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Appendix A Derivation of equation (1)

This appendix briefly describes the steps in the derivation of eq.(1) in Section 2. For more details, we

refer to Campbell and Mankiw (1989). We can write the per period constraint Wt+1 = (1+rt+1)(Wt−Ct)

as Wt+1

Wt
= (1 + rt+1)

(
1− Ct

Wt

)
. After taking logs, this gives ∆wt+1 = rt+1 + ln (1− exp(ct − wt)) with

wt = lnWt and ct = lnCt. We linearize this equation through a first-order Taylor approximation which

gives,

∆wt+1 = rt+1 +

(
1− 1

ρ

)
(ct − wt) (A-1)

where we ignore the unimportant linearization constant and where ρ = W−C
W with 0 < ρ < 1 and with

W and C the steady state values of Wt and Ct.
1 We note that ρ is expected to be close to one. Further,

we can write ∆wt+1 as ∆wt+1 = ∆ct+1 + (ct − wt) − (ct+1 − wt+1). Upon combining this result with

equation (A-1) and rearranging terms, we obtain,

ct − wt = ρ(rt+1 −∆ct+1) + ρ(ct+1 − wt+1) (A-2)

Solving equation (A-2) forward ad infinitum, taking expectations at period t, and imposing the transver-

sality condition ρ∞Et(ct+∞ − wt+∞) = 0 then gives eq.(1) in the text.

Appendix B Data

B.1 Data for the consumption, labor income and asset variables ct, yt and at

We collect data for the period 1951Q4 − 2016Q4. Quarterly seasonally adjusted data for consumption,

disposable labor income, population and the price deflator are collected from the National Income and

Product Accounts (NIPA) from the Bureau of Economic Analysis (BEA) at the US Department of

Commerce. The assets (financial wealth) data are collected from the Flow of Funds Accounts of the

Board of Governors of the Federal Reserve System.

Consumption is measured as total personal consumption expenditures (line 1 of NIPA Table 2.3.5).

Consumption on nondurable goods and services is defined as nondurable goods expenditure (line 8 of

1The linearization occurs around the point ct − wt = c− w with c− w = ln
(

C
W

)
.
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NIPA Table 2.3.5) minus clothing and footwear (line 10 of NIPA Table 2.3.5) plus services expenditures

(line 13 of NIPA Table 2.3.5), with the sampling mean matching the sampling mean of total personal

consumption expenditures.

Disposable labor income is calculated as the sum of compensation for employees (line 2 of NIPA Table

2.1) plus personal current transfer receipts (line 16) minus contributions for domestic government social

insurance (line 25) and minus personal labor taxes. Personal labor taxes are derived by first calculating

the labor income fraction of total income, and subsequently using this ratio to back out the share of labor

taxes from the total personal current taxes (line 26). The labor income to total income ratio is defined

as the ratio of wages and salaries (line 3) to the sum of wages and salaries (line 3), proprietors’ income

(line 9), rental income (line 12) and personal income receipts on assets (line 13).

Asset wealth is calculated as the net worth of households and nonprofit organizations (including

consumer durables).

All calculated series except the nondurable goods and services consumption are deflated with the price

index for total personal consumption expenditures (line 1 of NIPA Table 2.3.4). The price index used to

deflate the nondurable goods and services consumption measure is based on the price developments of the

nondurable goods (excl. clothing and footwear) and services (i.e., the ratio of nominal to real nondurable

goods and services). The base year is 2009 = 100 for both deflators. The variables are further expressed

in per capita terms using population data collected from the NIPA (line 40 of Table 2.1).

B.2 Data for the financial liberalization variable flt

The baseline indicator used for the financial liberalization variable is the ’credit easing accumulated’ or

CEA index (see Carroll et al., 2019). This index can be calculated over the period 1966Q3 − 2016Q4.

It is based on the question from the Senior Loan Officer Opinion Survey (SLOOS) on bank lending

practices, i.e., it asks whether domestic US banks are more willing to make consumer installment loans

now as opposed to three months ago. The survey scores are accumulated after being weighted using the

household debt to personal disposable income ratio (see below for its construction) and then normalized

to lie between zero and one.

A second variable used to measure financial liberalization is the household debt to personal disposable

income ratio. This ratio can be calculated for the period 1951Q4−2016Q4. Quarterly seasonally adjusted

nominal personal disposable income is taken from the NIPA (line 27 of NIPA Table 2.1). Quarterly

seasonally adjusted nominal liabilities of households and nonprofit organizations are taken from the

FRED database (Federal Reserve Bank of St.Louis).

A third proxy for financial liberalization is Abiad et al. (2008)’s index of financial reform. This index
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covers the period 1973Q1− 2005Q4. It is available at the annual frequency but we construct a quarterly

series by allocating the value for a given year to every quarter in that year. It includes seven different

dimensions of financial sector policy: credit controls and reserve requirements, interest rate controls,

entry barriers, state ownership, policies on securities markets, banking regulations and restrictions on

the capital account. Liberalization scores for each category are combined in a graded index which lies

between zero and one.

B.3 Data for returns rt

Stock and bond returns data are taken from the Center for Research in Security Prices (CRSP) collected

via Wharton Research Data Services (WRDS). Stock returns are calculated from the value-weighted

CRSP index. Government bond returns are calculated from the 10-year government bond index. Housing

returns are taken from Jordà et al. (2019) and are available only at an annual frequency. Housing returns

are defined as housing capital gains plus imputed rents to owners and renters. All returns are deflated

using the inflation rate as calculated from the price index for total personal consumption expenditures

(line 1 of NIPA Table 2.3.4).

B.4 Other data

Loan supply shocks for the US are estimated by Gambetti and Musso (2017)2, who apply a time-varying

parameter VAR model with stochastic volatility and identify the loan supply shocks with sign restrictions.

The measure is available over the period 1980Q4− 2011Q4.

The lending standard shock for the US is calculated as the broad credit channel measure in Ciccarelli

et al. (2015). The measure is based on the question from the Senior Loan Officer Opinion Survey

(SLOOS) on bank lending practices, and is the net percentage of domestic banks tightening standards

for commercial and industrial (C&I) loans to large and middle-market firms. The lending standard shock

is available over the period 1990Q1− 2016Q4.

The measure for unemployment risk is calculated as in Carroll et al. (2019) and is available for the

period 1961Q4 − 2016Q4. The unemployment risk measure, i.e., the expected change in unemployment

four quarters ahead, is based on re-scaled answers to the question regarding the expected change in

unemployment during the next year in the University of Michigan Surveys of Consumers. More precisely,

the expected change in unemployment four quarters ahead, Etut+4, is estimated using fitted values of the

unemployment change from the regression of the change in unemployment four quarters ahead (∆4ut+4)

on the survey answers on unemployment expectations (UExpt). Thus, ∆4ut+4 = α0 + α1UExpt + εt+4

2We thank Alberto Musso for providing the series to us.
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and Etut+4 = ut + ∆4ût+4, where ∆4ut+4 = ut+4 − ut.

The old-age dependency ratio is defined as the older dependents in the US in percent of the US working-

age population. The data are available at the annual frequency, and have been linearly interpolated to

quarterly observations. The data are taken from the FRED database (Federal Reserve Bank of St.Louis)

and are available over the period 1959Q4− 2016Q4.

Appendix C Frequentist unit root test on ’cay’

This appendix reports the results of a frequentist augmented Dickey-Fuller unit root test applied to

the ’cay’ variable. This variable is considered both over the sample period 1951Q4 − 2016Q4 and over

the shorter period 1966Q3 − 2016Q4 over which our baseline financial liberalization indicator, i.e., the

CEA index, is also available. The ’cay’ variable is taken from Martin Lettau’s website.3 It is calculated

according to the methodology described in Lettau and Ludvigson (2001) with an update on the data

used in its construction detailed in Lettau and Ludvigson (2015), i.e., for consumption, total personal

consumption expenditures are used instead of expenditures on nondurables and services. These data

correspond fully with the consumption data that we use in the estimations reported in Section 3 in the

main text. Table C-1 reports the Dickey-Fuller t-statistics for different lags included in the augmented

Dickey-Fuller regression - with the case for which the number of lags is optimal denoted by an asterisk -

along with the appropriate 5% and 10% critical values. In none of the reported cases, the null hypothesis

of a unit root in the ’cay’ variable can be rejected. This is in line with results reported previously in

the literature (see Bianchi et al., 2018) and with the results from our Bayesian model selection approach

that suggest that the posterior probability that there is an unobserved random walk component in the

standard regression of consumption on asset wealth and labor income (i.e., in the model without financial

liberalization) equals one (see Table 2 in the main text).

3See https://sites.google.com/view/martinlettau/data.
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Table C-1: Augmented Dickey-Fuller test on ’cay’

Dickey-Fuller t-statistic Critical values

Lag=0 Lag=1 Lag=2 Lag=3 Lag=4 5% 10%

Period 1951Q4− 2016Q4 -3.35 -2.58* -2.42 -2.37 -2.18 -3.77 -3.48

Period 1966Q3− 2016Q4 -2.80 -2.00* -1.93 -1.78 -1.72 -3.78 -3.48

Notes: The augmented Dickey-Fuller statistic tests the null hypothesis of a unit root. The Dickey-Fuller t-statistic

is obtained from an augmented Dickey Fuller regression applied to cay with the number of lagged first differences

included in the regression going from 0 to 4. * denotes the t-statistic obtained for the optimal number of lags based on

the Bayesian information criterion. The 5% and 10% critical values are taken from MacKinnon (2010), i.e., Table 2 in

the Appendix (2010 version) for N=3 as ’cay’ is calculated from a cointegrating regression involving three integrated

variables. The ’cay’ variable is taken from Martin Lettau’s website https://sites.google.com/view/martinlettau/data

and calculated according to the methodology described in Lettau and Ludvigson (2001) with an update on the data

used in its construction detailed in Lettau and Ludvigson (2015) (i.e., the use of personal consumption expenditures

instead of nondurables and services). The 1966Q3 − 2016Q4 period is the period over which the CEA indicator of

financial liberalization is available. The effective sample periods are reduced due to the use of first differences and

lags.

Appendix D Estimation details state space model of Section 3

This appendix discusses the estimation of the state space system given by eqs.(10)-(15). First, we present

the general outline of the Gibbs sampler in Section D.1. Then, the technical details about the different

steps of the sampler are discussed in Section D.2. Finally, a convergence analysis is provided in Section

D.3.

D.1 General outline

We collect the constant parameters in a vector Γ, i.e., Γ = (ι, φ, κ, µ, ση, σ
2
e). The Gibbs approach allows

us to simulate draws from the intractable joint posterior distribution of parameters Γ and state µ∗, i.e.,

f(Γ, µ∗|data), using only tractable conditional distributions. In particular, given the prior distribution

of the parameter vector f(Γ) and an initial draw for µ∗ taken from its prior distribution, the following

steps are implemented:

1. Sample the constant parameters Γ conditional on the unobserved state µ∗ and the data

(a) Sample the binary indicator ι marginalizing over the parameter ση for which variable selection

is carried out (see Frühwirth-Schnatter and Wagner, 2010).

(b) If ι = 1, sample the parameters φ, κ, µ, ση, σ2
e . If ι = 0, sample the parameters φ, κ, µ and

σ2
e . In the latter case, we set ση = 0.

2. Sample the unobserved state µ∗ conditional on the constant parameters Γ and the data. To this
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end, if ι = 1, we use the multimove sampler for state space models of Carter and Kohn (1994)(see

also Kim and Nelson, 1999). If ι = 0, we draw µ∗ from its prior distribution.

These steps are iterated 30.000 times and in each iteration Γ and µ∗ are sampled. Given 10.000 burn-

in draws, the reported results are all based on posterior distributions constructed from 20.000 retained

draws. From the distribution of the binary indicator ι, we calculate the posterior probability that there

is an unobserved stochastic trend in regression eq.(10) as the fraction of ι’s that are equal to 1 over the

20.000 retained draws of the Gibbs sampler.

D.2 Details on the steps of the sampler

D.2.1 Regression framework

The parameters contained in Γ can be sampled from a standard regression model,

Z = Xrζr + ϕ (D-1)

where Z is a T × 1 vector containing T observations on the dependent variable, X is a T ×M matrix

containing T observations of M predictor variables, ζ is the M × 1 parameter vector and ϕ is the T × 1

vector of error terms for which ϕ ∼ iidN
(
0, σ2

ϕIT
)
. If the binary indicators ι equal 1, then the parameter

vector ζr and the corresponding predictor matrix Xr are equal to the unrestricted ζ, respectively X.

Otherwise, the restricted ζr and Xr exclude those elements in X and ζ for which the corresponding

binary indicators ι equal 0. The prior distribution of ζr is given by ζr ∼ N
(
br0, B

r
0σ

2
ϕ

)
with br0 a Mr × 1

vector and Br0 a Mr ×Mr matrix. The prior distribution of σ2
ϕ is given by σ2

ϕ ∼ IG (s0, S0) with scalars

s0 (shape) and S0 (scale). The posterior distributions (conditional on Z, Xr, and ι) of ζr and σ2
ϕ are

then given by ζr ∼ N
(
br, Brσ2

ϕ

)
and σ2

ϕ ∼ IG (s, Sr) with,

Br =
[
(Xr)′Xr + (Br0)−1

]−1

br = Br
[
(Xr)′Z + (Br0)−1br0

]
(D-2)

s = s0 + T/2

Sr = S0 +
1

2

[
Z ′Z + (br0)′(Br0)−1br0 − (br)′(Br)−1br

]
The posterior distribution of the binary indicators ι is obtained from Bayes’ theorem as,

p(ι|Z,X, σ2
ϕ) ∝ p(Z|ι,X, σ2

ϕ)p(ι) (D-3)

where p(ι) is the prior distribution of ι and p(Z|ι,X, σ2
ϕ) is the marginal likelihood of regression eq.(D-

1) where the effect of the parameters ζ has been integrated out. We refer to Frühwirth-Schnatter and

Wagner (2010) (their eq.(25)) for the closed-form expression of the marginal likelihood for the regression

model of eq.(D-1).
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Sample the binary indicator ι

There is one binary indicator ι in our model which we sample by calculating the marginal likelihoods

p(Z|ι = 1, X, σ2
ϕ) and p(Z|ι = 0, X, σ2

ϕ) (see Frühwirth-Schnatter and Wagner, 2010, for the correct

expressions). Upon combining the marginal likelihoods with the Bernoulli prior distributions of the binary

indicators p(ι = 1) = p0 and p(ι = 0) = 1 − p0, the posterior distributions p(ι = 1|Z,X, σ2
ϕ) and p(ι =

0|Z,X, σ2
ϕ) are obtained from which the probability prob(ι = 1|Z,X, σ2

ϕ) =
p(ι=1|Z,X,σ2

ϕ)

p(ι=1|Z,X,σ2
ϕ)+p(ι=0|Z,X,σ2

ϕ) is

calculated which is used to sample ι, i.e., draw a random number r from a uniform distribution with

support between 0 and 1 and set ι = 1 if r < prob(.) and ι = 0 if r > prob(.).

Sample the other parameters in Γ

We then sample the regression coefficients φ, κ, µ and ση and the regression error variance σ2
e conditional

on ι, the data and the unobserved component µ∗t . The dependent variable is Z = c where c is the T × 1

vector containing consumption ct stacked over time while the error term is ϕ = e with e containing

et stacked over time and where the variance is given by σ2
ϕ = σ2

e . When ι = 1, we have Xr = X =[
x ∆x−p ... ∆x+p % µ∗

]
and ζr = ζ =

[
φ′ κ′−p ... κ′+p µ ση

]′
where % is a T × 1

vector of ones and µ∗ is a T × 1 vector containing µ∗t stacked over time. We note that x and every

∆xj (for j = −p... + p) are T × k matrices where either k = 2 (model without financial liberalization),

k = 3 (model with financial liberalization or model based on another theory as discussed in Section

3.4.4) or k = 4 (model with financial liberalization and another trended variable as discussed in Section

3.4.2). Then, φ and every κj are k × 1 vectors and we have M = k(2p + 2) + 2. When ι = 0, we have

Xr =
[
x ∆x−p ... ∆x+p %

]
and ζr =

[
φ′ κ′−p ... κ′+p µ

]′
(and ση is set to zero). In this

case, we have Mr = k(2p+ 2) + 1. Once the matrices of eq.(D-1) are determined, the parameters ζr and

σ2
ϕ can be sampled from the posterior distributions given above with the prior distributions as specified

in Table 1 in the text.4

D.2.2 State space framework

If ι = 0, the unobserved component is drawn from its prior distribution. In particular, µ∗t is drawn from

eq.(13), i.e., as a cumulative sum of standard normally distributed shocks η∗t so µ∗t =
∑t
s=1 η

∗
s . If ι = 1,

the unobserved component µ∗t is sampled conditional on the constant parameters and on the data using a

state space approach. In particular, we use the forward-filtering backward-sampling approach discussed

in detail in Kim and Nelson (1999) to sample the unobserved state. The general form of the state space

4We note that s0 = ν0T and S0 = ν0Tσ2
0 with the values for ν0 and σ2

0 given in Table 1. We note that br0 is a Mr × 1

vector containing the values of b0 given in Table 1. Further, Br
0 is an Mr ×Mr diagonal matrix containing as elements the

variances 1 - i.e., the variable V0 in Table1 - divided by the prior belief for σ2
e - i.e., the variable σ2

0 in Table 1.
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model is given by,

Yt = ASt + Vt, Vt ∼ iidN (0, H) , (D-4)

St = BSt−1 +KEt, Et ∼ iidN (0, Q) , (D-5)

S0 ∼ iidN (s0, P0) , (D-6)

(where t = 1, ..., T ) with observation vector Yt (n×1), state vector St (ns×1), error vectors Vt (n×1) and

Et (nss × 1 with nss ≤ ns) that are assumed to be serially uncorrelated and independent of each other,

and with the system matrices that are assumed to be known (conditioned upon) namely A (n × ns), B

(ns×ns), K (ns×nss), H (n×n), Q (nss×nss) and the mean s0 (ns×1) and variance P0 (ns×ns) of the

initial state vector S0. As eqs. (D-4)-(D-6) constitute a linear Gaussian state space model, the unknown

state variables in St can be filtered using the standard Kalman filter. Sampling S = [S1, . . . , ST ] from its

conditional distribution can then be done using the multimove Gibbs sampler of Carter and Kohn (1994).

Given our state space system presented in eqs.(10)-(15), we have n = ns = nss = 1. The matrices are

then given by Yt = ct − xtφ − µ −
∑p
j=−p ∆xt+jκj , A = ση, St = µ∗t , Vt = et, H = σ2

e , B = 1, K = 1,

Et = η∗t , Q = 1. Moreover, we have s0 = µ∗0 = 0 and P0 = 10−6, i.e., the initial state is fixed at zero.

D.3 Convergence analysis

We analyse the convergence of the MCMC sampler using the simulation inefficiency factors as proposed

by Kim et al. (1998) and the convergence diagnostic of Geweke (1992) for equality of means across

subsamples of draws from the Markov chain (see Groen et al., 2013, for a similar convergence analysis).

For each fixed parameter and for every point-in-time estimate of the unobserved component, we

calculate the inefficiency factor as IF = 1 + 2
∑m
l=1 κ(l,m)θ̂(l) where θ̂(l) is the estimated the l-th order

autocorrelation of the chain of retained draws and κ(l,m) is the kernel used to weigh the autocorrelations.

We use a Bartlett kernel with bandwidth m, i.e., κ(l,m) = 1− l
m+1 , where we set m equal to 4% of the

20.000 retained sampler draws (see Section D.1 above). If we assume that d draws are sufficient to cover

the posterior distribution in the ideal case where draws from the Markov chain are fully independent,

then d × IF provides an indication of the minimum number of draws that are necessary to cover the

posterior distribution when the draws are not independent. Usually, d is set to 100. Then, for example,

an inefficiency factor equal to 20 suggests that we need at least 2.000 draws from the sampler for a

reasonably accurate analysis of the parameter of interest. Additionally, we also compute the p-values of

the Geweke (1992) test which tests the null hypothesis of equality of the means of the first 40% and last

40% of the retained draws obtained from the sampler for each fixed parameter and for every point-in-time

estimate of the unobserved component. The variances of the respective means are calculated using the
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Newey and West (1987) robust variance estimator using a Bartlett kernel with bandwidth equal to 4%

of the respective sample sizes (i.e., the first 40% and the last 40%).

In Table D-1, we present the convergence analysis corresponding to the results reported in the first two

columns of Table 3 and in Table 4. The convergence results are reported for individual parameters or for

groups of parameters. Groups are considered when the parameters can be meaningfully grouped which

is the case for the k parameters in φ (with k = 2 or k = 3 depending on whether xt =
[
at yt

]
or xt =[

at yt flt

]
), for the k× (p+ 1) parameters κ of the DOLS specification of the stationary component

vt (where, given p = 6, we have 26 or 39 parameters depending again on whether xt =
[
at yt

]
or

xt =
[
at yt flt

]
), and for the unobserved component µ which is a constant when ι = 0 or a state

when ι = 1. In the latter case, it is a time series of either length T = 189 (model with liberalization

estimated over the period 1966Q3 − 2016Q4) or T = 248 (model without liberalization estimated over

the period 1951Q4 − 2016Q4). We report statistics of the distributions of the inefficiency factors for

every parameter or parameter group, i.e., median, minimum, maximum, and - for µ when it is a state

- the 5% and 10% quantiles. Obviously, these statistics are identical for the non-grouped parameters.

The tables also report the rejection rates of the Geweke tests conducted both at the 5% and 10% levels

of significance. These rates are equal to the number of rejections of the null hypothesis of the test per

parameter group divided by the number of parameters in a parameter group. These rates can only be

zero or one for individual (non-grouped) parameters but can lie between zero and one for the grouped

parameters.
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Table D-1: Inefficiency factors and convergence diagnostics for the results of Table 3 (first two columns) and Table 4

Inefficiency factors Convergence

(Stats distribution) (Rejection rates)

Model Trend Parameters Number Median Min Max 5% 10% 5% 10%

Without flt (γ = 0) ι = 0 φ 2 1.26 1.23 1.28 - - 0.00 0.00

σ2
e 1 1.02 1.02 1.02 - - 0.00 0.00

κ 26 0.97 0.81 1.10 - - 0.00 0.08

µ 1 1.10 1.10 1.10 - - 0.00 0.00

ι = 1 φ 2 10.32 8.52 12.13 - - 0.00 0.00

σ2
e 1 1.11 1.11 1.11 - - 0.00 0.00

κ 26 1.04 0.80 1.21 - - 0.04 0.11

µ 248 10.89 8.32 11.51 9.21 11.41 0.00 0.00

|ση| 1 6.34 6.34 6.34 - - 0.00 0.00

With flt (γ 6= 0) ι = 0 φ 3 1.32 1.13 1.36 - - 0.00 0.00

σ2
e 1 1.01 1.01 1.01 - - 0.00 0.00

κ 39 0.96 0.75 1.16 - - 0.02 0.08

µ 1 1.10 1.10 1.10 - - 0.00 0.00

ι = 1 φ 3 1.77 1.68 14.99 - - 0.00 0.00

σ2
e 1 1.05 1.05 1.05 - - 0.00 0.00

κ 39 0.98 0.76 1.16 - - 0.00 0.10

µ 189 1.84 1.12 2.61 1.19 2.59 0.00 0.00

|ση| 1 1.41 1.41 1.41 - - 0.00 0.00

Notes: The convergence analysis in the upper half of the table corresponds to the results reported in the first two columns of Table 3 while

the analysis in the lower half of the table corresponds to the results reported in Table 4. The statistics of the distribution of the inefficiency

factors are presented in columns 5 to 9 for every parameter or group of parameters. These statistics are identical when parameters are considered

individually as only one inefficiency factor is calculated in these cases. The inefficiency factors are calculated for every fixed parameter and for

every point-in-time estimate of the unobserved component using a Bartlett kernel with bandwidth equal to 4% of the 20.000 retained sampler

draws. The rejection rates of the Geweke (1992) test conducted at the 5% and 10% levels of significance are reported in columns 10 and 11.

These rates are equal to the number of rejections of the null hypothesis of the test per parameter group divided by the number of parameters

in a parameter group. These rates are either zero or one for parameters that are considered individually. They are based on the p-value of the

Geweke test of the hypothesis of equal means across the first 40% and last 40% of the 20.000 retained draws which is calculated for every fixed

parameter and for every point-in-time estimate of the unobserved component. The variances of the respective means in the Geweke (1992) test

are calculated with the Newey and West (1987) robust variance estimator using a Bartlett kernel with bandwidth equal to 4% of the respective

sample sizes (i.e., the first 40% and the last 40%).

The calculated inefficiency factors suggest that the MCMC sampler performs well and that all param-

eters have well converged using our retained 20.000 draws. In fact, an accurate analysis using inefficiency

factors could have been conducted with far less than 20.000 draws. From Table D-1, we note that more

draws of the parameters/states φ and µ are required when the unobserved random walk component is

included in the model and estimated, i.e., when ι = 1 as compared to ι = 0. This is especially the case

in the model without financial liberalization (i.e., when γ = 0). From the text above, we know that the
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unobserved stochastic trend is much more relevant in this case. Our findings for the inefficiency factors

are corroborated by the results for the Geweke (1992) test for equality of means across subsamples of

the retained draws. The rejection rates reported in the tables are, with few exceptions, very close to or

equal to zero and therefore strongly suggest that the means of the first 40% and last 40% of the retained

draws are equal. Hence, in general, we can conclude that the convergence of the sampler for the retained

number of draws is satisfactory.

Appendix E Additional results and robustness checks

E.1 Other theories: uncertainty and demographics

In this appendix, we investigate whether alternative trended variables such as uncertainty or demographics

have an impact on the consumption-wealth ratio. We use Carroll et al. (2019)’s unemployment risk

measure to proxy for uncertainty, and the old-age dependency ratio to reflect the trend in demographics.

As discussed in Section 3.4.4 in the main text, based both on a priori considerations and on explicit

testing, we find that these variables cannot explain the stochastic trend in the consumption-wealth ratio.

In Table E-1, we present the estimated coefficients of the long-run regressions between consumption,

asset wealth, labor income and either Carroll et al. (2019)’s unemployment risk measure or the old-age

dependency ratio. The table reports both the case without and with a stochastic trend included in the

regression error, i.e., for ι = 0 and for ι = 1. As the posterior inclusion probabilities of an unobserved

stochastic trend in the regression error are equal to one for both models (see Table 2 in the main text),

the preferred models are those with an unobserved component, i.e., where ι = 1. The HPD intervals for

γ, which captures the impact of unemployment risk or the old-age dependency ratio on the consumption-

wealth ratio, include zero in both models. Thus, we do not find evidence of a long-run impact of either

uncertainty or demographics on the consumption-wealth ratio.
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Table E-1: Model with unemployment risk and the old-age dependency ratio to cap-

ture the trend in ct − wt: posterior distributions parameters of equation

ct = αat + βyt + γtrendt + µt + vt

Unemployment risk Old-age dependency ratio

(1) (2) (3) (4)

ι = 0 ι = 1 ι = 0 ι = 1

α 0.2338 0.1972 0.2218 0.2109

[0.1337,0.3311] [0.0881,0.3046] [0.1509,0.2902] [0.1199,0.3003]

β 0.7899 0.7832 0.8017 0.7667

[0.6661,0.9160] [0.6518,0.9166] [0.7185,0.8877] [0.6582,0.8772]

γ 0.0017 -0.0007 0.1677 0.0183

[-0.0046,0.0079] [-0.0086,0.0070] [-0.0780,0.4057] [-0.2193,0.2512]

µ -0.5183 -0.0479 -0.5144 -0.0544

[-0.6794,-0.3583] [-0.2825,0.1876] [-0.6674,-0.3623] [-0.2845,0.1770]

|ση| - 0.0036 - 0.0035

[-,-] [0.0022,0.0055] [-,-] [0.0022,0.0053]

σ2
e 0.0025 0.0021 0.0025 0.0021

[0.0021,0.0029] [0.0018,0.0025] [0.0021,0.0029] [0.0018,0.0025]

Notes: Carroll et al. (2019)’s unemployment risk (columns 1 and 2) or the old-age dependency

ratio (columns 3 and 4) is used for trendt. Reported are the posterior means with 90% HPD

intervals (in square brackets). The random walk component is µt = µ + ισηµ
∗
t with µ∗

t = µ∗
t−1 +

η∗t . The stationary component is vt =
∑p
j=−p ∆xt+jκj + et where xt =

[
at yt trendt

]
.

The coefficients κj are excluded from the table due to space constraints. Details on the data are

provided in Section 3.2 and Appendix B. Estimations using unemployment risk are conducted

over the period 1961Q4 − 2016Q4 with effective sample size diminished due to the use of first

differences and lags/leads. Estimations using the old-age dependency ratio are conducted over the

period 1959Q4−2016Q4 with effective sample size diminished due to the use of first differences and

lags/leads.

E.2 Different lag/lead lengths and different priors

In this appendix, we present checks conducted to ensure that the results obtained when estimating the

baseline model with the CEA index as a measure of financial liberalization are robust to imposing different

estimation settings.

First, we consider different lag/lead lengths for the first-differences of the regressors included in the

long-run regressions. Following Bianchi et al. (2018), the long-run estimations reported in the main text

are based on dynamic OLS specifications that include p = 6 lags and leads of the first differences of the

included regressors. These lags and leads are included to make the error term in the regression equation

orthogonal to the past and future history of stochastic regressor innovations. To verify that our main

results are not affected by the choice of p, we provide the results of estimating our baseline model with

the CEA index for financial liberalization using different values for p, i.e., for p = 1, 2, 4, 8. The results
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presented in Table E-2 are for regression equations without an unobserved stochastic trend included

(i.e., for ι = 0), as the posterior probabilities of an there being an unobserved stochastic trend in these

regressions are well below the prior probability of 50% in all cases. As can be seen from the table, the

estimates are hardly affected by the choice of p as all are very similar to the ones reported in Table 4

in the main text. The results thus confirm that our results regarding the impact of liberalization on the

consumption-wealth ratio are robust to the use of different lag/lead lengths for the first-differences of the

regressors included in the long-run regressions.

Table E-2: Model with CEA index for flt and different lags/leads p for the sta-

tionary component vt: posterior distributions parameters of equation

ct = αat + βyt + γflt + µ+ vt

(1) (2) (3) (4)

p = 1 p = 2 p = 4 p = 8

α 0.1228 0.1243 0.1268 0.1397

[0.0423,0.2007] [0.0413,0.2046] [0.0378,0.2130] [0.0395,0.2366]

β 0.8635 0.8618 0.8589 0.8439

[0.7701,0.9597] [0.7656,0.9611] [0.7554,0.9657] [0.7277,0.9641]

γ 0.0986 0.0993 0.1009 0.1022

[0.0654,0.1318] [0.0660,0.1328] [0.0671,0.1350] [0.0673,0.1375]

µ 0.0284 0.0269 0.0245 0.0186

[-0.2148,0.2699] [-0.2159,0.2682] [-0.2179,0.2653] [-0.2228,0.2584]

σ2
e 0.0023 0.0023 0.0023 0.0022

[0.0019,0.0027] [0.0019,0.0027] [0.0019,0.0027] [0.0019,0.0026]

Notes: The CEA index is used as a measure of financial liberalization flt. Reported are the

posterior means with 90% HPD intervals (in square brackets). The stationary component is vt =∑p
j=−p ∆xt+jκj + et with different values considered for p and where xt =

[
at yt flt

]
.

There is no unobserved random walk component in the model, i.e., µt = µ (∀t). The coefficients κj

are excluded from the table due to space constraints. Details on the data are provided in Section

3.2 and Appendix B. Estimations are conducted over the period 1966Q3− 2016Q4 with effective

sample size diminished according to the value of p.

Second, we consider alternative parameter prior settings. In our analysis, we have chosen relatively

flat priors to allow the data to speak fully with respect to the relationship between financial liberalization

and the log consumption-wealth ratio. To confirm that our results are not driven by this choice of priors,

in Table E-3 we report the results with somewhat more informative parameter prior configurations. The

reported results are for regression equations without an unobserved stochastic trend included (i.e., for

ι = 0). First, in column (1) we report the results of tightening the prior variances of all slope coefficients of

this regression equation from 1 to 0.1. Second, in column (2) we report the results of using different prior

means for the parameters of interest α, β and γ. These are obtained from a preliminary OLS regression

of consumption on asset wealth, labor income and the CEA index using as training sample the period
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1966Q3− 1973Q4 (i.e., with 30 observations) and are equal to respectively 0.15, 0.70 and 0.15. Finally,

in column (3) we implement both previous configurations jointly. We note that the other parameter

prior settings are as reported in Table 1 in the main text. The posterior means for the coefficient on

financial liberalization, γ, vary somewhat with the different prior specifications, but the impact is still

centered around 10%. The results thus confirm that our results regarding the impact of liberalization on

the consumption-wealth ratio are quite robust to the use of different parameter prior configurations.5

Table E-3: Model with CEA index for flt and alternative pa-

rameter priors: posterior distributions parameters

of equation ct = αat + βyt + γflt + µ+ vt

(1) (2) (3)

Alt. priors 1 Alt. priors 2 Alt. priors 3

α 0.1243 0.2085 0.1880

[0.0288,0.2165] [0.1620,0.2535] [0.1415,0.2330]

β 0.8598 0.7650 0.7868

[0.7491,0.9742] [0.7114,0.8204] [0.7331,0.8422]

γ 0.1057 0.0833 0.0983

[0.0713,0.1404] [0.0604,0.1062] [0.0753,0.1212]

µ 0.0426 -0.0049 0.0158

[-0.1990,0.2826] [-0.0841,0.0738] [-0.0635,0.0945]

σ2
e 0.0022 0.0023 0.0023

[0.0019,0.0026] [0.0020,0.0027] [0.0020,0.0027]

Notes: The CEA index is used as a measure of financial liberalization flt.

’Alt. priors 1’ refers to the estimation where all slope coefficients have prior

variances of 0.1. ’Alt. priors 2’ refers to the estimation where the prior

means for α, β and γ are obtained from a preliminary OLS regression of

consumption on asset wealth, labor income and the CEA index using as a

training sample the period 1966Q3 − 1973Q4. ’Alt. priors 3’ refers to the

estimation where the configurations of ’Alt. priors 1’ and ’Alt. priors 2’ are

combined. Reported are the posterior means with 90% HPD intervals (in

square brackets). The stationary component is vt =
∑p
j=−p ∆xt+jκj +

et where xt =
[
at yt flt

]
. There is no unobserved random walk

component in the model, i.e., µt = µ (∀t). The coefficients κj are excluded

from the table due to space constraints. Details on the data are provided in

Section 3.2 and Appendix B. Data are available over the period 1966Q3−

2016Q4 while the effective sample period is 1968Q2−2015Q2 with effective

sample size T = 189, i.e., 202 observations minus 1 for first-differencing and

minus 12 for constructing leads and lags since p = 6.

E.3 Alternative data

In the main text, we follow Lettau and Ludvigson (2015) and Bianchi et al. (2018) when it comes to

our choice of data used for the calculation of the variables ct, at and yt. In this appendix we consider

5The same conclusion applies to the posterior inclusion probabilities for the unobserved stochastic trend. These results

are not reported, but are available upon request.
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two alternative datasets. We refer to Rudd and Whelan (2006) for a discussion on the theoretical

validity of using these alternative data when estimating ’cay’ regressions. First, in ’Alt. dataset 1’, the

variables ct and yt are as in our baseline dataset but asset wealth at is now calculated from household

net worth excluding consumer durables. A motivation for this is that expenditures on consumer durables

are included in the consumption variable which here is calculated based on total personal consumption

expenditures. Second, in ’Alt. dataset 2’, we use expenditures on nondurable goods and services (minus

clothing and footwear) as a measure for consumption. Labor income and asset wealth are calculated as

in our baseline dataset (with asset wealth consisting of total household net worth including consumer

durables). To calculate ct, at and yt for this dataset, consumption, disposable labor income and assets

are all deflated by the price deflator for nondurables (excluding clothing and footwear) and services.

In Table E-4, we report the results of estimating our baseline model with these alternative datsets

and with the baseline CEA index as a measure of financial liberalization. The results presented are for

regression equations without an unobserved stochastic trend included (i.e., for ι = 0) as (unreported)

preliminary estimations suggest that the posterior probabilities of such a trend being present are well

below the prior probability of 50%. The results for ’Alt. dataset 1’, which is very close to the main

dataset used in the text, are very similar to the baseline results presented in Section 3.4.1, i.e., we find

a value for the impact γ of financial liberalization on the consumption-wealth ratio of about 0.10. The

results for ’Alt. dataset 2’ provide even stronger support for a positive impact of liberalization on the

consumption-wealth ratio as the value for γ equals 0.16 in this case.
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Table E-4: Model with CEA index for flt and alternative

datasets: posterior distributions parameters of

equation ct = αat + βyt + γflt + µ+ vt

(1) (2)

Alt. dataset 1 Alt. dataset 2

α 0.1144 0.1250

[0.0236,0.2024] [0.0315,0.2154]

β 0.8744 0.8540

[0.7695,0.9825] [0.7456,0.9657]

γ 0.0993 0.1608

[0.0633,0.1355] [0.1287,0.1931]

µ 0.0289 -0.0189

[-0.2135,0.2695] [-0.2601,0.2207]

σ2
e 0.0023 0.0022

[0.0019,0.0027] [0.0018,0.0026]

Notes: The CEA index is used as a measure of financial liberalization

flt. The variables used for ct, at and yt in the alternative datasets

’Alt. dataset 1’ and ’Alt. dataset 2’ are discussed in the text of this

appendix. Reported are the posterior means with 90% HPD intervals (in

square brackets). The stationary component is vt =
∑p
j=−p ∆xt+jκj + et

where xt =
[
at yt flt

]
. There is no unobserved random walk com-

ponent in the model, i.e., µt = µ (∀t). The coefficients κj are excluded

from the table due to space constraints. Data are available over the period

1966Q3 − 2016Q4 while the effective sample period is 1968Q2 − 2015Q2

with effective sample size T = 189, i.e., 202 observations minus 1 for first-

differencing and minus 12 for constructing leads and lags since p = 6.

E.4 International evidence

In this appendix, we briefly explore whether the positive impact of liberalization on the consumption-

wealth ratio can also be observed in countries other than the US. To this end, we present some results based

on annual international data for Canada, France, Japan, the UK and the US (i.e., the G7 countries minus

Italy and Germany). For these countries, internationally comparable historical data for consumption,

asset wealth and labor income are available over the full period 1973 − 2005 which is the period over

which Abiad et al. (2008)’s internationally constructed indicator of financial reform is also available.

We measure consumption as private final consumption expenditures, labor income as the compensation

of employees and asset wealth as net personal wealth for Canada, France, Japan and the US, and as net

private wealth for the UK. All series are deflated using the inflation rate as calculated from the price

index for the private final consumption expenditures, and the series are scaled by total population.6

6The consumption, price index and population series are from the World Bank’s World Development Indicators (WDI),

the net personal and private asset wealth series are from the World Inequality Database (WID), and the compensation of

employees series are from the OECD for Canada, France and the UK, from the BEA for the US, and from WID for Japan.
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A thorough analysis that involves testing for and incorporating unobserved stochastic trends is difficult

given the low number of degrees of freedom. We therefore estimate a simple long-run regression of

log consumption on a constant, log asset wealth, log labor income and Abiad et al. (2008)’s financial

liberalization index for these five economies. We estimate this specification using Bayesian OLS with the

same priors used in our more elaborate estimations which are reported in Table 1 in the main text.7 As

can be seen from the results reported in Table E-5, we find a positive impact of the liberalization measure

- which shows a substantial upward trend over the sample period for all considered economies - on the

consumption-wealth ratio for France, Japan, and the UK. For these countries, the estimates suggest that

financial liberalization has increased the consumption-wealth ratio by 10 to 15%. The estimate for the

coefficient on financial liberalization for the US is close to the one obtained using quarterly data and

reported Section 3.4.3 of the main text, although the HPD interval for the posterior is somewhat wider

here and (narrowly) contains the value of zero. Summarizing, the structural increase in the consumption-

wealth ratio observed in the US can be observed in other countries as well, and the data seem to support

a financial liberalization interpretation of this increase.

Table E-5: Estimation with annual international data: posterior distributions parameters of equa-

tion ct = αat + βyt + γflt + µ+ vt

(1) (2) (3) (4) (5)

Canada France Japan UK US

α 0.1905 -0.0282 0.0316 0.2426 0.1963

[0.0939,0.2873] [-0.1197,0.0611] [-0.0573,0.1183] [0.1399,0.3437] [0.0856,0.3047]

β 0.7840 0.9986 0.9457 0.6737 0.7790

[0.6779,0.8871] [0.8787,1.1199] [0.8346,1.0584] [0.5293,0.8199] [0.6438,0.9161]

γ 0.0129 0.0998 0.1546 0.1529 0.1015

[-0.1434,0.1655] [0.0656,0.1341] [0.0693,0.2387] [0.0422,0.2650] [-0.0127,0.2172]

µ 0.0010 0.3082 0.2153 0.4461 -0.0368

[-0.2853,0.2792] [-0.0774,0.6956] [-0.3656,0.7989] [-0.0064,0.9007] [-0.3870,0.3150]

σ2
e 0.0004 0.0007 0.0013 0.0011 0.0005

[0.0002,0.0005] [0.0004,0.0010] [0.0009,0.0019] [0.0007,0.0016] [0.0003,0.0008]

Notes: Reported are the posterior means with 90% HPD intervals (in square brackets). The long-run regression

ct = αat + βyt + γflt + µ+ vt does not include an unobserved random walk component, i.e., µt = µ (∀t). Neither

does it contain DOLS terms, i.e., the stationary component is vt = et (∀t). The Abiad et al. (2008) index of financial

reform is used as a measure of financial liberalization flt. Details on the other data used are provided in the text of

this appendix. All results are based on annual data with sample period equal to 1973− 2005, i.e., T = 33.

7The only difference is the lower prior belief for the variance of the regression error term which, taking into account the

lower volatility of annual data, is set to 0.01 instead of 0.1.
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Appendix F Estimation details regression model of Section 4

This appendix discusses the estimation of the regression eqs.(16)-(17) through Gibbs sampling. First, we

present the general outline of the Gibbs sampler in Section F.1. Then, the technical details about the

different steps of the sampler are discussed in Section F.2. We do not report the convergence analysis,

but it is available from the authors upon request.

F.1 General outline

We collect the parameters in a vector Γ, i.e., Γ = (πz, ψz0 , ψ
z
1 , σ

2
oz ). The Gibbs approach allows us to

simulate draws from the intractable joint posterior distribution of the parameters in Γ, i.e., f(Γ|data),

using tractable conditional distributions. In particular, given the prior distribution of the parameter

vector f(Γ), the following steps are implemented:

1. Sample the AR parameter πz conditional on the parameters ψz0 , ψz1 , σ2
oz and the data

2. Sample the regression coefficients ψz0 and ψz1 and innovation variance σ2
oz conditional on πz and the

data

These steps are iterated 30.000 times and in each iteration the parameters in Γ are sampled. Given

10.000 burn-in draws, the reported results are all based on posterior distributions constructed from 20.000

retained draws.

F.2 Details on the steps of the sampler

F.2.1 Regression framework

The parameters contained in Γ can be sampled from a standard regression model,

Z = Xζ + ϕ (F-1)

where Z is a T × 1 vector containing T observations on the dependent variable, X is a T ×M matrix

containing T observations of M predictor variables, ζ is the M × 1 parameter vector and ϕ is the

T × 1 vector of error terms for which ϕ ∼ iidN
(
0, σ2

ϕIT
)
. The prior distribution of ζ is given by

ζ ∼ N
(
b0, B0σ

2
ϕ

)
with b0 a M × 1 vector and B0 a M ×M matrix. The prior distribution of σ2

ϕ is given

by σ2
ϕ ∼ IG (s0, S0) with scalars s0 (shape) and S0 (scale). The posterior distributions (conditional on

Z and X) of ζ and σ2
ϕ are then given by ζ ∼ N

(
b, Bσ2

ϕ

)
and σ2

ϕ ∼ IG (s, S) with,

B =
[
X ′X +B−1

0

]−1

b = B
[
X ′Z +B−1

0 b0
]

(F-2)
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s = s0 + T/2

S = S0 +
1

2

[
Z ′Z + b′0B

−1
0 b0 − b′B−1b

]
F.2.2 Sample πz

To sample πz conditional on the parameters ψz0 , ψz1 , σ2
oz and the data, we note that eq.(17) in the text

can be cast in the framework of eq.(F-1). We calculate χzt+1 ≡ zt+1 − ψz0 − ψz1flt so that the dependent

variable is Z = χz+1 where χz+1 is the T × 1 vector containing χzt+1 stacked over time. The regressor is

X = χz where χz contains χzt stacked over time. The regression coefficient is ζ = πz. The error term is

ϕ = oz+1 where oz+1 contains ozt+1 stacked over time. The variance σ2
ϕ = σ2

oz is assumed to be given in this

step (it is sampled in the next step). Once the matrices of eq.(F-1) are determined, the parameter ζ can

be sampled from the Gaussian posterior distribution given above with the prior distribution as specified

in Table 11 in the text.8

F.2.3 Sample ψz0 , ψ
z
1 and σ2

oz

To sample the parameters ψz0 , ψz1 and σ2
oz conditional on the parameter πz and the data, we first transform

eq.(16) in the text so that it can be cast in the framework of eq.(F-1). First, we write eq.(16) as

zt+1 = xtψ
z + χzt+1 where xt =

[
% flt

]
(with % a vector of ones) and where ψz =

[
ψz0 ψz1

]′
.

Second, we premultiply both sides of zt+1 = xtψ
z +χzt+1 by (1−πzL) (with L the lag operator) to obtain

z̃t+1 = x̃tψ
z + ozt+1 where z̃t+1 = (1− πzL)zt+1 and x̃t = (1− πzL)xt. Equation z̃t+1 = x̃tψ

z + ozt+1 is in

accordance with eq.(F-1). The dependent variable is Z = z̃+1 where z̃+1 is the T × 1 vector containing

z̃t+1 stacked over time. The regressor is X = x̃ where x̃ contains x̃t stacked over time. The regression

coefficient is ζ = ψz. The error term is ϕ = oz+1 where oz+1 contains ozt+1 stacked over time. The variance

σ2
ϕ = σ2

oz . Once the matrices of eq.(F-1) are determined, the parameters ζ and σ2
ϕ can be sampled from

the posterior distributions given above with the prior distributions as specified in Table 11 in the text.9

References

Abiad, A., Detragiache, E., and Tressel, T. (2008). A new database of financial reforms. Working paper

266, International Monetary Fund.

Bianchi, F., Lettau, M., and Ludvigson, S. (2018). Monetary policy and asset valuation. CEPR Discussion

Paper 12671.

8The prior distribution depends on b0 and B0 = V0/σ2
0 with the values for b0, V0 and σ2

0 given in Table 11.
9We note that s0 = ν0T and S0 = ν0Tσ2

0 with the values for ν0 and σ2
0 given in Table 11. Note that b0 is a 2× 1 vector

containing the values of b0 for ψz
0 and ψz

1 given in Table 11. Further, B0 is an 2× 2 diagonal matrix containing as elements

the variances 1 - i.e., the variable V0 in Table 11 - divided by the prior belief for σ2
oz - i.e., the variable σ2

0 in Table 11.

App-19



Campbell, J. and Mankiw, N. (1989). Consumption, income, and interest rates: reinterpreting the time

series evidence. NBER Macroeconomics Annual, 4:185–216.

Carroll, C. D., Slacalek, J., and Sommer, M. (2019). Dissecting saving dynamics: measuring wealth,

precautionary, and credit effects. NBER Working Paper 26131.

Carter, C. and Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika, 81:541–53.
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