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Supplement to Section 4: Computing Standard Errors

While standard errors for θ̂ may be compute from numerical derivatives, these can also be computed directly

using the following expressions
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For our baseline leverage function, τ1zt + τ2(z2t − 1), we have
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The results in this section is easily generalized to speci�cations that include the squared return (or log-squared

return) in the GARCH equation. This is achieved by stacking the appropriate lags of r2t (or log r2t ) to the

vector gt.

Supplement to Section 5: Summary Statistics and Additional Em-

pirical Results

Summary statistics for the data are given in Table 1.

Results for the Linear Speci�cation

First we consider Realized GARCHmodels with the linear speci�cation. We estimate a standard GARCH(1,1)

model and six Realized GARCH models using both open-to-close and close-to-close returns for SPY. We use

RG(p,q) to denote the Realized GARCH model with p lags of ht and q lags of xt. We estimate three models

with p = q = 2. In addition to the standard RG(2, 2) model we estimate a model without the leverage

function (denoted RG(2, 2)†) and an extended model, RG(2, 2)
∗
, that also includes a lag of the squared

return in the GARCH equation. The results for open-to-close returns are given in the left panel of Table 2,

and the corresponding results for close-to-close returns are presented in the right panel of Table 2.

First we discuss the empirical results for open-to-close returns in the left half of Table 2. First we know

that the empirical estimates of ϕ and ξ in the measurement equation are roughly ϕ̂ ' 1 and ξ̂ ≈ 0, which

shows that the realized kernel, which is used as the realized measure of volatility, xt, is roughly unbiased as

a measure of open-to-close volatility. Comparing RG(2, 2) with RG(2, 2)† shows that the leverage function is

highly signi�cant. Omitting the two τ -parameters leads to a rather large drop in the log-likelihood function.

Next, if we compare the extended model RG(2, 2)∗ with the standard model RG(2, 2) we see that the ARCH

parameter is insigni�cant. Consider now the auxiliary statistics in Panel B. The persistence parameter π

is estimated to be close to one in all models, and the models with a leverage function all suggest a rather

strong asymmetry in the new impact curve, as summarized by ρ− and ρ+. The partial likelihood statistic

`(r) is the likelihood for the returns alone. For the case of the Realized GARCH models this amounts to the

likelihood for the GARCH-X model arising from the the return and GARCH equations alone. Note that the

Realized GARCH models do not maximize this term, yet the model still produces a better empirical �t than
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Symbol roc min roc max roc r2oc rcc min rcc max rcc r2cc RK min RK max RK

AA -0.12 -8.09 8.49 3.17 -0.01 -10.91 9.24 4.44 3.56 0.49 40.52
AIG -0.08 -12.06 11.16 3.14 -0.08 -19.90 12.04 4.43 3.00 0.13 53.44
AXP 0.03 -8.50 9.42 2.63 0.01 -10.60 10.41 3.53 2.82 0.07 57.60
BA -0.01 -6.97 9.39 2.18 0.04 -8.41 6.78 2.91 2.46 0.21 33.92
BAC 0.02 -12.50 15.87 2.45 0.01 -10.66 20.22 3.08 2.24 0.13 62.72
C -0.09 -12.84 16.23 2.99 0.07 -15.69 8.63 3.09 3.28 0.17 89.01

CAT 0.00 -5.52 8.18 2.23 0.07 -15.69 8.63 3.09 2.32 0.30 27.93
CVX 0.00 -6.08 5.46 1.58 0.05 -6.93 5.27 1.97 1.81 0.22 18.60
DD -0.02 -5.96 9.84 1.65 0.01 -6.78 9.42 2.13 2.03 0.28 36.99
DIS 0.05 -6.50 8.11 2.24 0.03 -9.45 13.66 3.14 2.66 0.23 45.96
GE -0.05 -8.38 9.90 1.77 -0.01 -13.71 9.08 2.41 1.97 0.08 36.70
GM -0.23 -12.76 13.64 4.98 -0.07 -16.33 16.64 6.64 4.49 0.22 112.63
HD -0.03 -5.89 11.14 2.62 -0.04 -15.18 10.20 3.62 2.88 0.18 39.69
IBM 0.06 -6.39 5.95 1.52 0.00 -10.67 10.67 2.31 1.63 0.14 19.44
INTC -0.04 -8.22 8.82 3.68 -0.02 -20.48 10.29 5.55 3.65 0.45 44.89
JNJ 0.02 -4.68 7.92 0.95 0.02 -17.25 7.91 1.37 1.29 0.07 36.63
JPM -0.01 -16.41 25.28 3.58 0.01 -19.95 14.88 4.61 3.74 0.10 224.45
KO 0.04 -4.39 7.51 1.00 0.01 -10.62 5.33 1.35 1.29 0.04 25.21
MCD 0.09 -11.33 6.01 1.93 0.06 -13.72 8.85 2.59 2.24 0.24 37.65
MMM -0.01 -7.14 6.86 1.20 0.02 -9.37 6.89 1.65 1.40 0.08 17.96
MRK 0.03 -11.13 9.75 1.92 -0.02 -31.15 12.22 3.51 2.30 0.14 63.78
MSFT -0.02 -7.71 10.98 2.04 0.00 -12.07 10.55 2.85 2.14 0.14 35.54
PG 0.11 -5.94 5.17 0.83 0.04 -7.66 4.43 1.06 1.07 0.04 12.88
T -0.03 -11.46 8.99 2.82 0.00 -10.76 8.71 2.91 2.78 0.12 54.01

UTX -0.02 -7.99 6.88 1.68 0.05 -9.16 9.38 2.23 1.81 0.23 25.93
VZ -0.02 -7.63 7.12 2.03 0.00 -12.57 8.87 2.58 2.41 0.16 39.50

WMT -0.01 -4.77 7.88 1.36 0.01 -6.89 7.73 1.87 1.75 0.16 28.78
XOM 0.03 -6.83 10.62 1.64 0.05 -8.86 9.30 2.10 1.87 0.19 26.00
SPY -0.02 -3.98 8.19 0.88 0.01 -3.98 5.80 1.09 0.80 0.06 13.14

Table 1: Summary statistics. The sample period is January 1, 2002 to August 31, 2008. Subscript-oc and
subscript-cc refer to open-to-close and close-to-close returns, respectively. The realized kernel, RK, is used
as our realized measure of volatility.
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Figure 1: Scatter plots of latent volatility processes for returns, range, and the realized kernel. Each were
estimated separately using a GARCH(1,1) structure. The co-linearity between these latent processes suggests
that the three processes can be modeled with a single latent process.

the GARCH(1,1) model.

The empirical results for the close-to-close returns in the right half of Table 2 are quite similar. Not

surprisingly are the estimates of ϕ smaller which re�ect the fact that the realized measure only measures

volatility over the open-to-close period. The point estimates are ϕ ' 0.75, which suggests that volatility

during the �open period� amounts to about 75% of daily volatility. Interestingly, the ARCH parameter is

found to be signi�cant in the analysis of close-to-close returns. This �nding should be taken with a grain of

salt, because the linear model is grossly misspeci�ed, as we shall see in Section 5.5, and the estimate of α

in the linear model is sensitive to outliers. Note that the inclusion of α causes a large decline in the partial

log-likelihood for returns, `(r). Moreover, the estimated model suggests that volatility is far less persistent

than is usually found in practice, in part because the estimates of the β-parameters are unusually small.

Empirical Results Concerning the the Number of Latent Volatility Factors

To illustrate that a single latent volatility factor may be su�cient in this context, we have estimated the

latent volatility processes for returns, range, and the realized kernel using a simple GARCH(1,1) structure for

each of them. Each of the three volatility processes were extracted by maximizing − 1
2{
∑n
t=1 log(ht)+yi,t/ht}

where ht = ω+αyi,t−1 +βht−1, where yi,t denotes either the squared return, r2t , the squared intraday-range,

R2
t , or the realized kernel, RKt. For each of the three time series we maximize the quasi log-likelihood function

with respect to (ω, α, β, , h0), so the three volatility processes are obtained separately. Figure 1 presents two

scatter plots of the estimated volatility processes, and the pronounced collinearity suggests that a single

latent volatility factor may be su�cient in this context.
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Supplement to Section 6

Skewness and Kurtosis with the Linear Speci�cation

Analytical results for a single period return for the linear Realized GARCH model.

Proposition 1. Suppose that rt =
√
htzt, where

ht = ω + αr2t−1 + βht−1 + γxt−1,

xt = ξ + ϕht + τ(zt) + ut,

τ(zt) = τ1zt + τ2(z2t − 1) + τ3(z3t − 3zt) + · · ·+ τkHk(zt),

with zt ∼ iidN(0, 1), ut ∼ iid(0, σ2
u), and Hk(zt) being the k-th Hermite polynomial.

De�ne π = α + β + ϕγ, µ = ω + γξ, σ2
τ2 = Eτ(zt)

2, and suppose that π2 + 2α2 < 1. Then the excess

kurtosis of rt is given by

3
(1− π)2

1− π2 − 2α2

(
γ2
σ2
u + σ2

τ2

µ2
+ 4γ ατ2

µ(1−π)

)
+

6α2

1− π2 − 2α2
.

In the special case were α = 0, the excess kurtosis is

3
1− π
1 + π

γ2
σ2
τ2 + σ2

u

(ω + γξ)2
,

and in the special case where γ = 0 we obtain the excess kurtosis for the GARCH(1,1) model,

6α2

1− (α+ β)2 − 2α2
.

When zt ∼ N(0, 1) and the leverage function is constructed from Hermite polynomials, τ(zt) = τ1zt +

τ2(z2t − 1) + τ3(z3t − 3zt) + · · · , then σ2
τ2 = τ21 + 2!τ22 + 3!τ23 + 4!τ24 + · · · .

Proof of Proposition 1. With a Gaussian speci�cation for zt we have E(r2t ) = E(ht) and E(r4t ) = 3E(h2t ).

From the ARMA representation for this process we have with µ = ω+γξ and π = α+β+ϕγ ∈ (−1, 1), that

ht = µ+ πht−1 + γwt−1 + αvt−1 =

∞∑
i=0

πi(γwt−i−1 + αvt−i−1) + µ
1−π ,

where wt = τ(zt) + ut and vt = ht(z
2
t − 1). So that E(ht) = µ/(1− π). Next we note that E(w2

t ) = σ2
τ2 + σ2

u,

E(v2t ) = 2E(h2t ), and E(wtvt) = γατ2E(z2t −1)2E(ht) = 2γατ2µ/(1−π), where we have used that zt ∼ N(0, 1)

and the Hermite polynomial structure of τ(z). The second moment is given by

E(h2t ) =

∞∑
i=0

π2i
{
γ2(σ2

u + σ2
τ2) + 2α2E(h2t ) + 4γατ2

µ
1−π

}
+ µ2

(1−π)2
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ω = 0.04124604
β1 = 0.70122085
γ1 = 0.45067217
γ2 = -0.17604791
ξ = -0.17999580
ϕ = 1.03749403
σu = 0.38127405
τ1 = -0.06781023
τ2 = 0.07015828

Table 3: Parameter estimates for the log-linear Realized GARCH(1,2) model that is used to simulate cumu-
lative returns.

so that
(

1− 2α2

1−π2

)
E(h2t ) =

γ2(σ2
u+σ

2
τ2

)+4γατ2
µ

1−π
1−π2 + µ2

(1−π)2 , and hence

E(h2t ) =

(
1− π2

1− π2 − 2α2

)
γ2(σ2

u + σ2
τ2) + 4γατ2

µ
1−π

1− π2
+

(
1− π2

1− π2 − 2α2

)
µ2

(1−π)2

Hence the excess kurtosis is given by

E(r4t )

E(r2t )
2
− 3 = 3

{
E(h2t )

E(ht)2
− 1

}
= 3

(1− π)2

1− π2 − 2α2

(
γ2
σ2
u + σ2

τ2

µ2
+ 4γ ατ2

µ(1−π)

)
+

6α2

1− π2 − 2α2
,

and the results follow. �

Skewness and Kurtosis with Log-Linear Speci�cation

The kurtosis and skewness in Figure 4 was simulated using a RealGARCH(1,2) model with the parameter

con�guration given in Table 3.

The Approximate Expression for the Kurtosis

Here we provide a justi�cation for the approximation using in Section 6.1. Recall that

E(r4t )

E(r2t )
2

= 3

( ∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

)
exp

{ ∞∑
i=0

π2iγ2τ21
1− 6πiγτ2 + 8π2iγ2τ22

}
exp

{
γ2σ2

u

1− π2

}
.

For the �rst term on the right hand side, we have

log

∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

'
ˆ ∞
0

log
1− 2πxγτ2√
1− 4πxγτ2

dx

=
1

log π

{ ∞∑
k=1

(2γτ2)k

k2
− 1

2

(4γτ2)k

k2

}
(1− 2k−1)

=
1

log π

∞∑
k=1

(2γτ2)k

k2
(1− 2k−1)

=
γ2τ22

{
1 + 8

3γτ2 + 7(γτ2)2 + 96
5 (γτ2)3 + 496

9 (γτ2)4 + · · ·
}

− log π
.
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The second term can be bounded by

γ2τ21
1− π2

≤
∞∑
i=0

π2iγ2τ21
1− 6πiγτ2 + 8π2iγ2τ22

≤ γ2τ21
1− π2

1

1− 6πγτ2
.

So the approximation error is small when γτ2 is small.

A Decomposition of the Realized Measure in the GARCH Equation

In this section we provide a more detailed analysis of the leverage term, τ(zt), and its dynamic e�ect on

volatility. First we consider a hypothetical decomposition of the realized measure in the GARCH equation.

This yields valuable insight about the gains from utilizing realized measures in these models. Then we provide

an alternative (but econometrically equivalent) representation of the GARCH equation. This representation

suggests a simple extension of the Realized GARCH model, that o�ers a more �exible speci�cation of the

leverage e�ect. We also study a di�erent functional form for τ(z), that induces an EGARCH structure on

the GARCH equation.

A Hypothetical Decomposition

Many realized measures, such as the realized kernel used in our empirical analysis, will be consistent estimators

of the quadratic variation, which is an ex-post measure of volatility.

Consider the case where xt is an estimator of the integrated variance IVt, such as the realized variance

or the realized kernel. For realized measures of this type it is well known that the sampling error,

ηt = log xt − log IVt,

is approximately N(0,Σnt), where Σnt → 0 as the number of intraday observations, nt → ∞. See e.g.

Barndor�-Nielsen and Shephard (2002), Barndor�-Nielsen et al. (2008), and Barndor�-Nielsen et al. (2010).

For instance, under weak assumptions about market microstructure noise Barndor�-Nielsen et al. (2010)

show that the �sampling error� is log xt − log IVt = Op(n
−1/5).

The di�erence between the logarithmically transformed integrated variance and conditional variance is

given by

ζt = log IVt − log ht.

Then ζt captures the news about volatility that accumulated after the conditional expectation, ht, is made

at time t − 1, and we will refer to ζt as the volatility shock. Naturally the expected value of ζt will depend

on whether the integrated variance is measured over the same period as ht, or a fraction thereof.

Suppose for simplicity that ϕ = 1 and p = q = 1, so that the GARCH equation can be expressed as

log ht+1 = µ+ π log ht + δ1ζt + δ2ηt.
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Within the Realized GARCH model γ has to represent both δ1 and δ2, so the Realized GARCH model

implicitly imposes the constraint that δ1 = δ2 (= γ).

The sampling error, ηt, will be speci�c to the choice of realized measure (estimator of integrated variance).

Since this term re�ects our inability to perfectly estimate the integrated variance, we should not expect this

term to be important for describing the dynamics of volatility. We should expect the volatility shock, ζt, to

be important. Since neither ζt nor ηt are observed we cannot estimate a model where the realized measure

is decomposed into these two terms. However, we can relate τ(zt) and ut to these terms, as we discuss next.

An Alternative Model Representation

An alternative representation for the RealGARCH(1,1) is

rt =
√
htzt,

log ht = µ+ π log ht−1 + γτ(zt−1) + γut−1,

log xt = ξ + ϕ log ht + τ(zt) + ut,

where π = β+ϕγ and µ = ω+γξ. The model de�ned by these equations will generate a process (rt, xt)
′ that

is observationally equivalent to log-linear RealGARCH(1,1). Note that the inclusion of xt in the GARCH

equation implicitly imposes that the coe�cients associated with τ(z) and u be the same. This constraint is

relaxed in the following speci�cation,

log ht = µ+ π log ht−1 + δ1τ(zt−1) + δ2ut−1, (1)

log xt = ξ + ϕ log ht + τ(zt) + ut.

It is natural to associate the leverage function, τ(zt), with ζt, albeit there will be residual randomness in ζt

that cannot be explained by the studentized return, zt, alone. Consequently, ut will be a mixture of pure

sampling error, ηt, and the residual randomness ζt − τ(zt)− ξ.

Since τ(zt) is primarily related to the volatility shock, ζt, we should expect τ(zt) to have a larger coe�cient

in the GARCH equation than ut, and that is indeed what we �nd in a preliminary analysis of this particular

model. Speci�cally we �nd, δ̂1 > δ̂2 > 0, where δ2 is signi�cant. This minor extension of the model leads to

some interesting insight about the channels by which the realized measure in useful for the GARCH equation.

As discussed earlier, when xt is included in the GARCH equation, then it does not distinguish between

τ(zt) and ut, as it implied δ1 = δ2 in (1). The implication is that γ will be indicative of how accurate xt

estimates the integrated variance.
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Realized EGARCH

The decomposition of the realized measure in the GARCH equation motivates a Realized GARCH model

with the following EGARCH structure,

log ht = ω + β log ht−1 + τ(zt−1) + δεt−1,

log xt = ξ + ϕ log ht + κτ(zt) + (1 + δ)εt.

Here we have reparametrized the model to simplify the notation. For instance, β in this model maps into

β + ϕγ in the formulation used earlier, and the leverage function has absorbed the scaling γ, and we have

instead introduced the scaling κ in the measurement equation.

The Realized EGARCH model has a particularly interesting structure when β = ϕ/κ. In this case we can

rewrite the measurement equation as

log xt = ξ̃ + κ log ht+1 + εt, where ξ̃ = ξ − κω,

so that the realized measure is implicitly being tied to the conditional variance for the next period.

The structure of the likelihood function for this model is di�erent from that of our log-linear model, so we

cannot utilize the QMLE results we derived in the paper to this model. Therefore, we leave a more detailed

analysis of this model for future research.

References

Barndor�-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2008. Designing realised kernels to measure the ex-post
variation of equity prices in the presence of noise. Econometrica 76, 1481�536.

Barndor�-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2010. Multivariate realised kernels: consistent positive
semi-de�nite estimators of the covariation of equity prices with noise and non-synchronous trading. Jounal of Econometrics
forthcoming.

Barndor�-Nielsen, O. E., Shephard, N., 2002. Econometric analysis of realised volatility and its use in estimating stochastic
volatility models. Journal of the Royal Statistical Society B 64, 253�280.

10


