 —-0.015 3.110 —0.004 1.07 3.36 0.73 321 733 14.3 31.0
100 10 0.004 3.065 —-0.031 0.79 321 056 255 91.6 121 42.5
200 10 0.028 3.105 0.009 0.60 3.19 042 257 99.1 11.1 66.8
30 20 0.002 3.215 0.023 140 359 0.85 55.6 833 22.7 33.0
50 20 0.057 3.065 0.029 115 337 0.66 473 88.4 159 42.3
100 20  —0.022 3.018 0.002 0.85 323 048 409 955 10.3 55.5
200 20 0.011 2961 0.015 0.69 3.19 0.36 45 953 98 81.2

50% treated units (Ny = 0.5N)

30 6 0.039 3.956 0.034 0.76 4.01 058 241 427 95 27.2
5 6 —0.004 3936 —0.007 064 398 048 18.8 40.0 93 35.4
100 6 0.011 3.917 0.008 047 394 038 163 54.7 12.6 59.5

200 6 —0.009 3.928 —0.002 042 395 032 21.6 70.8 21.1 83.8
30 10 0.003 3.946 0.009 074 399 053 29.6 59.1 8.6 33.0
50 10 —0.002 3.896 —0.024 0.63 393 043 221 614 82 49.3
100 10 —-0.008 3913 —0.009 054 393 034 215 712 118 74.6
200 10 0.015 3914 —-0.007 048 393 027 250 845 14.6 95.7
30 20 0.031 3.954 0.021 095 399 046 50.1 882 79 44.7
50 20 —0.028 3931 —-0.006 0.83 396 037 466 904 9.1 62.1
100 20 0.024 3940 —-0.010 0.75 395 0.27 470 918 7.8 91.0
200 20 0.015 3.964 0.011 073 397 022 53.8 950 119 99.2

Notes: See Table 1 for an explanation.
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Table 5: Simulation results with 4 = 0, F; ~ U(0.5,1.5) and p = 0.

Bias RMSE 5% size
N T PC* PC FE PC* PC FE PC* PC FE WAL
10% treated units (Ny = 0.1N)
30 6 0.009 0.764 0.004 1.20 1.54 0.79 45.6 42.3 23.8 18.9
50 6 —0.024 0325 —-0.012 0.95 1.02 0.60 40.7 33.2 13.2 14.5
100 6 —0.019 —0.025 —0.038 0.67 048 042 33.1 23.7 83 8.0
200 6 —0.014 —0.014 0.000 049 029 030 263 228 69 7.3
30 10 0.055 0.817 0.035 1.14 153 0.71 599 505 22.6 20.4
50 10 —0.007 0.240 0.003 0.87 0.88 055 48.8 36.7 15.6 11.1
100 10 0.001 —-0.015 —0.008 047 0.39 038 32.0 30.0 9.2 94
200 10 —0.009 —0.028 —0.011 029 0.27 028 299 305 7.2 7.0
30 20 —0.024 0.146 0.004 0.79 0.86 0.64 48.8 444 22.6 18.6
50 20 0.005 0.005 0.006 053 052 048 439 419 141 14.6
100 20 0.004 —0.008 0.007 035 034 035 41.0 41.6 9.0 8.7
200 20 —0.013 —0.030 —0.014 0.25 0.25 0.25 40.5 42.0 6.2 7.2
50% treated units (Ny = 0.5N)
30 6 0.023 1.137  0.009 0.60 1.50 030 474 381 5.6 6.4
50 6 —0.015 1475 0.009 054 1.73 024 52.7 440 7.0 7.9
100 6 0.007 0.137 —0.002 025 051 0.18 20.6 144 6.6 6.9
200 6 0.024 0430 0.006 049 091 024 389 23.0 63 6.2
30 10 —0.005 0.190 0.002 033 059 0.18 31.1 14.8 5.0 6.2
50 10 —0.004 0.000 -0.002 0.13 0.11 0.13 71 53 52 5.3
100 10 —0.002 0.010 0.006 036 020 0.17 365 75 57 4.7
200 10 0.002 0.000 —-0.0010 0.15 0.11 0.13 114 6.7 52 6.4
30 20 0.000 0.000 —0.001 0.10 0.08 0.10 9 73 67 5.1
50 20 —0.005 0.002 0.003 024 0.11 0.12 315 93 6.5 54
100 20  —0.002 —0.001 —0.003 0.10 0.08 0.09 87 6.0 55 4.3
200 20 0.004 0.004 0.003 0.07 0.06 0.07 69 66 48 5.7

Notes: See Table 1 for an explanation.

32



Table 6: Simulation results with u = 1, F; ~ U(0.5,1.5) and p = 0.

Bias RMSE 5% size
N T PC* PC FE PC* PC FE PC* PC FE WAL
10% treated units (Ny = 0.1N)
30 6 —0.054 2376 —0.006 1.21 3.17 0.82 49.0 40.1 24.6 28.4
50 6 —0.004 1.222 —-0.023 1.02 2.24 0.66 41.1 35.2 16.5 27.5
100 6 —0.020 0.001 -—-0.006 0.76 0.59 0.50 33.7 26.2 134 36.0
200 6 0.025 —0.018 0.024 0.57 030 037 33.1 22.0 12.8 52.6
30 10 0.000 3.007 0.011 1.13 3.52 0.72 59.0 49.3 23.7 34.3
50 10 0.008 0940 0.013 0.87 197 057 48.1 37.7 16.6 35.0
100 10 0.025 —0.014 0.010 055 0.42 044 37.7 289 12.6 48.7
200 10 —0.006 —0.045 —0.013 0.34 0.28 033 34.7 27.7 13.2 71.9
30 20 —0.009 0592 0.021 0.78 1.64 0.64 474 446 233 40.5
50 20 —0.011 —-0.015 —0.015 0.58 0.61 0.52 45.6 39.0 16.2 46.1
100 20 0.007 —0.018 0.017 0.40 037 038 46.4 404 13.6 65.1
200 20 —0.005 —0.040 —0.012 0.27 0.24 027 409 36.8 88 89.6
50% treated units (Ny = 0.5N)
30 6 0.004 3.754 0.014 0.72 393 047 28.8 232 12.8 28.2
50 6 —0.018 3.163 0.007 059 3.60 038 23.7 20.2 11.0 40.6
100 6 0.019 1.647 0.015 042 2.64 0.32 13.5 175 17.1 64.3
200 6 0.018 0.174  0.000 036 1.14 027 104 25.8 26.6 85.3
30 10 —0.034 3947 -—-0.012 0.77 4.00 0.40 43.3 314 109 40.2
50 10 —0.010 3.435 0.008 0.69 3.73 033 37.0 222 11.6 61.2
100 10 —0.019 2.121 0.011 0.65 294 0.27 33.9 24.8 15.2 84.7
200 10 0.044 0504 —-0.007 083 159 023 66.0 36.3 26.0 98.7
30 20 0.021 3412 —-0.004 0.81 3.72 0.33 51.9 50.1 8.1 54.2
50 20 —0.011 2.388 0.003 091 3.13 026 61.6 483 9.1 77.5
100 20 —0.062 0.947 0.011 1.03 2.06 0.21 88.3 433 133 96.7
200 20 —0.048 0.009 —0.001 1.08 0.85 0.17 975 54.7 165 100.0

Notes: See Table 1 for an explanation.
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Table 7: Simulation results with y = 0, F; as in the main paper and p = 0.

Bias RMSE 5% size
N T PC* PC FE PC* PC FE PC* PC FE WAL
10% treated units (Ny = 0.1N)
30 6 0.103 0.789 0.054 1.38 2.06 1.24 442 395 222 19.7
50 6 0.042 0.467 0.046 113 155 099 38.6 31.1 15.1 14.4
100 6 0.008 0.110 0.003 0.80 0.70 0.72 304 24.6 104 8.5
200 6 —0.014 0.075 0.009 053 052 051 26,6 260 7.7 6.3
30 10 0.100 0.974 0.043 1.30 2.17 1.33 58.8 44.7 233 22.2
50 10 —0.046 0.290 —0.035 0.89 1.34 1.01 43.5 33.2 16.2 14.0
100 10  —0.023 0.079 —0.028 0.48 0.73 0.78 28.6 284 10.2 11.6
200 10 0.002 0.039 0.014 031 043 053 278 314 75 7.6
30 20 —0.011 0.253 —0.087 0.86 135 1.34 469 422 238 21.4
50 20 0.015 0.145 0.038 053 1.03 1.07 37.8 382 159 14.0
100 20 —0.021 0.035 —0.015 0.37 0.63 0.70 39.8 39.1 8.3 10.8
200 20 0.000 0.006 0.005 026 0.28 051 36,5 362 7.2 7.4
50% treated units (Ny = 0.5N)
30 6 0.000 1.299 0.015 0.79 2.08 0.66 29.1 33.8 6.1 6.3
50 6 —0.033 1.035 —0.014 0.67 1.86 054 224 306 7.1 5.0
100 6 —0.014 0.673 —0.001 046 147 037 142 349 5.0 5.1
200 6 0.002 0.320 0.005 032 1.11 0.24 82 398 43 4.7
30 10 0.017 1.588 —0.001 0.78 2.17 0.64 42.0 410 6.3 5.9
50 10 0.005 1.257 —0.019 0.65 2.03 0.54 30.8 349 59 6.5
100 10 0.015 0.818 —0.007 046 1.69 038 17.0 33.8 5.8 5.6
200 10 —0.016 0.526 —0.006 026 1.36 0.27 10.0 424 55 5.5
30 20 —0.025 1419 —0.026 0.74 2.16 0.73 470 484 6.8 6.1
50 20 0.021 0.993 0.023 051 1.82 053 32,6 442 68 7.0
100 20 —0.004 0.732 —0.003 0.28 1.61 040 24.1 434 6.4 5.6
200 20 —0.003 0.599 0.002 0.14 152 028 229 469 59 49

Notes: See Table 1 for an explanation.
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Table 8: Simulation results with = 1, F; as in the main paper and p = 0.

Bias RMSE 5% size
N T PC* PC FE PC* PC FE PC* PC FE WAL
10% treated units (Ny = 0.1N)
30 6 0.312 2.087 0345 1.78 3.72 1.76  45.1 39.7 30.6 38.0
50 6 0320 1.132 0391 153 2.78 151 393 313 30.1 37.4
100 6 0.232 0.506 0.292 1.24 1.86 140 37.7 29.0 342 55.3
200 6 0.195 0.268 0.340 095 1.14 1.27 36.8 314 52.6 79.0
30 10 0.187 2.639 0.327 1.63 422 1.78 62.8 42.7 31.2 42.9
50 10 0.145 1.580 0.316 1.22 331 1.76 464 32.2 332 42.7
100 10 —0.021 0.771 0.287 051 237 153 321 29.6 36.1 58.7
200 10 —0.005 0.355 0.363 0.33 144 141 295 333 564 83.8
30 20 0.074 1.420 0435 1.01 325 192 47.0 355 344 42.4
50 20 —0.002 0954 0.354 055 267 1.76 41.6 34.8 329 43.8
100 20 0.012 0.701 0.315 038 226 158 39.6 36.6 40.6 62.2
200 20 —0.010 0.332 0.286 0.26 1.55 149 38.1 37.8 60.3 85.5
50% treated units (Ny = 0.5N)
30 6 0.351 3.137 0410 145 429 147 36.8 299 369 51.0
50 6 0.241 2517 0295 1.21 3.87 1.28 329 275 46.8 70.2
100 6 0261 1.928 0.296 1.17 3.45 123 30.6 30.7 63.7 90.2
200 6 0.248 1.300 0.305 1.11 2.82 1.22  28.7 40.1 78.6 98.4
30 10 0.238 3.455 0315 144 459 152 548 32.0 40.1 61.1
50 10 0.238 3.255 0.339 1.27 447 146 47.7 26.0 52.5 74.9
100 10 0.137 2.896 0375 090 423 140 34.0 284 70.1 97.5
200 10 0.058 2.002 0.288 0.53 3.56 135 25.6 36.1 82.8 99.9
30 20 0.113 3.527 0.302 1.22 448 152 56.1 39.8 42.7 64.6
50 20 0.106 3.171 0.241 0.79 429 140 42.0 38.8 52.2 80.0
100 20 0.013 2.880 0.322 042 422 144 33.7 341 740 98.0
200 20 —0.013 2.800 0.366  0.18 4.21 1.37 32.1 379 848 100.0

Notes: See Table 1 for an explanation.
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Table 9: Simulation results with y = 0, F; = 5 - sin(7tt/T) and p = 0.5.

Bias RMSE 5% size
N T PC* PC FE PC* PC FE PC* PC FE WAL
10% treated units (Ny = 0.1N)
30 6 —0.046 2.643 —0.062 142 328 142 344 357 21.8 20.0
50 6 —0.009 2.467 —0.030 1.15 293 1.11 29.7 439 12.2 13.5
100 6 —0.025 2294 —-0.018 0.78 2.60 0.78 269 69.0 9.4 9.7
200 6 0.020 2.104 0.018 056 234 055 28.0 879 6.2 8.0
30 10 —0.006 3.194 0.047 1.29 3.75 112 399 532 21.6 21.4
50 10 —0.032 3.036 —0.027 099 349 0.89 30.7 60.6 15.1 11.5
100 10  —0.006 2900 —0.042 0.68 3.15 059 21.1 83.7 8.9 9.2
200 10 0.005 2.848 0.010 049 299 043 193 973 6.1 5.6
30 20 0.024 3.272 0.022 1.30 3.98 0.89 51.0 68.8 20.1 18.4
50 20 —0.044 3.184 0.006 1.00 3.71 0.69 424 76.8 135 11.9
100 20 0.014 3.165 —0.008 0.68 3.53 048 31.6 888 95 7.8
200 20  —0.002 2960 —0.009 045 329 035 237 919 74 6.8
50% treated units (Ny = 0.5N)
30 6 0.001 3.213 —0.009 0.82 3.32 081 237 272 75 6.9
50 6 0.039 3.181 0.050 065 324 064 18.0 293 58 6.6
100 6 0.005 3.177 0.005 047 3.21 044 189 415 5.1 5.2
200 6 —0.005 3.198 —0.014 032 321 033 143 639 6.8 5.5
30 10 0.051 3.613 0.027 0.76 3.71 0.61 294 432 5.2 6.5
50 10 0.024 3.612 0.000 059 3.67 050 17.7 402 7.6 6.8
100 10 0.017 3.578 0.002 039 361 033 103 415 44 45
200 10 0.000 3.568 0.001 030 358 024 10,5 55.1 55 49
30 20 0.004 3.933 —0.002 0.82 4.03 047 447 62.7 6.9 7.1
50 20 —0.023 3.871 0.002 0.63 393 036 327 582 54 5.6
100 20 0.000 3.888 —0.007 043 392 026 19.1 610 54 5.6
200 20  —0.001 3.902 0.006 029 392 0.18 10.7 65.8 4.6 5.4

Notes: See Table 1 for an explanation.

36



Table 10: Simulation results with y =1, F; = 5 - sin(7tt/T) and p = 0.5.

Bias RMSE 5% size
N T PC* PC FE PC* PC FE PC* PC FE WAL
10% treated units (Ny = 0.1N)
30 6 —1.349 6246 —1.749 201 6.53 223 422 27.0 451 53.2
50 6 —1.184 6.118 —1.678 1.74 6.31 2.03 39.7 32.0 45.1 59.6
100 6 —0943 6.201 —1.632 133 630 1.80 48.1 50.3 589 81.3
200 6 —0.821 6.210 —1.684 1.05 6.26 1.77 614 69.2 879 97.5
30 10 —0.660 7.036 —1.034 145 728 150 419 364 357 52.0
50 10 —-0.503 7.042 —0.996 1.17 721 130 35.6 35.7 33.1 58.8
100 10 —0.304 7.174 —1.000 0.79 725 117 26.6 404 43.7 82.9
200 10 —0.201 7.053 —1.011 054 7.09 1.10 23.8 625 66.8 98.1
30 20 —0.192 7.628 —0496 129 7.88 098 53.0 483 28.2 51.3
50 20 —0.148 7.730 —0.526 1.04 7.89 0.86 43.8 47.1 2238 61.7
100 20 —0.026 7.777 —0.465 0.67 7.86 0.68 299 470 22.1 83.6
200 20 —0.037 7.788 —0.502 0.50 7.83 0.61 29.0 523 33.7 98.4
50% treated units (Ny = 0.5N)
30 6 —1.448 6552 —1.655 1.71 6.60 1.83 43.7 11.3 57.8 74.5
50 6 —1377 6549 —1.634 156 658 1.75 47.7 10.1 74.2 90.7
100 6 —1.382 6.541 —1.690 149 6.55 1.75 66.1 11.0 96.7 99.8
200 6 —1.240 6,516 —1.667 1.31 6.52 1.70 90.7 18.7 100.0  100.0
30 10 —-0.791 7.277 —-0.977 1.10 7.33 1.15 45,5 151 393 73.1
50 10 —0.682 7266 —0.977 094 729 1.09 382 12.6 54.0 90.7
100 10 —0.555 7.289 —1.001 0.73 730 1.05 33.6 84 849 99.8
200 10 —0485 7.304 —1.008 059 7.31 1.04 433 9.6 99.3 100.0
30 20 —0.247 7.835 —0.500 0.86 7.88 0.69 469 25.7 21.0 78.6
50 20 —0.262 7.840 —0.502 0.70 7.87 0.62 35.0 16.1 31.7 92.6
100 20 —0.197 7.829 —0490 050 7.84 055 24.6 152 48.0 99.6
200 20 —0.197 7.851 —0.508 0.38 7.86 0.54 189 164 80.1 100.0

Notes: See Table 1 for an explanation.

37



Table 11: Simulation results with y = 0, F; = 5 - sin(7tt/T) and p = 0.

Bias RMSE 5% size
N T PC* PC FE PC* PC FE PC* PC FE WAL
10% treated units (Ny = 0.1N)
30 6 0.014 1.878 0.005 1.37 2.80 1.28 44.8 36.8 22.7 20.3
50 6 0.051 0.964 0.047 1.06 1.95 098 405 355 134 14.3
100 6 0.007 0.308 —0.004 0.75 099 0.70 31.1 324 95 8.6
200 6 —0.002 0.105 —0.012 054 047 051 30.1 29.0 8.0 6.7
30 10 0.028 2.552 0.048 1.13 3,50 0.88 609 41.6 20.1 18.7
50 10 0.036 1.453 0.000 0.85 260 070 46.4 34.7 14.6 12.2
100 10  —0.021 0.483 0.023 045 140 051 326 372 95 7.8
200 10  —0.004 0.121 0.000 028 052 035 328 377 75 6.4
30 20 0.018 2.054 0.045 0.75 3.37 0.72 499 388 224 19.8
50 20 —0.008 1.243 —0.018 0.51 252 055 42.6 43.0 14.0 12.4
100 20 0.003 0.281 0.014 036 1.03 039 422 463 9.1 8.7
200 20  —0.006 0.090 —0.007 026 0.39 029 432 468 7.2 6.8
50% treated units (Ny = 0.5N)
30 6 —0.046 3.172 —0.028 0.85 3.28 0.73 32.0 21.6 838 7.5
50 6 —0.008 3.167 0.013 0.66 324 058 239 120 7.6 6.2
100 6 0.024 3.164 0.027 0.47 3.21 040 13.0 142 6.2 49
200 6 —0.016 3.136 —0.006 0.35 3.18 0.29 77 175 42 4.0
30 10 0.002 3.615 0.020 0.74 3.71 0.49 441 188 55 6.5
50 10 0.033 3.626 0.024 0.63 368 039 30.7 86 59 6.1
100 10 0.005 3.637 —0.007 047 3.67 0.27 16.3 52 5.2 5.4
200 10 —0.005 3.632 —0.005 0.31 3.66 0.19 71 6.1 44 3.9
30 20 —0.012 3953 —0.006 0.74 4.05 037 483 19.1 8.1 7.1
50 20 —0.009 3.903 —0.003 057 397 027 369 128 64 5.0
100 20 —0.015 3.838 —0.013 0.33 391 0.19 243 105 54 6.4
200 20  —0.002 3475 —0.002 0.14 3.71 0.14 26.0 199 54 5.5

Notes: See Table 1 for an explanation.

38



Table 12: Simulation results with y = 1, F; = 5 - sin(7tt/T) and p = 0.

Bias RMSE 5% size
N T PC* PC FE PC* PC FE PC* PC FE WAL
10% treated units (Ny = 0.1N)
30 6 —1.255 5938 —1.750 198 6.40 2.17 50.1 175 47.2 57.3
50 6 —1.073 5345 —1.666 1.65 599 192 49.1 182 51.8 62.5
100 6 —1.029 4304 —1.674 143 517 181 46.3 35.0 70.6 84.0
200 6 —0.804 1.885 —1.642 1.18 3.16 1.71 45.0 51.0 91.8 98.4
30 10 —-0.393 7.209 —1.044 127 751 140 61.7 9.6 418 54.2
50 10 —0.161 6.836 —1.020 093 723 125 50.1 7.0 433 62.0
100 10 —0.008 4.862 —0.986 050 597 1.12 35.1 182 54.7 83.9
200 10 0.021 1.095 —0.990 0.28 255 1.05 31.7 44.0 80.1 98.8
30 20 —0.017 7.046 —0.505 0.81 766 088 532 95 312 54.2
50 20 0.000 5.609 —0.497 052 6.70 0.73 454 146 26.6 63.6
100 20 0.001 1.996 —0.497 036 3.84 0.63 421 369 31.6 87.7
200 20 —0.001 0.240 —0.505 0.25 0.68 0.58 445 52.3 49.8 99.0
50% treated units (Ny = 0.5N)
30 6 —1490 6513 —1.702 174 657 185 50.7 6.1 66.8 76.7
50 6 —1.490 6507 —1.682 1.66 655 1.77 477 34 86.6 934
100 6 —1.533 6528 —1.659 1.62 657 1.70 46.7 2.7 98.6 99.8
200 6 —1.547 6479 —1.665 159 654 1.69 559 9.1 100.0 100.0
30 10 —0.694 7.333 —0975 1.05 737 1.09 564 3.0 53.1 76.9
50 10 —-0.672 7.305 —1.003 095 733 1.07 471 10 743 93.1
100 10 —0.650 7.289 —1.004 0.85 731 1.04 389 1.0 96.1 100.0
200 10 —0.699 7276 —1.006 0.82 7.31 1.03 450 74 99.9 100.0
30 20 —0.201 7.787 —0.494 0.78 7.85 0.61 50.7 2.3 33.7 76.7
50 20 —0.215 7.812 —0.497 062 786 057 418 13 470 93.2
100 20 —0.184 7.640 —0.488 043 7.77 0.52 296 33 734 100.0
200 20 —0.033 7.354 —0.495 0.22 7.60 051 338 256 95.7 100.0

Notes: See Table 1 for an explanation.
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Table 13: Simulation results with r € {2,3}, y = 0 and Ny = 0.1N.

Bias RMSE 5% size
N T PC PC* FE PC PC* FE PC PC* FE WAL

Two factors (r = 2)
30 6 0537 —0.025 —0.013 2.17 150 141 283 30.7 19.1 20.2
50 6 0552 —0.026 —0.046 1.65 1.18 1.07 315 26.0 13.6 13.0
100 6 0421 —0.048 —0.030 1.41 0.80 0.77 32.0 222 85 7.8
200 6 0402 —0.018 —0.016 123 0.55 053 383 212 5.7 52
30 10 0.701 0.077 0.090 220 149 145 376 422 209 183
50 10 0.539 0.009 -—-0.021 191 1.12 1.15 378 321 131 124
100 10 0467 —0.031 —0.025 133 0.71 0.78 382 232 7.7 8.0
200 10 0413 0.020 0.020 1.21 048 056 438 186 7.1 8.8
30 20 0.642 0.051 0.079 191 1.32 1.37 52.6 50.6 17.8 18.9
50 20 0375 —0.001 —0.031 1.37 092 1.11 437 36.1 126 129
100 20 0.253 —0.016 —0.016 098 0.64 0.81 414 321 93 8.1
200 20 0.164 —0.001 —0.007 0.76 042 054 39.1 264 7.3 5.5

Three factors (r = 3)
30 6 0509 —0.097 —0.050 237 1.67 1.65 323 31.0 193 182
50 6 0566 —0.004 0.027 205 122 1.23 313 271 135 144
100 6 0467 0.022 0.010 1.62 0.87 0.86 35.0 21.1 94 9.1
200 6 0464 —0.020 0.003 1.56 058 0.62 422 21.7 7.1 6.6
30 10 0.691 0.023 0.034 2.61 1.56 1.69 414 40.0 20.1 19.8
50 10 0.658 0.015 0.019 212 1.08 1.21 40.7 302 129 134
100 10 0.430 0.018 0.006 1.69 0.76 091 414 247 99 9.8
200 10  0.458 —0.009 0.002 1.32 050 0.64 446 204 6.8 6.5
30 20 0.570 —0.011 —0.025 2.08 1.31 1.56 51.1 454 184 19.2
50 20 0.363 —0.023 —0.006 1.51 091 126 442 39.1 131 123
100 20 0.189 —0.017 —0.022 095 0.61 092 39.7 304 8.6 7.8
200 20 0.145 —0.015 0.022 0.73 041 0.65 404 299 7.0 7.1

Notes: See Table 1 for an explanation.
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Table 14: Simulation results with with r € {2,3}, y = 1 and Ny = 0.1N.

Bias RMSE 5% size
N T PC PC* FE PC PC* FE PC PC* FE WAL
Two factors (r = 2)
30 6 1.672 0.036 0.003 423 2.09 218 376 387 365 557
50 6 1343 —0.083 —0.084 3.67 1.73 199 39.1 354 374 624
100 6 1510 0.155 0.124 355 150 1.86 485 374 443  83.0
200 6 1.170 0.031  0.025 3.13 1.32 1.77 53.3 44.7 59.0 95.4
30 10 1.816 —0.059 0.028 422 2.09 239 484 526 406 639
50 10 1.705 0.024 0.010 401 1.64 213 482 424 398 749
100 10 1.551 0.035 0.117 368 1.12 192 531 33.7 51.1 919
200 10 1.327 0.012 0.035 327 0.88 193 62.1 358 626 99.6
30 20 1427 —0.027 —0.040 3.58 1.81 2.37 578 569 385 65.3
50 20 1458 0.000 0.016 341 144 229 572 456 403 824
100 20 1.016 —0.014 —0.036 2.73 0.79 2.08 52.1 38.8 52.7 96.5
200 20 0945 0.014 0.065 258 053 2.00 54.0 34.7 66.7 995
Three factors (r = 3)
30 6 1.833 0.102 0.102 5.08 239 253 394 407 382 614
50 6 1.624 0.054 0.076 450 2.01 231 442 396 396 704
100 6 1.187 —0.061 —0.023 4.01 1.86 230 51.1 399 505 89.1
200 6 1.192 0.008 —0.042 3.80 1.59 213 594 48.6 628 969
30 10 1.959 0.090 0.067 521 2.36 2.73 47.1 52.0 41.7 68.1
50 10 1.589 0.013 0.001 461 1.83 254 509 459 402 829
100 10 1.540 —0.027 0.113 431 1.29 2.37 55.7 40.0 51.7 96.3
200 10 1.384 0.034 0.019 400 1.02 229 66.0 435 64.1 99.2
30 20 1.523 0.001 —-0.113 427 194 284 61.5 57.8 42.8 77.3
50 20 1.420 —0.034 0.013 402 129 2.64 564 46.1 440 882
100 20 1.178 —0.014 —0.010 343 0.88 252 532 382 56.0 98.8
200 20 0.935 0.004 0.021 291 060 249 55.0 39.2 68.1 100.0

Notes: See Table 1 for an explanation.
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Table 16: Simulation results for X1.

Bias RMSE 5% size Wald
N T FE INF FE INF FE INF Wi W Wigo
No correlation: A1 = A, =0

30 6 0189 0.165 0.242 0.209 78 79 92 96 1238
50 6 0.142 0137 0.179 0.172 74 71 98 6.1 103
100 6 0.099 0.096¢ 0.124 0.121 53 438 78 52 74
200 6 0.068 0.069 0.084 0.085 51 4.0 64 65 6.6

30 10 0.186 0.164 0.235 0.206 84 72 109 10.1 14.0
50 10 0.135 0.127 0.173 0.161 72 64 83 6.1 111
100 10 0.092 0.089 0.117 0.114 64 64 61 63 85
200 10 0.066 0.066 0.083 0.082 5.0 5.0 59 6.6 6.8
30 20 0.164 0.153 0.204 0.191 74 69 104 92 133
50 20 0.122 0.118 0.153 0.148 5.7 54 77 59 9.0
100 20 0.089 0.087 0.111 0.109 56 5.3 84 6.8 85
200 20 0.062 0.062 0.077 0.077 5.8 5.6 49 61 58
Loading correlation: A; =0, Ap = 0.5

30 6 0203 0165 0262 0209 106 7.9 10.1 448 455
50 6 0160 0.137 0205 0172 104 7.1 105 69.6 675
100 6 0.116 0.096 0.147 0.121 9.8 4.8 87 90.1 89.1
200 6 0.081 0.069 0.101 0.085 9.6 4.0 69 98.8 98.1

30 10  0.196 0.164 0.247 0.206 89 72 11.2 481 48.2
50 10 0.151 0.127 0.192 0.161 104 6.4 9.7 742 720
100 10 0.103 0.089 0.130 0.114 86 6.4 6.4 93.8 921
200 10 0.074 0.066 0.092 0.082 79 5.0 6.8 99.7 99.2
30 20 0.169 0.153 0.212 0.191 83 6.9 10.1 443 427
50 20 0.128 0.118 0.160 0.148 6.8 54 78 703 683
100 20 0.093 0.087 0.116 0.109 6.4 5.3 78 934 90.6
200 20 0.065 0.062 0.082 0.077 6.8 5.6 50 99.8 994
Slope correlation: Ay = 0.5, A; =0

30 6 0.663 0650 0.839 0.818 574 58.1 726 94 722

50 6 0555 0563 0703 0.709 584 573 933 62 0917
100 6 0422 0428 0522 0530 59.1 569 1000 55 999
200 6 0294 0302 0373 038 51.2 50.1 100.0 6.7 100.0

30 10 0.537 0532 0.676 0.670 509 52.8 634 10.0 62.6
50 10 0453 0453 0.557 0.559 56.6 56.3 88.7 63 86.0
100 10 0324 0325 0409 0411 512 499 96 70 992
200 10 0.246 0.248 0308 0311 524 526 100.0 5.7 100.0
30 20 0402 0404 0501 0503 443 46.7 518 8.7 487
50 20 0.337 0341 0420 0423 454 43.3 783 58 735
100 20 0.255 0.257 0317 0319 474 478 984 51 0971
200 20 0.186 0.186 0.234 0.235 465 47.1 100.0 5.8 100.0

Notes: “FE” and “INF” refer to the fixed effects OLS estimator and the
infeasible OLS estimator based on knggving F;. “W1”, “W,” and “Wig,” refer
to the Wald tests for testing Ay = 0, A = 0and Ay = Ay = 0, respectively.




Table 17: Simulation results for X2.

Bias RMSE 5% size Wald
N T FE INF FE INF FE INF Wi W Wi
No correlation: A1 = A, =0
30 6 0212 0176 0.268 0.221 8.7 8.0 114 95 156
50 6 0.141 0.136 0.182 0.171 6.3 5.9 101 71 128
100 6 0.107 0.100 0.133 0.126 6.0 55 95 84 116
200 6 0.075 0.071 0.093 0.089 6.1 4.7 63 57 69
30 10 0.189 0.158 0.241 0.197 79 53 106 74 134
50 10 0.134 0.123 0.169 0.153 6.1 54 89 76 109
100 10 0.097 0.091 0.121 0.114 57 53 66 64 69
200 10 0.068 0.063 0.085 0.080 5.5 5.0 58 6.0 7.0
30 20 0.189 0.152 0.238 0.190 83 59 126 84 162
50 20 0.135 0.122 0.171 0.153 65 64 90 78 124
100 20 0.095 0.088 0.118 0.110 6.3 59 84 59 91
200 20 0.064 0.060 0.080 0.075 5.0 3.7 52 70 7.1
Loading correlation: A; =0, Ap = 0.5
30 6 0270 0.176 0.349 0.221 16.2 8.0 14.0 545 558
50 6 0.187 0.136 0.259 0.171 145 59 122 71.7 71.0
100 6 0.143 0.100 0.188 0.126 153 5.5 10.6 88.4 88.2
200 6 0.114 0.071 0.157 0.089 19.8 4.7 74 978 97.7
30 10 0.249 0.158 0.333 0.197 164 53 132 59.8 60.1
50 10 0.182 0.123 0240 0.153 144 54 109 734 710
100 10 0.141 0.091 0.182 0.114 16.6 5.3 72 942 926
200 10 0.106 0.063 0.141 0.080 189 5.0 65 989 989
30 20 0.244 0.152 0315 0.190 157 5.9 154 56.8 579
50 20 0.180 0.122 0.230 0.153 156 6.4 11.0 743 717
100 20 0.130 0.088 0.167 0.110 16.0 5.9 80 944 927
200 20 0.111 0.060 0.146 0.075 240 3.7 51 999 994
Slope correlation: Ay = 0.5, A; =0
30 6 0908 0.811 1.170 1.014 599 62.6 856 89 86.2
50 6 0.808 0.742 1.030 0.937 652 646 970 83 973
100 6 0.686 0.634 0.880 0.796 684 683 1000 72 999
200 6 0.627 0571 0.804 0.720 759 73.6 100.0 5.0 100.0
30 10 0.878 0.754 1.120 0941 635 644 848 79 827
50 10 0.767 0.687 0.964 0.850 689 67.5 96.8 89 96.0
100 10 0.684 0.611 0.860 0.764 729 714 999 63 999
200 10 0.625 0556 0.786 0.695 79.0 76.4 100.0 5.5 100.0
30 20 0.767 0.634 0975 0.795 61.3 60.5 793 9.2 788
50 20 0.673 0579 0.851 0.729 650 61.6 91.0 76 889
100 20 0.627 0.551 0.786 0.688 740 716 99.7 73 99.3
200 20 0.614 0533 0.758 0.655 81.7 79.9 100.0 6.1 100.0

Notes: See Table 16 for an explanation.

44



Table 18: Simulation results for X3.

Bias RMSE 5% size Wald

N T FE INF FE INF FE INF Wi Wo Wi

No correlation: A1 = A, =0

30 6 0228 0.183 0290 0232 9.8 86 136 102 17.8
50 6 0.152 0.140 0.195 0.176 64 6.6 123 6.7 131
100 6 0.115 0.105 0.143 0.132 69 6.0 98 76 10.8
200 6 0.082 0.076  0.103 0.095 6.6 53 70 51 6.6

30 10 0.207 0.169 0.267 0.212 98 7.6 125 81 15.6
50 10 0.145 0.130 0.183 0.162 64 55 101 72 120
100 10 0.105 0.097 0.131 0.121 6.7 54 72 65 77
200 10 0.074 0.070 0.093 0.087 6.1 6.1 64 58 73
30 20 0.202 0.158 0.255 0.197 83 56 131 85 172
50 20 0.143 0.128 0.182 0.160 6.0 6.5 111 75 121
100 20 0.100 0.092 0.125 0.115 64 54 9.0 6.2 102
200 20 0.068 0.064 0.086 0.079 5.0 4.1 59 64 6.6
Loading correlation: A; =0, Ap = 0.5

30 6 0325 0.183 0418 0232 21.7 8.6 18.6 71.0 72.6
50 6 0244 0.140 0332 0176 203 6.6 153 854 857
100 6 0.195 0.105 0.262 0.132 248 6.0 129 942 939
200 6 0169 0076 0.235 0.095 328 53 105 977 977

30 10 0.301 0.169 0.407 0212 20.6 7.6 172 76.7 77.5
50 10 0.231 0.130 0.309 0.162 21.1 55 145 849 84.1
100 10 0.184 0.097 0.245 0.121 249 54 10.7 956 959
200 10 0.147 0.070 0.200 0.087 295 6.1 95 984 984
30 20 0.291 0.158 0376 0.197 198 5.6 186 713 732
50 20 0219 0.128 0.282 0.160 205 6.5 139 872 855
100 20 0.161 0.092 0210 0.115 221 54 93 979 978
200 20 0.145 0.064 0.195 0.079 306 4.1 73 99.2 99.2
Slope correlation: Ay = 0.5, A; =0

30 6 1.635 1478 2145 1.862 68.8 71.9 96.8 88 97.0
50 6 1482 139 1915 1767 716 722 999 79 100.0
100 6 1266 1.246 1.655 1585 741 753 100.0 7.1 100.0
200 6 1.144 1.097 1482 1397 791 779 100.0 5.6 100.0

30 10 1.682 1463 2194 1.849 73.7 725 9.4 85 969
50 10 1466 1337 1873 1.674 76.1 75.5 99.7 82 999
100 10 1312 1226 1.671 1546 79.6 772 100.0 5.5 100.0
200 10 1.204 1.142 1539 1442 823 81.3 100.0 5.2 100.0
30 20 1529 1279 1968 1616 723 724 948 9.8 944
50 20 1.329 1.164 1700 1472 755 752 987 71 982
100 20 1.249 1.130 1573 1413 816 80.6 100.0 7.3 100.0
200 20 1.220 1.097 1517 1357 874 86.0 100.0 6.7 100.0

Notes: See Table 16 for an explanation.
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Table 19: Simulation results for X4.

Bias RMSE 5% size Wald
N T FE INF FE INF FE INF W; W, Wi
No correlation: A1 = A, =0
30 6 0536 0386 0.686 0.494 62 84 6.7 — -
50 6 0416 0302 0544 0387 6.1 6.1 56 — —
100 6 0.288 0.212 0.373 0.276 44 6.1 52 — -
200 6 0.207 0.151 0.269 0.194 77 5.2 59 — -
30 10 0561 0.352 0.730 0.448 85 9.3 65 — -
50 10 0411 0.272 0529 0.344 6.3 6.0 50 — —
100 10 0.276 0.183 0.366 0.231 52 5.0 54 — -
200 10 0.205 0.124 0.266 0.158 43 47 51 — —
30 20 0.522 0.309 0.689 0.390 72 83 75 — -
50 20 0.395 0.237 0515 0.298 53 6.9 56 — —
100 20 0271 0.164 0.362 0.207 6.0 5.7 48 — -
200 20 0.200 0.117 0.267 0.149 55 6.5 51 — —
Loading correlation: A; =0, Ap = 0.5
30 6 0595 0386 0.776 0.494 86 84 103 — —
50 6 0470 0302 0.615 0.387 9.0 6.1 115 — —
100 6 0361 0.212 0473 0.276 98 6.1 162 — —
200 6 0.311 0.151 0408 0194 173 5.2 288 — —
30 10 0599 0352 0.800 0448 95 93 101 — —
50 10 0482 0272 0.630 0.344 94 6.0 136 — —
100 10 0.363 0.183 0488 0.231 11.0 5.0 198 — —
200 10 0311 0.124 0415 0.158 176 47 352 — —
30 20 0565 0309 0.748 0390 9.2 83 128 — —
50 20 0461 0.237 0.610 0.298 84 69 146 — —
100 20 0373 0.164 0499 0.207 132 57 214 — —
200 20 0.323 0.117 0431 0.149 193 6.5 374 — -
Slope correlation: A = 0.5, A; =0
30 6 0585 0445 0.746 0563 9.3 129 6.7 — -
50 6 0464 0365 0.598 0.460 87 128 56 — —
100 6 0353 0297 0445 0366 123 16.3 52 — -
200 6 0306 0.268 0373 0316 189 307 59 — -—
30 10 0.599 0.410 0.774 0512 10.2 129 65 — -
50 10 0461 0.337 0.588 0.419 88 135 50 — —
100 10 0359 0.289 0450 0.348 11.8 220 54 — —
200 10 0301 0.259 0369 0296 204 322 51 — —
30 20 0.547 0366 0.716 0.457 10.0 13.0 75 — -
50 20 0439 0320 0559 0388 92 158 56 — —
100 20 0342 0.274 0426 0.323 128 228 48 — —
200 20 0.294 0.251 0.363 0286 22.0 390 51 — —

Notes: See Table 16 for an explanation.

46



