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Supplement to Section 4: Computing Standard Errors

While standard errors for 6 may be compute from numerical derivatives, these can also be computed directly

using the following expressions
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For our baseline leverage function, 71 2; + 72(22 — 1), we have
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The results in this section is easily generalized to specifications that include the squared return (or log-squared
return) in the GARCH equation. This is achieved by stacking the appropriate lags of r? (or logr?) to the

vector g;.

Supplement to Section 5: Summary Statistics and Additional Em-
pirical Results

Summary statistics for the data are given in Table 1.

Results for the Linear Specification

First we consider Realized GARCH models with the linear specification. We estimate a standard GARCH(1,1)
model and six Realized GARCH models using both open-to-close and close-to-close returns for SPY. We use
RG(p,q) to denote the Realized GARCH model with p lags of h; and ¢ lags of x;. We estimate three models
with p = ¢ = 2. In addition to the standard RG(2,2) model we estimate a model without the leverage
function (denoted RG(2,2)) and an extended model, RG(2,2)", that also includes a lag of the squared
return in the GARCH equation. The results for open-to-close returns are given in the left panel of Table 2,
and the corresponding results for close-to-close returns are presented in the right panel of Table 2.

First we discuss the empirical results for open-to-close returns in the left half of Table 2. First we know
that the empirical estimates of ¢ and £ in the measurement equation are roughly ¢ ~ 1 and é ~ 0, which
shows that the realized kernel, which is used as the realized measure of volatility, x;, is roughly unbiased as
a measure of open-to-close volatility. Comparing RG(2,2) with RG(2,2)" shows that the leverage function is
highly significant. Omitting the two 7-parameters leads to a rather large drop in the log-likelihood function.
Next, if we compare the extended model RG(2,2)* with the standard model RG(2,2) we see that the ARCH
parameter is insignificant. Consider now the auxiliary statistics in Panel B. The persistence parameter
is estimated to be close to one in all models, and the models with a leverage function all suggest a rather
strong asymmetry in the new impact curve, as summarized by p~ and pT. The partial likelihood statistic
£(r) is the likelihood for the returns alone. For the case of the Realized GARCH models this amounts to the
likelihood for the GARCH-X model arising from the the return and GARCH equations alone. Note that the

Realized GARCH models do not maximize this term, yet the model still produces a better empirical fit than



Symbol  T,. minr,. maxre. T2, Fee minre maxre r2, RK minRK maxRK

AA -0.12  -8.09 8.49 3.17 -0.01 -10.91 9.24 4.44 3.56 0.49 40.52
AlIG -0.08 -12.06 11.16  3.14 -0.08 -19.90 12.04 443 3.00 0.13 53.44
AXP 0.03 -8.50 9.42 263 0.01 -10.60 1041 3.53 2.82 0.07 57.60
BA -0.01  -6.97 9.39 218 0.04 -8.41 6.78 291 2.46 0.21 33.92
BAC 0.02 -12.50 15.87 245 0.01 -10.66 20.22  3.08 2.24 0.13 62.72
C -0.09 -12.84 16.23 299 0.07 -15.69 8.63 3.09 3.28 0.17 89.01
CAT 0.00 -5.52 8.18 223 0.07  -15.69 8.63 3.09 2.32 0.30 27.93
CVX 0.00 -6.08 5.46 1.58 0.05 -6.93 5.27 1.97 1.81 0.22 18.60
DD -0.02  -5.96 9.84 1.65 0.01 -6.78 9.42 213 2.03 0.28 36.99
DIS 0.05 -6.50 8.11 224 0.03 -9.45 13.66  3.14 2.66 0.23 45.96
GE -0.06  -8.38 9.90 177 -0.01 -13.71 9.08 241 1.97 0.08 36.70
GM -0.23  -12.76 13.64 498 -0.07 -16.33 16.64 6.64 4.49 0.22 112.63
HD -0.03  -5.89 11.14 2.62 -0.04 -15.18 10.20  3.62 2.88 0.18 39.69
IBM 0.06 -6.39 5.95 1.52  0.00 -10.67 10.67 231 1.63 0.14 19.44
INTC -0.04 -8.22 8.82 3.68 -0.02 -20.48 10.29  5.55 3.65 0.45 44.89
JNJ 0.02 -4.68 7.92 095 0.02 -17.25 7.91 1.37 1.29 0.07 36.63
JPM  -0.01 -16.41 25.28 3.58 0.01 -19.95 14.88 461 3.74 0.10 224.45
KO 0.04 -4.39 7.51 1.00 0.01 -10.62 5.33 1.35 1.29 0.04 25.21
MCD 0.09 -11.33 6.01 1.93 0.06 -13.72 8.85 259 224 0.24 37.65
MMM -0.01 -7.14 6.86 1.20 0.02 -9.37 6.89 1.65 1.40 0.08 17.96
MRK 0.03 -11.13 9.75 1.92 -0.02 -31.15 12.22 3,51 2.30 0.14 63.78
MSFT -0.02 -7.71 10.98 2.04 0.00 -12.07 10.55  2.85 2.14 0.14 35.54
PG 0.11 -5.94 5.17 0.83 0.04 -7.66 4.43 1.06 1.07 0.04 12.88
T -0.03 -11.46 8.99 2.82 0.00 -10.76 8.71 291 2.78 0.12 54.01
UTx -0.02 -7.99 6.88 1.68 0.05 -9.16 9.38 223 181 0.23 25.93
VZ -0.02  -7.63 7.12 2.03 0.00 -12.57 8.87 2.58 241 0.16 39.50
WMT -0.01  -4.77 7.88 1.36 0.01 -6.89 7.73 1.87 1.75 0.16 28.78
XOM 0.03 -6.83 10.62 1.64 0.05 -8.86 9.30 2.10 1.87 0.19 26.00
SPY -0.02  -3.98 8.19 0.88 0.01 -3.98 5.80 1.09 0.80 0.06 13.14

Table 1: Summary statistics. The sample period is January 1, 2002 to August 31, 2008. Subscript-oc and
subscript-cc refer to open-to-close and close-to-close returns, respectively. The realized kernel, RK, is used
as our realized measure of volatility.
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Scatter plot: hreturn) against h(range) Scatter plot of h(RK) against h(range)

m

Figure 1: Scatter plots of latent volatility processes for returns, range, and the realized kernel. Each were
estimated separately using a GARCH(1,1) structure. The co-linearity between these latent processes suggests
that the three processes can be modeled with a single latent process.

the GARCH(1,1) model.

The empirical results for the close-to-close returns in the right half of Table 2 are quite similar. Not
surprisingly are the estimates of ¢ smaller which reflect the fact that the realized measure only measures
volatility over the open-to-close period. The point estimates are ¢ ~ 0.75, which suggests that volatility
during the “open period” amounts to about 75% of daily volatility. Interestingly, the ARCH parameter is
found to be significant in the analysis of close-to-close returns. This finding should be taken with a grain of
salt, because the linear model is grossly misspecified, as we shall see in Section 5.5, and the estimate of «
in the linear model is sensitive to outliers. Note that the inclusion of « causes a large decline in the partial
log-likelihood for returns, £(r). Moreover, the estimated model suggests that volatility is far less persistent

than is usually found in practice, in part because the estimates of the S-parameters are unusually small.

Empirical Results Concerning the the Number of Latent Volatility Factors

To illustrate that a single latent volatility factor may be sufficient in this context, we have estimated the
latent volatility processes for returns, range, and the realized kernel using a simple GARCH(1,1) structure for
each of them. Each of the three volatility processes were extracted by maximizing —3{>";" | log(h¢)+ys./hi}
where hy = w+oy; +—1 + Bhi—1, where y; ; denotes either the squared return, r?, the squared intraday-range,
R2, or the realized kernel, RK;. For each of the three time series we maximize the quasi log-likelihood function
with respect to (w, «, 3,, ho), so the three volatility processes are obtained separately. Figure 1 presents two
scatter plots of the estimated volatility processes, and the pronounced collinearity suggests that a single

latent volatility factor may be sufficient in this context.



Supplement to Section 6

Skewness and Kurtosis with the Linear Specification

Analytical results for a single period return for the linear Realized GARCH model.

Proposition 1. Suppose that vy = \/hiz:, where

hy = W+04T$_1 + Bhi—1 + yTi_1,
ry = &+ ohy +7(2) + ug,
7(2t) = Tzt 7'2(2't2 —1)+ 7'3(2? —3zt) + -+ T Hi(2t),

with 2z, ~ iidN(0,1), u; ~ iid(0,02), and Hy(2;) being the k-th Hermite polynomial.
Define m = o+ B+ 7y, p = w + &, 02, = Er(2)?, and suppose that 7 4+ 2a* < 1. Then the excess
kurtosis of r¢ is given by

60
1—72—2a2

(1—m)? 203+032
p(l—m)

4 QT2
1—72—2a2 u? +e ) *

In the special case were o = 0, the excess kurtosis is

-7 ,0% +02
T+m (w+ae)?

and in the special case where v = 0 we obtain the excess kurtosis for the GARCH(1,1) model,

6
1—(a+ )% —2a2

When 2z, ~ N(0,1) and the leverage function is constructed from Hermite polynomials, 7(z;) = 712 +
(2} — 1)+ 73(2) —32¢) + -+, then 0%, = 7 + 2173 + 375 + 47 + - - .
Proof of Proposition 1. With a Gaussian specification for z; we have E(r?) = E(h;) and E(r}) = 3E(h?).

From the ARMA representation for this process we have with y = w+~€ and 7 = a+ 8+ ¢y € (—1,1), that
oo
he=p+mhey + 9wy +ove g = m (ywr—io1 +ovei1) + T,
i=0

where wy = 7(2) + u; and vy = hy(27 — 1). So that E(h;) = p/(1 — 7). Next we note that E(wf) = 02, + 02,
E(v}) = 2E(h?), and E(wv;) = yamE(22 —1)?E(hy) = 2yamu/(1—7), where we have used that z; ~ N(0,1)

and the Hermite polynomial structure of 7(z). The second moment is given by

2

E(h?) = szi {72(03 +0%) + 2a°E(h?) + 4ya72ﬁ} + ot
=0



w = 0.04124604

B = 0.70122085
v = 0.45067217
Yo = -0.17604791
¢ = -0.17999580
@ = 1.03749403
Ou = 0.38127405
7'1 = -0.06781023
T = 0.07015828

Table 3: Parameter estimates for the log-linear Realized GARCH(1,2) model that is used to simulate cumu-
lative returns.

2 5+ 2 +4 K
so that (1 20 ) E(h?) = 7o aniﬂjam l-m (151)27 and hence

2/ 2 2 b
E(hg) _ 1—n? v (O—u+0—72)+47047_21_7r i 1— 72 2
¢ 1—72—2a2 1— 72 1—72—9q2) (1-7)?

Hence the excess kurtosis is given by

(s 1— )2 2 2 2
(ri) 1} =3 (PR g ) + e

E(rf)?

L [E®)
3{Emn2

and the results follow. [J

Skewness and Kurtosis with Log-Linear Specification

The kurtosis and skewness in Figure 4 was simulated using a RealGARCH(1,2) model with the parameter

configuration given in Table 3.

The Approximate Expression for the Kurtosis

Here we provide a justification for the approximation using in Section 6.1. Recall that

? 4 o] ]_—271”}/7'2 exp Z 7T’}/T1 ep{7203}.
E(r?)? Ho V1 — Amiymy l01—67T’}/7'2+87T27 1— 72

For the first term on the right hand side, we have

log ﬁ 1 — 27y N > log 1—27%~71y -
o V1 —dmiyry 0 1 —4n%y7y

L[ @m)f 1 (ym)* k-1
- { 2o g (U2
k=1

273 {1+ 8ym + T(ym2) 2 4+ L(v72)® + B (yma)* + -+ }
—logm '




The second term can be bounded by

SRS S B S
1—72 = &= 1—6m'ym + 872427 — 1 — 721 — 6172

=0

So the approximation error is small when 7 is small.

A Decomposition of the Realized Measure in the GARCH Equation

In this section we provide a more detailed analysis of the leverage term, 7(z;), and its dynamic effect on
volatility. First we consider a hypothetical decomposition of the realized measure in the GARCH equation.
This yields valuable insight about the gains from utilizing realized measures in these models. Then we provide
an alternative (but econometrically equivalent) representation of the GARCH equation. This representation
suggests a simple extension of the Realized GARCH model, that offers a more flexible specification of the
leverage effect. We also study a different functional form for 7(z), that induces an EGARCH structure on

the GARCH equation.

A Hypothetical Decomposition

Many realized measures, such as the realized kernel used in our empirical analysis, will be consistent estimators
of the quadratic variation, which is an ex-post measure of volatility.
Consider the case where x; is an estimator of the integrated variance IVy, such as the realized variance

or the realized kernel. For realized measures of this type it is well known that the sampling error,
m = logxy —logIVy,

is approximately N(0,%,,), where ¥,, — 0 as the number of intraday observations, n; — oco. See e.g.
Barndorff-Nielsen and Shephard (2002), Barndorff-Nielsen et al. (2008), and Barndorff-Nielsen et al. (2010).
For instance, under weak assumptions about market microstructure noise Barndorff-Nielsen et al. (2010)
show that the “sampling error” is log z; — log IV, = O, (n~1/?).
The difference between the logarithmically transformed integrated variance and conditional variance is
given by
(¢t = logIVy — log hy.

Then (; captures the news about volatility that accumulated after the conditional expectation, h;, is made
at time ¢t — 1, and we will refer to (; as the wvolatility shock. Naturally the expected value of (; will depend
on whether the integrated variance is measured over the same period as h¢, or a fraction thereof.

Suppose for simplicity that ¢ =1 and p = g = 1, so that the GARCH equation can be expressed as

log hi+1 = p+ mlog hy + 61t + d2my.



Within the Realized GARCH model ~ has to represent both é; and §5, so the Realized GARCH model
implicitly imposes the constraint that 6; = d2 (= 7).

The sampling error, 7;, will be specific to the choice of realized measure (estimator of integrated variance).
Since this term reflects our inability to perfectly estimate the integrated variance, we should not expect this
term to be important for describing the dynamics of volatility. We should expect the volatility shock, (¢, to
be important. Since neither (; nor 7; are observed we cannot estimate a model where the realized measure

is decomposed into these two terms. However, we can relate 7(z;) and u; to these terms, as we discuss next.

An Alternative Model Representation

An alternative representation for the Real GARCH(1,1) is

\/hth 9

Tt =
loghy = p+mloghi—1 +y7(2—1) + Yus—1,
logzy = &+ ploghs +7(2) + ug,

where T = S+ ¢y and u = w+~€. The model defined by these equations will generate a process (r¢, z;)’ that
is observationally equivalent to log-linear Real GARCH(1,1). Note that the inclusion of z; in the GARCH
equation implicitly imposes that the coefficients associated with 7(z) and u be the same. This constraint is

relaxed in the following specification,

IOg ht = ,u+7rlog ht—l +51T(Zt_1) +52ut_1, (1)

log x4 &+ ploghy + 7(z¢) + uy.

It is natural to associate the leverage function, 7(z;), with (;, albeit there will be residual randomness in ¢,
that cannot be explained by the studentized return, z;, alone. Consequently, u; will be a mixture of pure
sampling error, 7;, and the residual randomness ¢; — 7(z:) — €.

Since 7(z¢) is primarily related to the volatility shock, (;, we should expect 7(z;) to have a larger coefficient
in the GARCH equation than u;, and that is indeed what we find in a preliminary analysis of this particular
model. Specifically we find, 61 > b5 > 0, where &, is significant. This minor extension of the model leads to
some interesting insight about the channels by which the realized measure in useful for the GARCH equation.

As discussed earlier, when z; is included in the GARCH equation, then it does not distinguish between
7(2¢) and uy, as it implied 6; = d9 in (1). The implication is that ~ will be indicative of how accurate z;

estimates the integrated variance.



Realized EGARCH

The decomposition of the realized measure in the GARCH equation motivates a Realized GARCH model
with the following EGARCH structure,

loghy = w+ Bloghi_1+ 7(2—1)+ de_1,

log x4 E+ploghy + k7(z) + (14 0)eq.

Here we have reparametrized the model to simplify the notation. For instance, $ in this model maps into
B + ¢ in the formulation used earlier, and the leverage function has absorbed the scaling «, and we have
instead introduced the scaling x in the measurement equation.

The Realized EGARCH model has a particularly interesting structure when 8 = ¢/k. In this case we can

rewrite the measurement equation as

log xy = £~+ kloghiy1 + €, where ¢ =& — kw,

so that the realized measure is implicitly being tied to the conditional variance for the next period.
The structure of the likelihood function for this model is different from that of our log-linear model, so we
cannot utilize the QMLE results we derived in the paper to this model. Therefore, we leave a more detailed

analysis of this model for future research.
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