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A. DERIVATION OF IDENTIFIED SETS

A.1. Bounds for Cases I-III

Recall that pt = 0 for all t. Here we present details on the derivation of the prevalence and trend

bounds for Case I-III.

Case I. We assume first that pt = 0 for all t, and qt = q∗ is constant over time. From equation

(1) it follows that πt = µt/(1 − q∗). Since πt ≤ 1, the rate of false negative reporting satisfies

0 ≤ q∗ ≤ 1 − µt for t = 1, . . . , T . Defining M = maxs µs, we get 0 ≤ q∗ ≤ 1 −M . Together with

the expression for πt, this yields the bounds in (2). While the prevalence bounds can be used to

calculate bounds on ∆πt,j , we find sharper bounds from the fact that ∆πt,j = ∆µt,j/(1− q∗). The

sign of the derivative of the true trend with respect to q∗ depends on the direction of the observed

trend. If ∆µt,j ≥ 0, the lower bound on ∆πt,j is attained when q∗ = 0, whereas the upper bound

is attained when q∗ = 1−M . The situation is reversed when ∆µt,j < 0. Substituting these values

of q∗ into the expression for ∆πt,j yields the bounds in (3).

Case II. In this case, pt = 0 for all t, and q1 ≤ q2 ≤ · · · ≤ qT . As before, 0 ≤ qt ≤ 1 − µt.

Combined with the fact that qt is non-decreasing, it follows that 0 ≤ qt ≤ 1 −M+
t , where M+

t =

maxs≥t µs. This yields the bounds in (4). To derive the trend bounds, note that with time-varying

qt we have

∆πt,j =
µt+j

1− qt+j
− µt

1− qt
. (18)

From (18) it is immediate that an upper bound for ∆πt,j is obtained when qt+j = 1 −M+
t+j and

qt = 0. This yields the upper bounds in (5). The lower bound for ∆πt,j is attained when qt+j is

minimal and qt is maximal, subject to the restriction that qt is non-decreasing in t. Thus, at the

lower bound we must have qt = qt+j = q∗ and

∆πt,j = ∆µt,j/(1− q∗). (19)

Minimizing this depends on the sign of ∆µt,j : when the observed trend is non-negative, the lower

bound is attained for q∗ = 0. Substituting this into (19) yields the first lower bound in (5). When
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∆µt,j < 0, the lower bound is attained when q∗ is maximal, subject to the restrictions

q∗ = qt ≤ 1−M+
t , q∗ = qt+j ≤ 1−M+

t+j .

Since, by definition, M+
t is non-increasing in t, we find the lower bound at q∗ = 1−M+

t . Substitution

into (19) yields the second lower bound of (5).

Case III. In this case, pt = 0 for all t, and q1 ≥ q2 ≥ · · · ≥ qT . Combined with qt ≤ 1− µt for

all t, we find 0 ≤ qt ≤ 1−M−t , where M−t = maxs≤t µs. This yields the prevalence bounds in (6).

From (18), the lower bound on the trend is attained at qt+j = 0 and qt = 1−M−t . This yields the

lower bounds in (7). The upper bound is attained when qt+j is maximal and qt is minimal, subject

to the restriction qt ≥ qt+j . Thus, at the upper bound qt = qt+j = q∗ and the true trend is given

by (19). Similar to the previous case, the sign of the derivative of ∆πt,j depends on ∆µt,j . If the

observed trend is non-negative, the derivative is non-negative and the upper bound for the true

trend is attained when q∗ is maximal, subject to

q∗ = qt ≤ 1−M−t , q∗ = qt+j ≤ 1−M−t+j .

Since, by definition, M−t is non-decreasing in t, we find the upper bound at q∗ = 1 − M−t+j .

Substitution into (19) yields the first upper bound in (7). Alternatively, when ∆µt,j < 0, the

derivative of ∆πt,j with respect to q∗ is negative and the upper bound for the true trend is attained

at q∗ = 0. Substituting into (19) yields the second upper bound in (7).

A.2. Bounds for Case IV

Lower Bound for the Trend

Recall that a = 1− x and b = 1 + x. From equation (1) it follows that, for a given value of q, the

lower bound on ∆πt,j is given by

∆πLt,j =
µt+j

1− aq
− µt

1− bq
.

3



Minimizing this expression over q yields the (unconditional) lower bound on the trend. We have

d(∆πLt,j)

dq
=

aµt+j
(1− aq)2

− bµt
(1− bq)2

≤ aµt+j
(1− aq)2

− aµt
(1− bq)2

≤ aµt+j
(1− aq)2

− aµt
(1− aq)2

≤ a∆µt
(1− aq)2

.

If ∆µt,j < 0, the derivative is negative, so that ∆πLt,j is minimized at q = (1−M)/b:

∆πLt,j =
µt+j

1− (a/b)(1−M)
− µt
M
. (20)

Suppose now that ∆µt,j ≥ 0. Define the function

f(q) = abq2(bµt+j − aµt)− 2qab∆µt,j + aµt+j − bµt.

Simple algebra shows that

d(∆πLt,j)

dq
= 0 ⇔ f(q) = 0,

d(∆πLt,j)

dq
> 0 ⇔ f(q) > 0,

d(∆πLt,j)

dq
< 0 ⇔ f(q) < 0.

Note also that ∆µt,j ≥ 0 implies that bµt+j − aµt > 0 and the function f(q) has a minimum. We

first consider the roots of f(q), say q1 and q2:

q1 =

√
aµt+j −

√
bµt

b
√
aµt+j − a

√
bµt

, q2 =

√
aµt+j +

√
bµt

b
√
aµt+j + a

√
bµt

.

It is easy to show that bq2 > 1, so that q2 > (1−M)/b. The root q1 may be positive or negative,

depending on the sign of its numerator.6

We now consider two cases. Suppose first that aµt+j < bµt. Then q1 < 0 and d(∆πLt,j)/dq < 0

6Since b
√
aµt+j − a

√
bµt =

√
b
√
abµt+j −

√
a
√
abµt ≥ 0 when ∆µt,j ≥ 0.
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for q ∈ [0, (1 −M)/b]. It follows that ∆πLt,j is minimized at q = (1 −M)/b, leading to the lower

trend bound in (20). Conversely, suppose that aµt+j ≥ bµt, so that q1 ≥ 0. We then further

consider two subcases:

(i) q1 > (1 −M)/b. In this case, d(∆πLt,j)/dq > 0 for q ∈ [0, (1 −M)/b] and the lower bound is

minimized at q = 0:

∆πLt,j = ∆µt,j .

(ii) q1 ≤ (1−M)/b. In this case, the lower bound is attained at either q = 0 or q = (1−M)/b:

∆πLt,j = min

{
∆µt,j ,

µt+j
1− (a/b)(1−M)

− µt
M

}
.

We can now summarize the lower trend bound as follows.

∆πLt,j =



µt+j

1−(a/b)(1−M) −
µt
M if aµt+j < bµt,

∆µt,j if aµt+j ≥ bµt, M > 1− bq1,

min
{

∆µt,j ,
µt+j

1−(a/b)(1−M) −
µt
M

}
if aµt+j ≥ bµt, M ≤ 1− bq1.

Substituting the definition of q1 into the inequalities for M yields (9).

Upper Bound for the Trend

From equation (1) it follows that, for a given value of q, the upper bound on ∆πt,j is given by

∆πUt,j =
µt+j

1− bq
− µt

1− aq
.

Maximizing this expression over q yields the (unconditional) upper bound on the trend. We have

d(∆πUt,j)

dq
=

bµt+j
(1− bq)2

− aµt
(1− aq)2

≥ bµt+j
(1− bq)2

− aµt
(1− bq)2

≥ bµt+j
(1− bq)2

− bµt
(1− bq)2

≥ b∆µt,j
(1− bq)2

.
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If ∆µt,j > 0, the derivative is positive and ∆πUt,j is maximized at q = (1−M)/b:

∆πUt,j =
µt+j
M
− µt

1− (a/b)(1−M)
. (21)

Suppose now that ∆µt,j ≤ 0. Define the function

h(q) = abq2(aµt+j − bµt)− 2qab∆µt,j + bµt+j − aµt.

Simple algebra shows that

d(∆πUt,j)

dq
= 0 ⇔ h(q) = 0,

d(∆πUt,j)

dq
> 0 ⇔ h(q) > 0,

d(∆πUt,j)

dq
< 0 ⇔ h(q) < 0.

Note also that ∆µt,j ≤ 0 implies that aµt+j − bµt < 0 and the function h(q) has a maximum. We

first consider the roots of h(q), say q3 and q4:

q3 =

√
aµt −

√
bµt+j

b
√
aµt − a

√
bµt+j

, q4 =

√
aµt +

√
bµt+j

b
√
aµt + a

√
bµt+j

.

It is easy to show that bq4 > 1, so that q4 > (1−M)/b. The root q3 may be positive or negative,

depending on the sign of its numerator.

We now consider two cases. Suppose first that aµt < bµt+j . Then q3 < 0 and d(∆πUt,j)/dq > 0

for all q ∈ [0, (1−M)/b]. It follows that ∆πUt,j is maximized at q = (1−M)/b, leading to the upper

trend bound in (21). Conversely, suppose that aµt ≥ bµt+j , so that q3 ≥ 0. We then consider two

subcases:

(i) q3 > (1 −M)/b. Then d(∆πUt,j)/dq < 0 for all q ∈ [0, (1 −M)/b] and the upper bound is

maximized at q = 0:

∆πUt,j = ∆µt,j .
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(ii) q3 ≤ (1−M)/b. In this case, the upper bound is attained at either q = 0 or q = (1−M)/b:

∆πUt,j = max

{
∆µt,j ,

µt+j
M
− µt

1− (a/b)(1−M)

}
.

We can now summarize the upper trend bound as follows.

∆πUt,j =



µt+j

M − µt
1−(a/b)(1−M) if bµt+j > aµt,

∆µt,j if bµt+j ≤ aµt, M > 1− bq3,

max
{

∆µt,j ,
µt+j

M − µt
1−(a/b)(1−M)

}
if bµt+j ≤ aµt, M ≤ 1− bq3.

Substituting the definition of q3 into the inequalities for M yields (10).

A.3. Bounds for Case V

Lower Bound for the Trend

For given values of p and q̄, the lower bound for ∆πt,j was given in (12) and repeated here:

∆πLt,j =
µt+j − p

1− p− aq̄
− µt − p

1− p− bq̄
. (22)

It follows that
d(∆πLt,j)

dq
=

a(µt+j − p)
(1− p− aq̄)2

− b(µt − p)
(1− p− bq̄)2

≤ a∆µt,j
(1− p− aq̄)2

.

When ∆µt,j < 0, the lower bound is minimized at q̄ = (1−M)/b and

∆πLt,j =
µt+j − p
c− p

− µt − p
M − p

, (23)

where c = 1− (a/b)(1−M). It remains to minimize (23) with respect to p. Since 0 ≤ p ≤ m, the

minimum occurs either at p = 0, p = m or possibly at an interior solution p∗L, where the derivative
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of (23) with respect to p is zero.7 Specifically,

p∗L =
c
√
M − µt −M

√
c− µt+j√

M − µt −
√
c− µt+j

,

and it remains to check whether p∗L ∈ [0,m]. If p∗L ≤ 0, the lower trend bound is attained at p = 0;

if p∗L ≥ m, the lower bound is attained at p = m, and if 0 < p∗L < m, the lower bound is attained

at p = p∗L. This leads to the following lower trend bound when ∆µt,j < 0:

∆πLt,j =



µt+j

c −
µt
M if p∗L ≤ 0,

µt+j−p∗L
c−p∗L

− µt−p∗L
M−p∗L

if 0 < p∗L < m,

µt+j−m
c−m − µt−m

M−m if p∗L ≥ m.

Rewriting the restrictions on p∗L in terms of µt and µt+j yields (13). On the other hand, when

∆µt,j ≥ 0, the lower trend bound is obtained by minimizing (22) with respect to (p, q̄), subject to

0 ≤ p ≤ m and 0 ≤ q̄ ≤ (1−M)/b, but the solution cannot be easily characterized.

Upper Bound for Trend

For given values of p and q̄, the upper bound for ∆πt,j was given in (12) and is repeated here:

∆πUt,j =
µt+j − p

1− p− bq̄
− µt − p

1− p− aq̄
. (24)

It follows that
d(∆πUt,j)

dq
=

b(µt+j − p)
(1− p− bq̄)2

− a(µt − p)
(1− p− aq̄)2

≥ b∆µt,j
(1− p− bq̄)2

.

Therefore, when ∆µt,j > 0, the upper bound is maximized at q̄ = (1−M)/b and

∆πUt,j =
µt+j − p
M − p

− µt − p
c− p

. (25)

It remains to maximize (25) with respect to p. As before, the maximum occurs either at p = 0,

p = m or possibly at an interior solution p∗ that sets the derivative of (25) equal to zero.8 It can

7There are two solutions to the first-order conditions; it can be shown that one of these necessarily lies outside
the interval [0,m].

8As before, we discard one of the solutions to the first-order conditions, because it lies outside the interval [0,m].
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be shown that the candidate solution is given by

p∗U =
M
√
c− µt − c

√
M − µt+j√

c− µt −
√
M − µt+j

.

When p∗U ≤ 0, the upper trend bound is attained at p = 0; if p∗U ≥ m, the upper bound is attained

at p = m, and if 0 < p∗U < m, the upper bound is attained at p = p∗U . This leads to the following

upper bound on the trend, when ∆µt,j > 0:

∆πUt,j =



µt+j

M − µt
c if p∗U ≤ 0,

µt+j−p∗U
M−p∗U

− µt−p∗U
c−p∗ if 0 < p∗U < m,

µt+j−m
M−m − µt−m

c−m if p∗U ≥ m.

Rewriting the restrictions on p∗U in terms of µt and µt+j yields the bounds in (14)

On the other hand, when ∆µt,j ≤ 0, the upper trend bound is obtained by maximizing (24)

with respect to (p, q̄), subject to 0 ≤ p ≤ m and 0 ≤ q̄ ≤ (1 −M)/b, but the solution cannot be

easily characterized.
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B. IDENTIFIED SETS AND HPD INTERVALS FOR THE PREVALENCE

10



Figure B.1: classical bounds and 95% HPD intervals, qt non-decreasing (Case II)

Figure B.2: classical bounds and 95% HPD intervals, qt non-increasing (Case III)

11



Figure B.3: classical bounds and 95% HPD intervals, uniform prior for q̄ (Case IV)

Figure B.4: Classical bounds and 95% HPD intervals, power prior for q̄ (Case IV)
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Figure B.5: classical bounds and 95% HPD intervals, uniform prior for q̄ (Case V)

Figure B.6: Classical bounds and 95% HPD intervals, power prior for q̄ (Case V)
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C. CHANGE IN AVERAGE PREVALENCE BETWEEN 2006-2009 AND 2010-2012

Figure C.1: posterior of difference in average prevalence between the periods 2006-2009 and 2010-
2012, Case IV (left) and Case V (right).

Case Prior mean std. dev. 2.5% 50% 97.5% 95% HPD P (+)

IV
uniform 0.0003 0.0249 -0.0466 0.0002 0.0474 [-0.0470,0.0469] 0.5124
TN1 0.0004 0.0232 -0.0426 0.0002 0.0443 [-0.0420,0.0448] 0.5120
TN2 0.0003 0.0113 -0.0216 0.0003 0.0226 [-0.0215,0.0227] 0.5161

V
uniform 0.0004 0.0226 -0.0392 0.0003 0.0409 [-0.0394,0.0405] 0.5160
TN1 0.0003 0.0213 -0.0369 0.0003 0.0384 [-0.0375,0.0376] 0.5150
TN2 0.0004 0.0106 -0.0201 0.0003 0.0213 [-0.0198,0.0216] 0.5192

Table C.1: posterior summary of difference in average prevalence between the periods 2006-2009
and 2010-2012. P (+) is the probability of an increase in average prevalence.
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D. SUBGROUP ANALYSIS

Our main empirical analysis focuses on prescription opioid misuse among white men, ages 26 to

49 years old. Here, we consider misuse patterns for a select number of different subgroups. First,

although our initial focus on middle-aged white men was motivated by prior research showing this

to be a highly impacted population (Case and Deaton, 2015), we now compare this group to the

population of 26-49 year olds who are not white men, based on recent research showing declines

in life expectancy across a broader range of demographic groups, but still primarily concentrated

among middle-aged individuals. Second, it is sometimes thought that the opioid misuse epidemic

has been particularly devastating in rural areas (Keyes et al., 2014), yet more recent research

suggests that non-rural populations may actually be at higher risk (Altekruse et al., 2020). The

public-use NSDUH data classifies individuals as living in either (1) a large metro area, (2) a small

metro area, or (3) a non-metro area. We combine the first two groups into a single metro group

and compare 26-49 year olds in the metro group to 26-49 year olds in the non-metro group.

Section 4.3 considered five cases and, within each case, used several prior distributions. To focus

on the between-group comparisons and to keep the analysis more concise here, we restrict ourselves

to Case V and Assumption C-V. Specifically, we use a power prior for the base rate of false negative

reporting (q̄) and allow for a maximum deviation of 25% from that rate in each time period. The

prior on those deviations is a normal distribution with mean 1, standard deviation 0.25, truncated

to the interval [0.75, 1.25]. We believe that in this application, our prior is appealing for at least

two reasons. First, false positive reporting is unlikely, but it may occur when survey respondents

misinterpret the misuse question. The prior allows for that possibility. Second, while false-negative

reporting has long been a concern in substance use surveys, little is known about the changes in

these misreports, and their direction, over time. Our prior allows for substantial variation over

time, yet does not impose any monotone trend.

A strength of our approach is the simplicity of inference for any summary statistic that can be

calculated from the series {πt; t = 1, . . . , T}. Simulated draws from the posterior of these parameters

can be directly used to obtain random draws from the posterior of the statistic. As in our analysis

in Section 4.3, (π̄1− π̄0) represents the difference in mean prevalence between the periods 2006-2009

and 2002-2005. Here we introduce another common summary parameter for this type of exercise:
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slopes of the least squares trend line for πt. A common practice is to use the repeated cross sections

to estimate a trend line (either for the entire period, or for subperiods). Ignoring classification error

for a moment, the estimate is obtained from the OLS regression of Yit (the indicator for misuse by

individual i in period t) on t. This type of analysis typically considers T fixed and inference should

be based on the sampling variation from each repeated cross section. Rather than estimating a

structural parameter, however, it should be viewed as a summary of the series {πt; t = 1, . . . , T}. In

our analysis, we examine the trend lines for the periods 2002-2007 (γ02→07) and 2008-2014 (γ08→14).

Specifically, we calculate

γS =

1
TS

∑
t∈S tπt −

[
1
TS

∑
t∈S πt

]
t̄S

1
TS

∑
t∈S t

2 − (t̄S)2
,

where S denotes the period, TS the number of observations in S, and t̄S the average of t over S.9

While the actual trend in prevalence, if any, is not necessarily linear, we still calculate the linear

projection slope as a useful summary across multiple time periods.

Figure D.1 compares the prevalence (left panel) and the one-year change in prevalence (right

panel) between 26-49 year old white men and all others in the same age group. The HPD intervals

are wider for white men, which reflects the smaller sample size. The posterior means suggest that

white men experienced an increase in prevalence between 2002 and 2007, a fairly stable prevalence

between 2008 and 2012, and, perhaps, a decrease in 2013 and 2014. For the comparison group,

however, prevalence appears stable and fluctuates around 5% throughout the entire sample period.

A similar picture emerges from the posterior summary statistics in Table D.1. For white men, the

posterior mean of (π̄1−π̄0) suggests that the average prevalence in 2006-2009 was about 2 percentage

points higher than during 2002-2005. The posterior of γ02→07 suggests an overall upward trend in

prevalence between 2002 and 2007, with the 2.5% quantile exceeding zero and the HPD interval

concentrated on positive values. In the comparison group, the posterior of all three parameters

shows no clear evidence of any substantial changes or trends in prevalence.

Figure D.2 compares individuals 26-49 years old living in metro versus non-metro areas. The

posterior mean of the prevalence of the non-metro group is sometimes higher and sometimes lower

than in the metro group. No clear pattern emerges. The same can be said for the one-year change

9In the absence of classification error, we could regress Yit on t, using data from period S. If TS is fixed and the
cross-sectional sample sizes nt increase, this estimate will converge to γS .
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Figure D.1: posterior means and 95% HPD intervals for prevalence (left) and one-year change in
prevalence (right), white men versus others.

population parameter mean std. dev. 2.5% 50% 97.5% 95% HPD

white men (26-49)
π̄1 − π̄0 0.0216 0.0203 0.0042 0.0173 0.0738 [-0.0008,0.0632]
γ02→07 0.0067 0.0066 0.0009 0.0053 0.0232 [-0.0007,0.0201]
γ08→14 -0.0031 0.0049 -0.0141 -0.0024 0.0026 [-0.0128,0.0034]

other (26-49)
π̄1 − π̄0 0.0000 0.0137 -0.0218 0.0001 0.0217 [-0.0220,0.0213]
γ02→07 -0.0011 0.0047 -0.0094 -0.0008 0.0049 [-0.0092,0.0051]
γ08→14 0.0001 0.0036 -0.0053 0.0001 0.0059 [-0.0053,0.0060]

Table D.1: posterior comparison of white men versus other. The parameters are the difference in
average prevalence between 2006-2009 and 2002-2005 (π̄1− π̄0), and the linear projection slopes for
prevalence in the periods 2002-2007 (γ02−07) and 2008-2014 (γ08−14).

in prevalence. From Table D.2, the posterior mean of (π̄1− π̄0) is positive and almost twice as large

for non-metro compared to metro, suggesting that non-metro areas experienced a larger increase

in the prevalence of misuse. This is confirmed by comparing the posteriors of γ02→07 between the

two groups. The left panel of Figure D.2 shows, however, that this might be driven by an outlier

in the prevalence in non-metro areas in 2007.

Although the subgroup analyses we have presented here were intended to illustrate our proposed

methods, they nonetheless provide some initial evidence for potential between-group differences and

some important implications for policy. We find evidence that racial differences in prevalence may

be declining, primarily caused by a decreasing trend among whites. We also find indications that

the early focus on rural communities may have missed important impacts in urban communities.

Our Bayesian approach shows no consistent difference in the prevalence between metro and non-
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Figure D.2: posterior means and 95% HPD intervals for prevalence (left) and one-year change in
prevalence (right), metro versus non-metro.

population parameter mean std. dev. 2.5% 50% 97.5% 95% HPD

metro
π̄1 − π̄0 0.0059 0.0152 -0.0131 0.0045 0.0371 [-0.0151,0.0345]
γ02→07 0.0007 0.0051 -0.0069 0.0005 0.0095 [-0.0077,0.0087]
γ08→14 -0.0011 0.0039 -0.0086 -0.0008 0.0043 [-0.0082,0.0047]

non-metro
π̄1 − π̄0 0.0119 0.0169 -0.0064 0.0096 0.0512 [-0.0099,0.0460]
γ02→07 0.0055 0.0060 -0.0002 0.0044 0.0199 [-0.0012,0.0175]
γ08→14 -0.0006 0.0042 -0.0083 -0.0005 0.0061 [-0.0078,0.0065]

Table D.2: posterior comparison of metro versus non-metro. The parameters are the difference in
average prevalence between 2006-2009 and 2002-2005 (π̄1− π̄0), and the linear projection slopes for
prevalence in the periods 2002-2007 (γ02−07) and 2008-2014 (γ08−14).

metro areas, although we found some weak evidence of a greater increase in the prevalence rate in

non-metro areas over time.

While the priors that we used were the same across different groups, the posteriors were not.

This is true because the data are informative about the bounds of the identified sets. Differences

in these sets are revealed, which in turn affects the posteriors. Thus, despite the lack of formal

identification, we learn something about heterogeneity within the larger population. Of course,

this does not provide a formal statistical test for heterogeneity. While we use a parametric prior

distribution, our Bayesian analysis is otherwise non-parametric. This aligns with the classical

bounding literature, which has focused on the non-parametric identification and estimation of

bounds.

Conducting subgroup analyses provides an informal way to see how covariates affect posterior
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estimates of the prevalence. It is less clear how to assess that impact formally without using a

parametric, model-based approach (e.g., a probit or logit model for prevalence). A parametric

model would impose additional distributional assumptions (relative to our approach) and would

also require the researcher to specify priors for each additional parameter. Without such a model,

it is not clear how to proceed. For example, how can we test whether the prevalence of misuse in

2007 was higher for white men compared to others (see Figure D.1), when the prevalence in both

groups is partially identified, and the identified sets and support of the posterior have substantial

overlap?

It is equally difficult to test for differences in misreporting behavior between groups, or to

determine how covariates might affect the probabilities of false negatives and false positives. It is

reasonable to expect that misreporting rates can differ substantially between groups. In this section

we have used the same prior for the misreporting probabilities for all groups. If reliable information

on differential misreporting is available, the researcher can use it to specify group-specific priors.

Given the non-parametric nature of our model, and the fact that misreporting rates are also partially

identified, our approach does not allow us to determine how misreporting varies between groups. To

assess the latter, one could specify a parametric misreporting model as in Nguimkeu et al. (2019).

In our empirical context, this model would combine a bivariate probit model for actual misuse and

misreporting with the assumption of no false positives (p = 0).10 Joint normality of the errors and

an exclusion restriction between the misuse and misreporting equations are sufficient to identify

the model parameters. While the use of a parametric, model-based approach can be very useful

in practice, we do not pursue it further here, since it departs from the non-parametric Bayesian

approach advocated in this paper.

10Nguimkeu et al. (2019) build on Poirier (1980), who first proposed this partial observability model.
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E. EXTENSION TO REGRESSION MODELING

Here, we briefly discuss how our Bayesian approach may be adapted in the context of a regression

model where the misclassified binary indicator appears as an explanatory variable. Using X∗it and

Xit (instead of Y ∗it and Yit) to denote the true and observed values, respectively, of the binary

indicator, and letting Yit denote the dependent variable of interest, consider the model

Yit = α+X∗itβ +W ′itγ + Uit, (26)

where Wit is a vector of covariates that are observed without error, and Uit is a residual. To

simplify the discussion, we assume that X∗it and Wit are exogenous and E(Uit|X∗it,Wit) = 0. In

an empirical application, Yit can represent various health or labor market outcomes, and we are

interested in estimating the association between opioid misuse and such outcomes. If the data are

cross-sectional, it is well-known that β is partially identified. The upper and lower bounds for β

are derived in Bollinger (1996) and can be expressed as functions of the first and second moments

of (W ′it, Xit, Yit). This allows us to use the approach of Bollinger and Van Hasselt (2017b) to

conduct inference about β. In this approach, we combine a nonparametric posterior for φ with a

user-specified prior for the misclassification probabilities to simulate a sample from the posterior

of β.

The situation is notably different in a repeated cross section. Using the results of Bollinger

(1996), it can be shown that in time period t = 1, . . . , T ,

β =
(1− pt − qt)c̃t

s̃t − qt(µt − pt)− pt(1− µt)
, (27)

where c̃t is the covariance between Ỹit and X̃it, s̃t is the variance of X̃it, and (X̃it, Ỹit) are the resid-

uals of (Xit, Yit) after projecting out Wit. The (functions of) moments (c̃t, s̃t, µt) are identified and

estimable, whereas (pt, qt) are unknown and give rise to partial identification of β. The assumption

that β in equation (27) is fixed over time may suggest that β is identified if T is large enough, but

this is not the case. An additional time period of data yields an additional parameter restriction

through (27), but also introduces two additional parameters (pt, qt). Hence, the problem of partial

identification remains.
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Equation (27) suggests a multi-step way to sample from the posterior of β. It is similar to the

approaches decribed in Section 3.3 and in Bollinger and Van Hasselt (2017b). First, the parameters

(c̃t, s̃t, µt) are functions of sample moments and defined through a set of moment conditions. The

Bayesian bootstrap of Rubin (1981) allows us to generate draws from their nonparametric posterior

(Chamberlain and Imbens, 2003). Second, we generate a draw from the conditional prior of (pt, qt),

given (c̃t, s̃t, µt).
11 Finally, a draw from the posterior of β is obtained by calculating the right-hand

side of (27). Specifying a conditional prior for (pt, qt) for t = 1, . . . , T is more complicated, however,

than in Section 3.2. Equation (27) implies restrictions over time on the sequence (pt, qt), which have

to be incorporated in the prior. For example, when T = 2, there are four unknown probabilities.

From equation (27),

(1− p1 − q1)c̃1
s̃1 − q1(µ1 − p1)− p1(1− µ1)

=
(1− p2 − q2)c̃2

s̃2 − q2(µ2 − p2)− p2(1− µ2)
,

so that only three of the probabilities are unrestricted. More generally, with T time periods, the

joint prior on the misclassification probabilities is supported on a (T + 1)-dimensional subspace.

Another important application that our analysis facilitates is the case where estimates of preva-

lence are included in a regression setting at a higher level of aggregation, such as counties or states.

For example,

Yit = α+ πitβ +W ′itγ + Uit.

Here, the prevalence πit is unobserved. Typically, estimates µit from repeated cross sections of the

appropriate geography are used but these are now biased for πit. If individual-level data is available

for each state or county, our approach can be used as a first step to generate the posterior of πit.

The second step involves estimating the regression model, and there are a number of different ways

to proceed. For example, we can generate draws from the posterior of πit as a data augmentation

step in a Gibbs sampler to estimate α, β and γ (Tanner and Wong, 1987). Alternatively, we could

use the posterior of πit to implement a multiple (stochastic) imputation approach. This would

yield multiple sets of estimates for the regression parameters and would account for the uncertainty

surrounding the unobserved πit.

11The probabilities (pt, qt) are also partially identified and bounded by (functions of) the first and second moments
of (W ′it, Xit, Yit).
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There are many applications where mismeasured indicator variables, or the estimates derived

from them, are useful. In cases where the parameters of interest can be readily written as functions

of the series {πt; t = 1, . . . , T}, our approach can be implemented. In other situations, our approach

may provide informative priors on unknown parameters or unobserved data. Finally, additional

information about the relationship between the mismeasured Yit and other variables may improve

estimation or tighten bounds. We leave a more detailed investigation of these issues for future

work.
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