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1 Model Details

This section provides additional details of the model that we do not present in the text.

1.1 Large Economy

Labour unions A continuum of perfectly competitive labour aggregating firms combine the
specialised labour types according to the technology:

N∗t =

[∫ 1

0

N∗t (j)
ε∗w−1

ε∗w dj

] ε∗w
ε∗w−1

.

Competition between the labour aggregating firms ensures that the nominal wage paid to
aggregate labour and demand for individual varieties are given by:

W ∗
t =

[∫ 1

0

W ∗
t (j)1−ε

∗
w dj

] 1
1−ε∗w

, and N∗t+s(j) =

(
W ∗
t (j)Ωw∗

t,t+s

W ∗
t+s

)−ε∗w
N∗t+s.

Workers of type j unionise in order take exploit their monopoly power. Like Erceg et al.
(2000) we assume that these unions are subject to a Calvo-style friction such that each quarter
only a fraction of unions, 1− θ∗w, are able to set wages optimally. Unions that do not re-optimise
follow an indexation rule that links wages growth to a weighted average of lagged wage inflation
and steady-state wages growth:

W̆ ∗
t (j) =

(
Πw∗
t−1
)χ∗

w
(
Π̄∗M

)1−χ∗
w W ∗

t−1(j),

where W̆ ∗
t (j) is union j’s wage conditional on not re-optimising in period t, Πw∗

t = W ∗
t /W

∗
t−1 is

aggregate wage inflation and Π̄∗M is steady state nominal wages growth, equal to the product
of the central bank’s inflation target, Π̄∗, and steady state labour productivity growth,M.

The wage setting problem for a union that is able to reset its wages at time t is:

max
W ∗
t (j)

Et
∞∑
s=0

(βθ∗w)s
[
(1 + ι∗w)

Λ∗t+s
P ∗t+s

W ∗
t+s(j)Ω

w∗
t,t+sN

∗
t+s(j)−

1

1 + ϕ
Nt+s(j)

∗1+ϕ
]
,

subject to the labour demand constraint given above. Ωw∗
t,t+s is the cumulative wage growth

between period t and t + s for a union that does not re-optimise, Λ∗t+s is the shadow price
of consumption in period t + s and ι∗w is a wage subsidy calibrated to offset the steady state
distortion associated with monopolistic competition in the labour market.1

Firms The large economy’s final good is produced by a representative firm that aggregates
individual varieties according to the production function:

Y ∗t =

[∫ 1

0

Y ∗t (i)
ε∗p−1

ε∗p di

] ε∗p
ε∗p−1

.

1Given the indexing rule, Ωw∗
t,t+s =

(
Π̄∗M

)(1−χ∗
w)s∏t+s−1

k=t (Πw∗
k )

χ∗
w .
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Perfect competition implies that the aggregate price index and demand functions for individual
varieties are:

P ∗t =

[∫ 1

0

P ∗t (i)1−ε
∗
p di

] 1
1−ε∗p

, and Y ∗t+s(i) =

(
P ∗t (i)Ω∗t,t+s

P ∗t+s

)−ε∗p
Y ∗t+s.

Intermediate goods are produced by monopolistically-competitive firms with the technology:

Y ∗t (i) = ZtL
∗
t (i),

where Y ∗t (i) is the production and L∗t (i) is firm i’s input of aggregate labour.2 Zt is the trend
component of productivity, which in logs follows a random walk with drift that grows at the
rateM.

Intermediate firms face Calvo-style pricing frictions. Each quarter, a fraction of firms,
1− θ∗, sets prices optimally. The remaining firms that do not re-optimise their prices follow an
indexation rule that links prices growth to a weighted average of lagged CPI inflation and the
central bank’s inflation target:

P̆ ∗t (i) =
(
Π∗t−1

)χ∗
p
(
Π̄∗
)1−χ∗

p P ∗t−1(i),

where P̆ ∗t (i) is firm i’s price condition on not re-optimising in period t and Π∗t = P ∗t /P
∗
t−1 is CPI

inflation.
The pricing problem for a firm that re-optimises at time t is:

max
{P ∗
t (i)}

Et
∞∑
s=0

(βθ∗p)
s

{
Λ∗t+s

[
P ∗t (i)Ω∗t,t+sY

∗
t+s(i)−

1

1 + ι∗p

W ∗
t+s(i)

P ∗t+sZt+s
Y ∗t+s(i)

]}
,

subject to the demand constraint given above. The term ι∗p is a production subsidy that offsets the
distortionary effects of monopolistic competition on the steady state and Ω∗t,t+s is the cumulative
price growth between t and t+ s is the firm does not re-optimise.3.

1.2 Small Economy

Domestic Final Goods Retailers The domestically-produced final good, YH,t is assembled
by a perfectly competitive retailer that combines domestically-produced intermediate goods
using the technology:

YH,t =

[∫ 1

0

YH,t(i)
εp−1

εp di

] εp
εp−1

, (1)

where εp is the elasticity of substitution between varieties of domestic intermediate goods. The
price of the domestic final good and demand for individual varieties are given by:

PH,t =

[∫ 1

0

PH,t(i)
1−εp di

] 1
1−εp

, and YH,t(i) =

(
PH,t(i)

PH,t

)−εp
YH,t.

2Market clearing in the labour market requires that the amount of aggregate labour supplied by households
equals the amount of aggregate labour demanded by firms, i.e. that N∗

t =
∫ 1

0
L∗
t (i)di.

3Ω∗
t,t+s =

(
Π̄∗)(1−χ∗

p)s∏t+s−1
k=t (Π∗

k)
χ∗
p
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Domestic Intermediate Goods Producers The pricing problem for a firm i that does
re-optimise is

max
PH,t(i)

∞∑
s=0

(βθp)
s Et

{
Λt+s

[
PH,t(i)Ωt,t+sΓH,t+s

PH,t+s
YH,t+s(i)−

1

1 + ιp

Wt

PH,tZt
ΓH,t+sYH,t+s(i)

]}
, (2)

subject to the domestic final goods demand condition given above. ΓH,t = PH,t/Pt is the relative
price of domestically-produced goods, Ωt,t+s is the cumulative increase in prices for a firm that
does not re-optimise between t and t+ s and ιp is a production subsidy calibrated to offsets the
distortionary effects of monopolistic competition on steady-state output.

Exporters An export retailer bundles export varieties before selling them overseas according
to the technology:

Xt =

[∫ 1

0

Xt(i)
εx−1
εx di

] εx
εx−1

, (3)

where εx > 1 is the elasticity of substitution between different varieties for export. The
corresponding price index, in foreign currency terms, and demand function for total exports are
given by:

P ∗X,t =

[∫ 1

0

P ∗X,t(i)
1−εx di

] 1
1−εx

, and Xt = αX

(
P ∗X,t
P ∗t

)−τ
Y ∗t .

Exporters face Calvo-style pricing frictions, with only a fraction, 1 − θx, of firms able to
adjust their prices each quarter. Firms that do not re-optimise index their prices to steady-state
US inflation. The resulting pricing problem for firm i is:

max
P ∗
X,t(i)

∞∑
s=0

(βθx)
s Et

{
Λt+s

[
P ∗X,t(i)Ω

x
t,t+sΓx,t+s

P ∗X,t+s
Xt+s(i)−

1

1 + ιx
ΓH,t+sXt+s(i)

]}
, (4)

subject to the usual demand constraint. Γx,t+s = StP
∗
X,t/Pt is the relative price between exports

(in domestic currency terms) and the domestic CPI and ιx is a production subsidy calibrated to
offset the effect of imperfect competition on steady-state exports.

Importers The pricing problem for a representative firm i is:

max
PF,t(i)

∞∑
s=0

(βθf )
s Et

{
Λt+s

[
PF,t(i)Ω

F
t,t+sΓF,t+s

PF,t+s
YF,t+s(i)−

1

1 + ιf

St+sP
∗
t+s

Pt+s
YF,t+s(i)

]}
, (5)

subject to the demand constraint above. ΓF,t = PF,t/Pt is the price of imports (in domestic
currency terms) relative to the domestic CPI, ΩF

t,t+s is the cumulative price change for an
importer that does not adjust its prices between t and t+ s and ιf is a subsidy calibrated to
offset the effect of imperfect competition on import volumes on steady state.

2 Model Solution with Two Fixed-rate Regimes

In our case, policy interest rates in the US and Canada can be fixed at different periods, or at the
same time. The economy can therefore be in one of the following four possible regimes at a given
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point in our sample: (i) interest rates follow feedback rules, (ii) only the interest rate of the large
economy is fixed, (iii) only the interest rate of the small economy is fixed, and (iv) both interest
rates are fixed. Figure 1 illustrates one possibility, in which in an initial sub-sample conventional
policy applies to both economies, then there is a period of time for which the interest rate is
fixed only in the large economy. After that, interest rates are fixed in both economies, and
eventually there is a return to conventional policy which takes place out-of-sample.

We first linearize the model around the steady state for which policy rates follow feedback
rules, and write the resulting system of equations in matrix form as:

Axt = C + Bxt−1 + DEtxt+1 + Fεt, (6)

where xt is the state vector and εt is the vector of structural shocks, which we take to be i.i.d.
without loss of generality. If it exists and is unique, the standard rational expectations solution
to (6) is xt = J + Qxt−1 + Gεt.

When only the foreign interest rate is fixed the structural equations are given by:

A?xt = C? + B?xt−1 + D?Etxt+1 + F?εt, (7)

where the only equation that has changed in the starred system relative to (6) is the equation
defining the foreign policy interest rate rule, which is now specified such that the nominal interest
rate is fixed.4

When only the domestic interest rate is fixed the structural equations are given by:

Āxt = C̄ + B̄xt−1 + D̄Etxt+1 + F̄εt, (8)

where the only equation that has changed relative to (6) is the equation defining the domestic
policy interest rate rule, which is now specified such that the nominal interest rate is fixed.

And when both foreign and domestic interest rates are fixed the structural equations are
given by:

Ā?xt = C̄? + B̄?xt−1 + D̄?Etxt+1 + F̄?εt. (9)

If interest rates follow feedback rules at time t, then At = A, Ct = C, Bt = B, and so. If both
domestic and foreign policy interest rates are fixed at time t then At = Ā?, Ct = C̄?, Bt = B̄?,
and so on.

Assume then that at time t = 1 agents expect fixed interest rates in the large economy for
d∗1 periods and fixed interest rates in the small economy for d1 periods. After max(d∗1,d1) both
economies would have reverted back to (6) and the standard solution applies. From t = 1, d∗1
and d1 imply an expectation of which of the four possible regimes will be in place at each point
in time. Let the expected regimes be summarised by the sequence

{At,Ct,Bt,Dt,Ft}
max(d∗

1,d1)
t=1 .

Following Kulish and Pagan (2017), the solution is a time-varying coefficient VAR of the form

xt = Jt + Qtxt−1 + Gtεt, (10)
4The notation accommodates additional structural changes which have to be accounted for if the expansion

point of the approximation changes. In our application we work around the intended steady state.
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Figure 1: Timing and Four Possible Regimes in the Model
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Note: This figure shows the timing and 4 possible regimes that the model solution accounts for. During the
sample period, the US interest rate can either be governed by a policy rule (foreign conventional policy) or fixed
at its lower bound. For each of these two regimes, the Canadian interest rate can either be governed by a rule
(domestic conventional policy) or at its lower bound.

where the reduced form matrices solve the recursions below:

Jt = [At −DtQt+1]
−1 (Ct + DtJt+1)

Qt = [At −DtQt+1]
−1 Bt (11)

Gt = [At −DtQt+1]
−1 Ft.

With the solution in hand for a given foreign and domestic duration, the likelihood is
constructed following Kulish, Morley and Robinson (2017). We denote the estimated durations
of the small economy by {dt}Tt=1 and those of the large economy by {d∗t}Tt=1 and adopt the
convention that in periods where the Taylor rule is in operation in the small economy, dt = 0,
and in the large econonmy, d∗t = 0.

3 Lower Bound Implementation

There are two occasionally binding lower bound constraints to impose in this model, one to the
US nominal interest rate, and one to the Canadian nominal interest rate. A flexible algorithm
is developed that relies on constructing a perfect foresight path of the nominal interest rate
in both countries, and piecing together linear systems in a step-by-step way. These methods
are based on the solution concepts developed in Cagliarini and Kulish (2013); Kulish and
Pagan (2017), Guerrieri and Iacoviello (2015) and Jones (2017). As shown in these papers, the
approximation does a good job at capturing the non-linear effects induced by the occasionally
binding constraints.

3.1 Notation

Denote by x∗t the vector of endogenous variables for the large country at time period t, one of
which is the nominal interest rate in the large country, and xt the vector of endogenous variables
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for the small country at time period t, one of which is the nominal interest rate Rt. The initial
conditions are [x∗t−1

′ xt−1
′]′ and the initial vector of unanticipated exogenous variables, denoted

by εt. The model is a system of n equations.

3.2 Initialization at t

We know, at period t:

• The shock that hits at period t: εt.

• The initial vector of variables xt−1.

3.3 The Algorithm

The steps of the algorithm are:

0. Linearize the model around the non-stochastic steady state, ignoring the lower bounds in
both countries.

1. For each period t:

For the large country:

(a) Solve for the path {xτ}Tτ=t with T large, using the solution of the linearized economy
from step (0), given εt and the initial vector of variables xt−1, and assuming no future
uncertainty. This gives a path for the nominal interest rate, ikt = {ikτ}Tτ=t.

(b) Examine the path ikt . If ikt ≥ 0, then the lower bound does not bind, so move onto
step (2). If ikt < 0, then move onto step (1c).

(c) For the first time period where ikt < 0, set the nominal interest rate in that period
to zero. This changes the anticipated structure of the economy. Under this new
structure, calculate the path of all variables, including the new path for the nominal
interest rate ik+1

t = {ik+1
τ }Tτ=t.

Iterate on steps 1a and 1c until convergence of i∗t .

Repeat steps 1a to 1c for the small country.

2. Increment t by one. The initial vector of variables now becomes xt, which was solved for
in step 1. Draw a new vector of unanticipated shocks εt+1 and return to step 1.

To compute the path {xτ}Tτ=t under forward guidance, compute step (1c) first, imposing the
sequence of structural matrices corresponding to the lower bound and non-lower bound periods.
Then examine the path {iτ}Tτ=t for subsequent violations of the lower bound.

3.4 Details of Each Step

At the following steps:
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0. As above, write the n equations of the linearized structural model at t as:

Axt = C + Bxt−1 + DEtxt+1 + Fεt, (SM)

where xt is a n× 1 vector of state and jump variables and εt is a l× 1 vector of exogenous
variables. Use standard methods to obtain the reduced form:

xt = J + Qxt−1 + Gεt. (RF)

1. For each period t:

(a) Using (RF), obtain the path {xτ}Tτ=t given εt. Set T to be large. Assume {wτ}Tτ=t+1 =
0 (no future uncertainty), so that xt = J + Qxt−1 + Gεt, and xt+1 = J + Qxt, up to
xT = J + QxT−1.
This step gives a path it = {iτ}Tτ=t.

(b) Examine the path {iτ}Tτ=t.

• If iτ ≥ 0 for all t ≤ τ < T , accept {xτ}Tτ=t. The it path does not violate lower
bound today or in future.
• If iτ < 0 for any t ≤ τ < T , move to step (1c).

(c) Update the path of {iτ}Tτ=t for the lower bound. For the first time period t∗ where
it∗ < 0, set it∗ = 0. The model system at t∗ therefore becomes:

A∗xt∗ = C∗ + B∗xt∗−1 + D∗Et∗xt∗+1 + F∗wt∗ , (12)

Compute the new path {iτ}Tτ=t. This involves computing {xτ}t
∗

τ=t and {xτ}
T
τ=t∗+1. At

t∗, Et∗xt∗+1 is computed using the the reduced form solution (RF) and wt∗+1 = 0.
This expresses xt∗ as a function of xt∗−1. Proceeding in this way with the correct
structural matrices (either lower bound ∗ or no lower bound at each time period),
compute the path {iτ}Tτ=t.
A convenient way to compute the new path {iτ}Tτ=t is to form the time varying matrices
{Jτ ,Qτ ,Gτ}Tτ=t which satisfy the recursion (11), with the final set of reduced form
matrices for the recursion being the non-lower bound matrices J, Q, G from (RF).
These time-varying matrices are then used to compute the path {xτ}Tτ=t by calculating
xτ = Jτ + Qτxτ−1 + Gτwτ .

3.5 Output of the Algorithm

The algorithm yields a set of time-varying structural matrices:

xt = Jt + Qtxt−1 + Gtεt, (13)

from which we get the path of {xτ}∞τ=t where the nominal interest rate is subject to the lower
bound. Both the current value of the nominal interest rate, and expectations of the lower bound
binding, affect current values of state variables.
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3.6 Identifying Forward Guidance

Here, we explain how to use the algorithm in Section 3.3 to decompose an anticipated duration
of the lower bound into a component due to structural shocks, and a component due to forward
guidance. Assume that at period t, the lower bound binds and we have used procedures to
estimate the model parameters and the anticipated length of the lower bound at period t. We
have in hand at period t:

1. An estimated duration T̃ of the lower bound at t, so that the interest rate is expected to
stay at zero until time period t+ T̃ .

2. An estimate of the history of the states {xτ}t−1τ=0 and an estimate of the structural shocks
{wτ}tτ=1, computed using the Kalman smoother.

The estimated parameters, durations and shocks recover the observed series and give an
estimate of the model’s state variables xt. To decompose the proportion of the estimated duration
due to structural shocks, so that the remainder is due to forward guidance policies, at each point
of time:

1. Use the state xt−1 and the structural shock εt to compute, using the lower bound algorithm
of Section 3.3, the endogenous duration of the lower bound.

2. If the computed endogenous duration is less than the estimated duration, then the additional
time is assigned to commitment forward guidance policy.

The endogenous duration is the duration that would have occurred had the central bank simply
set the nominal interest rate to zero in periods where the policy rule would have specified that it
be negative, and set the interest rate to its positive value when the policy rule specifies that it
be positive.

3.7 Kalman Filter

The model in state space representation is:

xt = Jt + Qtxt−1 + Gtεt (State Eqn)
zt = Htxt. (Obs Eqn)

The structural shocks are Gaussian, so that εt ∼ N(0,Q), where Q is the covariance matrix of
εt. The Kalman filter recursion is given by the following equations. The state of the system
is the state vector and its covariance matrix (x̂t, Pt−1). The ‘predict step’ involves using the
structural matrices Jt, Qt and Gt:

x̂t|t−1 = Jt + Qtx̂t (14)
Pt|t−1 = QtPt−1Q

>
t|t−1 + GtQG>t . (15)

Note that Ht is time-varying, reflecting that when the nominal interest rate is at its lower bound,
we lose it as an observable variable. The update step involves computing forecast errors ỹt and
its associated covariance matrix St:

ỹt = zt −Htx̂t|t−1 (16)
St = HtPt|t−1H

>
t . (17)
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The Kalman gain matrix is given by:

Kt = Pt|t−1H
>
t S−1t . (18)

With ỹt, St and Kt in hand, the optimal update of the state xt and its associated covariance
matrix is:

x̂t = x̂t|t−1 + Ktỹt (19)
Pt = (I −KtHt) Pt|t−1. (20)

The Kalman filter is initialized with x0 and P0 computed from their unconditional moments.
The recursion is computed until the final time period T of data.

3.8 Kalman Smoother

With the estimates of the parameters and durations in hand at time period T , the Kalman
smoother gives an estimate of xt|T , or an estimate of the state vector at each point in time given
all available information. With x̂t|t−1, Pt|t−1, Kt and St in hand from the filter, the vector xt|T
is computed by:

xt|T = x̂t|t−1 + Pt|t−1rt|T , (21)

where the vector rT+1|T = 0 and is updated with the recursion:

rt|T = H>t S−1t
(
zt −Htx̂t|t−1

)
+ (I −KtHt)

>P>t|t−1rt+1|T . (22)

Finally, to get an estimate of the shocks to each state variable, denoted by et, we compute:

et = Gtεt = Gtrt|T . (23)

3.9 Sampler

We use the same sampler as in Kulish, Morley and Robinson (2017). Denote by ϑ the vector
of parameters to be estimated and T the vector of durations to be estimated. Contained in T
are a set of durations for both the foreign and domestic countries. Denote by Z = {zτ}Tτ=1 the
sequence of observable vectors. The posterior P(ϑ,T | Z) satisfies:

P(ϑ,T | Z) ∝ L(Z | ϑ,T)× P(ϑ,T). (24)

With Gaussian errors, the likelihood function L(Z | ϑ,T) is computed using the appropriate
sequence of structural matrices and the Kalman filter:

logL(Z | ϑ,T) = −
(
NzT

2

)
log 2π − 1

2

T∑
t=1

log det HtStH
>
t −

1

2

T∑
t=1

ỹ>t
(
HtStH

>
t

)−1
ỹt.

For practical convenience, we require that each estimated duration lies below some maximum
value T ∗ which, in practice, is rarely visited by the sampler.

The Markov Chain Monte Carlo posterior sampler has two blocks, corresponding to ϑ and T.
Initialize the sampler at step j with the last accepted draw of the structural parameters, the
period of the breaking parameters and durations, denoted by ϑj−1 and Tj−1 respectively. The
blocks are, in order of computation:
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1. In the first block, randomly choose up to T̄ durations to test in each country, corresponding
to up to T̄ time periods that each economy is at the lower bound. For each of those time
periods, randomly choose a duration in the interval [1, T ∗] for each country to generate
a new Tj proposal. Recompute the sequence of structural matrices associated with
(ϑj−1,Tj), compute the posterior P(ϑj−1,Tj−1 | Z), and accept the proposal (ϑj−1,Tj)

with probability P(ϑj−1,Tj |Z)
P(ϑj−1,Tj−1|Z) . If (ϑj−1,Tj) is accepted, then set Tj−1 = Tj.

2. The second block is a more standard Metropolis-Hastings random walk step. Start by
selecting which structural parameters to propose a new value for. For those parameters,
draw a new proposal ϑj from a proposal density centered at ϑj−1 chosen to ensure sufficient
coverage of the parameter space. The proposal ϑj is accepted with probability P(ϑj ,Tj−1|Z)

P(ϑj−1,Tj−1|Z) .
If (ϑj,Tj−1) is accepted, then set ϑj−1 = ϑj.

3.10 A Worked Example of the Algorithm

Consider the simple example, log-linearized around steady-state where yt is output and the
nominal interest rate it ignores the ZLB:

yt = Etyt+1 − (it − ī) + εt

it − ī = ρ (it−1 − ī) + γyt.

Putting this model in the form of (SM) requires xt = [ it yt ]′ and:

A =

[
1 1
1 −γ

]
, B =

[
0 0
ρ 0

]
, C =

[
ī

ī(1− ρ)

]
, D =

[
1 0
0 0

]
, F =

[
1
0

]
.

The routines of Sims (2002) are used to obtain:

xt = J + Qxt−1 + Gεt. (25)

The algorithm proceeds as follows. Given a shock εt:

1. Using the reduced form system without the ZLB (25), obtain the path yt up to some large
T . Assume no future shocks:

xt = J + Qxt−1 + Gεt

xt+1 = J + Qxt
...

xT = J + QxT−1.

2. Examine {iτ}Tτ=t. If iτ > 0 ∀ τ , then stop the algorithm. Otherwise, move to the next step.

3. Find the first time period where iτ < 0. Suppose it+1 < 0 under the shock εt. Then, we
want the following system to apply at time period t+ 1:

yt = Etyt+1 − (it − ī) + εt

it = 0,
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and the non-ZLB system to apply for t and time periods τ > t+ 1. The system at t+ 1
translates into the following structural matrices:

A∗t+1 =

[
1 1
1 0

]
, B∗t+1 =

[
0 0
0 0

]
, C∗t+1 =

[
ī
0

]
, D∗t+1 =

[
1 0
0 0

]
, F∗t+1 =

[
1
0

]
,

while Π∗t+1 = Π. Then use the solution to the non-ZLB system to obtain xt+j for j > t+ 1
again assuming no future shocks.

Return to step 2 with the the new path of {iτ}Tτ=t.

4. Examine the new path of {iτ}Tτ=t. If iτ > 0 ∀ τ , then stop the algorithm: the ZLB applies
only for time period t+ 1. Otherwise, move to the next step having already imposed the
ZLB at time period t+ 1.

5. Continue iterating until the nominal interest rate satisfies the ZLB across the forecast
horizon.

4 Data Sources

The model is estimated using 15 macroeconomic time series.

• US real output growth: The quarterly log change in US real GDP per capita. We
construct the latter series by dividing US real GDP, seasonally adjusted (FRED GDPC1)
by the US civilian population aged over 16 years (FRED CNP16OV).

• US real consumption growth: The quarterly log change in real US personal consump-
tion expenditures (Fred code PCE) divided by the population (FRED CNP16OV).

• US inflation: The quarterly log change in the US core PCE price index, seasonally
adjusted (FRED PCEPILFE).

• US policy rate: The quarterly average of the target US Federal Funds rate (FRED DFF).

• US 2 year bond yield: The quarterly average of the US 2-year constant maturity
treasury bond yield (FRED GS2).

• US Nominal Wages: The quarterly log change in average hourly earnings of private sector
production and non-supervisory employees, seasonally adjusted, (FRED code AHETPI).

• Canada real GDP growth: The quarterly log change in Canadian real GDP per capita.
We construct the latter series by dividing Canadian real GDP, seasonally adjusted (CANSIM
380-0064) by the Canadian Working Age Population (CANSIM 051-0001).

• Canada real consumption growth: Quarterly log change in household consumption
per capita (Statcan Table 37-10-0107-01).

• Canada inflation: The quarterly log change in the Canadian CPI excluding food, energy
and indirect taxes, seasonally adjusted (CANSIM 326-0022).
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• Canada policy rate: The quarterly average of the Bank of Canada target rate rate
(CANSIM v122530).

• Canada nominal wages: The quarterly log change in total compensation of employees di-
vided by number of workers (Fred Codes, CANCOMPQDSNAQ / LFEMTTTTCAQ647S).

• Canada 2 year bond yield: The quarterly average of the Canadian 2-year constant
maturity treasury bond yield (CANSIM v122538).

• Canada-US exchange rate: The log change in the quarterly average level of the Canada-
US exchange rate (CANSIM 176-0064).

• Canada import volumes per capita, growth: The log change in quarterly import
volumes per capita (CANSIM 380-0064).

• Canada export growth: The log change in quarterly export volumes per capita (CAN-
SIM 380-0064).

Our economic model implies some relatively strong restrictions on the joint behavior of the
observed variables. For example, balanced growth requires that wages grow at the product of
labour productivity growth and inflation, while exports, imports, consumption and GDP should
all grow at the same rate. In practice, the relative growth rates of many of the observed variables
differs from that implied by the model. Because many of these differences reflect economic
forces, including changes in worker bargaining power, or in tariff barriers, that are outside the
scope of our empirical exercise, we accommodate them by transforming the data. The specific
transformations we make are:

1. We calculate the average growth rate of US and Canadian GDP per capita prior to 2009.
Define this value as Ȳ .

2. We adjust the means of US and Canadian GDP, consumption and trade data so that they
equal Ȳ prior to 2009.

3. We adjust the mean of wages growth so that it equals Ȳ plus the country-specific average
inflation rate prior to 2009.

4. We normalize the change in the Canadian nominal exchange rate so that it equals 0 prior
to 2009.

Figure 2 plots the data we use in the estimation.

5 Estimation Diagnostics

Figure 3 plots the Gelman diagnostic statistics on the convergence of the MCMC chains. The
R2 diagnostic converges to 1 over the length of the chain for both parameters and durations.
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Figure 2: Quarterly Data

15



Figure 3: Gelman Chain Diagnostics
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6 GIRFs to a Forward Guidance Shock

A forward guidance shock is an unanticipated change in forward guidance component of the
expected duration. This gives rise to a change in dt orthogonal to the structural shocks. A
foreign forward guidance shock at t changes the reduced form matrices that prevail at t as well
as those that agent expected to prevail in the forecast horizon according to the solution given in
(10) and (11)

We select a base duration, dbase, a quarter of the fixed interest rate regime, t and compute
generalized impulse responses conditional on the history of the observed variables. We take
draws from the posterior and keep draws for which the foreign duration at t corresponds to
our base duration, that is d∗t = dbase. For admissible draws from the posterior, the Kalman
smoother gives estimates of the state, x̂t−1|T and structural shocks, ε̂t|T . We then assume no
future structural shocks, εt+j = 0, and no future forward guidance shocks, to obtain forecasts for
the state

Et(xt+n|d∗t = dbase, x̂t−1|T , ε̂t|T ), for n = 0, 1, 2, . . .

where for n = 0 we recover the smooth estimate x̂t|T . We then consider a foreign forward guidance
shock, εfg∗

t , which changes the duration from d∗t to d∗t + εfg∗
t . This changes the reduced-form

matrices at t and in the forecast horizon as well. We forecast xt under the forward guidance
shock to obtain

Et(xt+n|d∗t = dbase + εfg∗
t , x̂t−1|T , ε̂t|T ), for n = 0, 1, 2, . . .

Generalized impulse response are given by

GIRF(xt+n) = Et(xt+n|d∗t = dbase + εfg∗
t , x̂t−1|T , ε̂t|T )− Et(xt+n|d∗t = dbase, x̂t−1|T , ε̂t|T ).

Figures 4 to 7 plots four generalized impulse responses to a two quarter US forward guidance
shock in 2010Q3 and 2013Q3, for base US lower bound durations of two quarters and 6 quarters.

7 Alternative Estimation Specifications: Robustness

7.1 With Discounting in Euler Equation

We estimate the model with discounting in the Euler Equation, with a discount factor of
γ = 0.99. Tables 1 and 2 contain the estimates of the structural parameters and the shock
processes. Figure 8 shows the mean of the estimated durations and mean of the decomposed
lower bound durations for the US and Canada under these estimates. Compared to our baseline
estimates the estimated US interest rate durations are longer by, on average, one quarter, while
the decomposition is largely the same.

Figures 9 and 10 plot contemporaneous, and expected 1Y and 2Y-ahead monetary policy
shocks, as in Del Negro, Giannoni and Patterson (2012). The impulse responses compared to
our baseline specification and with discounting in the Euler equation generates similar impulse
responses for the expected monetary policy shocks, with the paths under discounting slightly
damped compared to our baseline estimates.
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Figure 4: GIRF of 2 Quarter Forward Guidance Shock in 2010Q3, 2Q Base Duration

Figure 5: GIRF of 2 Quarter Forward Guidance Shock in 2010Q3, 6Q Base Duration
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Figure 6: GIRF of 2 Quarter Forward Guidance Shock in 2013Q3, 2Q Base Duration

Figure 7: GIRF of 2 Quarter Forward Guidance Shock in 2013Q3, 6Q Base Duration
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Table 1: Estimated Structural Parameters, γ = 0.99

Prior Posterior

Parameter Dist Median 10% 90% Mode Median 10% 90%

US

h∗ B 0.7 0.6 0.8 0.70 0.70 0.64 0.76
θ∗p B 0.7 0.7 0.8 0.76 0.75 0.73 0.78

θ∗w B 0.7 0.7 0.8 0.79 0.79 0.76 0.81
ρ∗r B 0.5 0.2 0.8 0.89 0.89 0.87 0.91
φ∗π N 2.0 1.7 2.3 1.65 1.72 1.46 2.02
φ∗g G 0.5 0.3 0.7 0.09 0.09 0.07 0.12

φ∗y G 0.5 0.3 0.7 0.09 0.09 0.07 0.11

c∗8 N 0.3 0.1 0.8 0.10 0.10 0.06 0.15

Canada

h B 0.7 0.6 0.8 0.81 0.81 0.75 0.84
τ N 1.0 0.4 1.6 3.01 3.02 2.73 3.38
θp B 0.7 0.7 0.8 0.79 0.79 0.76 0.83
θw B 0.7 0.7 0.8 0.78 0.77 0.74 0.80
θx B 0.7 0.7 0.8 0.78 0.78 0.75 0.80
θF B 0.7 0.7 0.8 0.76 0.76 0.72 0.80
ρr B 0.5 0.2 0.8 0.91 0.91 0.87 0.93
φπ N 2.0 1.7 2.3 2.16 2.15 1.85 2.45
φg G 0.5 0.3 0.7 0.11 0.11 0.09 0.14
φy G 0.5 0.3 0.7 0.18 0.17 0.09 0.24
c8 N 0.3 0.1 0.9 0.12 0.13 0.06 0.19

Figure 8: Fixed Interest Rate Duration and Forward Guidance, Mean Across Draws, γ = 0.99
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Table 2: Estimated Parameters, Exogenous Processes, γ = 0.99

Prior Posterior

Parameter Dist Median 10% 90% Mode Median 10% 90%

US

ρ∗ξ B 0.5 0.2 0.8 0.95 0.95 0.93 0.96

ρ∗g B 0.5 0.2 0.8 0.95 0.95 0.93 0.97

ρ∗ξp B 0.5 0.2 0.8 0.99 0.98 0.97 0.99

ρ∗ξw B 0.5 0.2 0.8 0.80 0.78 0.67 0.86

ρ∗tp B 0.5 0.2 0.8 0.73 0.73 0.64 0.82

100× σz IG 0.3 0.1 2.6 0.11 0.11 0.09 0.14
100× σ∗r IG 0.3 0.1 0.6 0.11 0.11 0.10 0.12
100× σ∗ξ IG 0.3 0.1 0.7 0.25 0.28 0.21 0.41

10× σ∗g IG 0.3 0.1 0.7 0.13 0.13 0.12 0.14

100× σ∗ξp IG 0.1 0.1 0.3 0.15 0.15 0.13 0.17

100× σ∗ξw IG 0.3 0.1 0.9 0.11 0.11 0.08 0.13

100× σ∗r,8 IG 0.3 0.1 0.9 0.09 0.09 0.09 0.10

Canada

ρrp B 0.5 0.2 0.8 0.96 0.95 0.79 0.97
ρξ B 0.5 0.2 0.8 0.69 0.72 0.58 0.93
ρg B 0.5 0.2 0.8 0.94 0.93 0.90 0.96
ρξH B 0.5 0.2 0.8 0.86 0.83 0.71 0.91
ρξw B 0.5 0.2 0.8 0.24 0.26 0.16 0.37
ρξX B 0.5 0.2 0.8 0.91 0.91 0.87 0.95
ρξF B 0.5 0.2 0.8 0.99 0.96 0.92 0.99
ρtp B 0.5 0.2 0.8 0.75 0.74 0.64 0.83

100× σr IG 0.3 0.1 0.7 0.17 0.17 0.15 0.19
100× σrp IG 0.1 0.1 0.2 0.29 0.34 0.27 0.58
10× σg IG 0.3 0.1 0.9 0.14 0.14 0.13 0.15
100× σξ IG 0.3 0.1 0.9 0.23 0.24 0.21 0.29

100× σξH IG 0.2 0.1 0.3 0.36 0.37 0.33 0.41
100× σξw IG 0.3 0.1 0.8 0.49 0.50 0.45 0.55
100× σξX IG 0.3 0.1 0.9 1.31 1.34 1.15 1.57
100× σξF IG 0.1 0.1 0.2 1.03 1.08 0.89 1.34
100× σr,8 IG 0.3 0.1 0.7 0.12 0.12 0.11 0.13
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Figure 9: Contemporaneous and Anticipated Monetary Policy Shocks
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Figure 10: Contemporaneous and Anticipated Monetary Policy Shocks, γ = 0.97
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Figure 11: GIRF of 2 Quarter Forward Guidance Shock in 2011Q3, 4Q Base Duration, U.S.
Preference Shock in Canada Preference Process

7.2 U.S. Preference Shock Entering Canadian Preference Shock Directly

Next, we studied the robustness of our findings to a model specification when we directly augment
the Canadian economy’s preference shock with the U.S. preference shock, that is, where now
Canadian preferences are:

E0

∞∑
t=0

βteξt+ξ
∗
t

[
log(Ct − hCt−1)−

1

1 + ϕ

∫ 1

0

(Nt(j))
1+ϕ dj

]
where ξ∗t is the exogenous U.S. preference process subject to shocks. Table 3 presents the
unconditional variance decomposition in an estimation with this specification. Adding the U.S.
preference shock to Canada increases the contribution of U.S. preference shocks to explaining
Canadian output and consumption growth to about 10 percent and about 20 percent of the
variation in interest rates (compared to about 2 percent and 5 percent in the baseline). This
specification also pushes up the contribution of U.S. preference shocks in explaining U.S. variables
by about 10 to 15 percentage points. In Canada, compared to the baseline, there is a reduction
in the contribution of the exchange rate risk premium shock for interest rates and output growth,
and a reduction in the Canadian preference shock in explaining consumption growth.

Importantly, the implications of this setup for the spillovers of a U.S. forward guidance shock
to Canada are similar, and in some cases slightly larger, than the spillovers in our baseline model.
Figure 11 plots the same generalized impulse response as in our baseline exercise: an extension
of the lower bound duration by 2 quarters in 2011Q3, on a base duration of 4 quarters.
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Figure 12: GIRF of 2 Quarter Forward Guidance Shock in 2011Q3, 4Q Base Duration, U.S.
Preference Shock in Canada Preference Process

7.3 U.S. Preference/Gov Shocks Entering Canadian Preference/Gov Shocks

We next consider a specification where, in addition to the U.S. preference shock entering the
Canadian preference shock as in the previous subsection, we also allow the U.S. government
spending shock to enter directly into the Canadian government spending shock, which broadly
captures additional direct demand channels from the U.S. to Canada.

As Figure 12 shows, the conventional impulse responses and forward guidance generalized
impulse response is very similar to our baseline model, indicating that the spillovers of monetary
policy shocks are similar as we add the U.S. shocks directly in the Canadian exogenous processes
that increases the co-movements between the U.S. and Canadian variables.

The variance decompositions of the model at the mode of the estimated posterior distributions
for this specification is given in Table 4. First, the contribution of the U.S. preference shock in
Canadian variables falls compared to the specification when we have only the U.S. preference
shock in the Canadian preference shock. The U.S. government spending shock now explains
10 percentage points more of Canadian output growth, primarily at the expense of the import
markup shock, while the US government spending shock explains about 10% more of imports
growth, mostly at the expense of the risk premium shock.

7.4 Estimation without Yield Curve

We also studied whether removing long-rates from our estimation changes our results. In this
exercise, we remove the 2 year yields in the U.S. and Canada. The variance decomposition
implied by the estimated parameters is shown in Table 5. The variance decomposition is similar
to our baseline model. The main reason for this is that the contribution of the term premia
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Figure 13: Fixed Interest Rate Durations, No Long-Rates in Estimation, Mean Across Draws

shocks to the observables is relatively small. The contribution in our baseline model of these
term premia shocks to long-rates is the residual variation in our main variance decomposition
table (Table 3 in the text) variance decomposition table - for the U.S., for example, 11.8 percent
of the variation of the 2Y yield is explained by these shocks, while the same number for Canada
is 10.7 percent.

The mean estimates of the fixed interest rate durations when we do not use long-rates in
estimation is shown in Figure 13. We estimate similar durations and a similar decomposition to
our baseline results when 2-year yields are not used. However, we do estimate the lower-bound
duration to be slightly higher than the overall duration for Canada for some time periods, in
contrast to our baseline estimates. This suggests the addition of the 2-year yields in estimation
helps in more accurately identifying lower bound durations.

The impulse responses to a conventional US policy shock and the generalized impulse response
to a 2Q US forward guidance shock in our estimation without a yield curve is shown in Figure
14, and is comparable to the impulse responses plotted in Figure 7 of the paper. A comparison
of the two figures shows the spillovers of conventional and forward guidance shocks are very
similar if we remove the 2-year yield from the set of observables in estimation.

8 Lower Bound Value and Expected Durations

We next explore the interaction between the value of the lower bound and the lower bound
duration. To do so, we focus on the US and plot in blue in Figure 15 the impulse response to a
large negative preference shock that causes the lower bound (at a value of .1%) to bind for 4
quarters. For the same shock, we plot in red the impulse response when the value of the lower
bound is instead .5%. When the lower bound is higher, it binds for an additional 3 quarters
(and is reached one quarter earlier), and output would fall by an additional .5% at its trough.

We next ask what calibration of forward guidance policy when the lower bound value is .5%
would generate similar outcomes as the path of the economy under the preference shock and a
lower bound value of .1%. The central bank would need to announce an additional 3 quarter
extension of the lower bound at .5% when it is reached in order to generate a similar profile for
output. This path is plotted in yellow in Figure 15. Thus the durations must be interpreted as
durations at a certain peg. In estimation what this peg is, however, is given by the data.
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Figure 14: IRF of Conventional US Policy Shock and GIRF of 2Q US Forward Guidance
Shock, No Long-Rates in Estimation

Figure 15: US Preference Shock: Different Lower Bounds
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Table 3: Variance Decomposition Due to Shocks, %, With Foreign Preference Shocks in Domestic Preference

Common US Shocks Canadian Shocks

Variable

Shock
Prod. Pref. Policy Gov. Price Wage Pref. Policy Gov. Risk Pr. Price Wage Exports Imports

A. US Variables

Policy Rate 0.0 76.1 10.6 2.5 5.0 5.7 - - - - - - - -
2Y Interest Rate 0.0 77.8 3.6 1.6 4.4 5.1 - - - - - - - -
Output Growth 0.6 53.2 1.1 42.9 1.0 1.2 - - - - - - - -
Consumption Growth 0.2 92.1 1.9 2.1 1.6 2.1 - - - - - - - -
Inflation 1.1 16.8 5.0 0.1 38.1 38.8 - - - - - - - -
Wage Growth 12.8 0.5 0.4 0.0 67.2 19.1 - - - - - - - -

B. Canadian Variables

Policy Rate 0.0 20.3 0.8 0.4 0.3 0.7 0.9 8.0 0.8 41.7 1.4 0.8 8.5 15.5
2Y Interest Rate 0.0 22.2 0.5 0.2 0.3 0.7 0.3 1.5 0.5 39.0 0.6 0.6 7.6 17.4
Output Growth 0.3 10.7 1.0 2.0 0.2 0.2 8.7 10.0 8.0 16.7 13.0 2.2 25.7 1.3
Consumption Growth 0.3 9.7 0.3 0.2 0.3 0.6 33.3 4.4 2.8 37.9 2.8 0.8 6.5 0.2
Inflation 0.2 0.1 0.4 0.0 0.1 0.1 0.0 4.4 0.0 11.7 36.4 8.1 3.6 34.8
Wage Growth 1.7 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.0 4.4 32.2 50.0 5.0 6.3
Imports Growth 0.0 0.7 1.0 0.1 0.1 0.2 2.9 0.3 25.4 30.9 3.5 0.3 11.4 23.4
Exports Growth 0.0 1.5 0.2 1.4 0.2 0.2 0.0 0.7 0.0 9.8 0.4 0.1 65.1 20.4
Nominal Ex Rate, ∆ 0.0 0.2 3.0 0.1 0.3 0.3 0.2 6.0 0.0 38.3 0.7 0.3 20.3 30.3
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Table 4: Variance Decomposition Due to Shocks, %, With Foreign Preference/Gov. Shocks in Domestic Preference/Gov. Shocks

Common US Shocks Canadian Shocks

Variable

Shock
Prod. Pref. Policy Gov. Price Wage Pref. Policy Gov. Risk Pr. Price Wage Exports Imports

A. US Variables

Policy Rate 0.5 47.7 13.7 1.8 4.9 31.4 - - - - - - - -
2Y Interest Rate 0.4 48.0 5.0 0.8 4.4 32.4 - - - - - - - -
Output Growth 5.2 39.4 1.3 48.3 0.7 5.0 - - - - - - - -
Consumption Growth 2.4 82.7 2.8 0.2 1.5 10.4 - - - - - - - -
Inflation 5.5 0.8 4.3 0.1 17.7 71.6 - - - - - - - -
Wage Growth 63.4 0.1 0.3 0.0 32.7 3.5 - - - - - - - -

B. Canadian Variables

Policy Rate 0.2 14.0 0.8 2.9 0.2 0.6 1.2 9.1 0.8 52.7 0.4 2.7 6.5 7.8
2Y Interest Rate 0.2 15.2 0.6 2.0 0.2 0.7 0.5 2.2 0.1 53.2 0.2 2.2 6.0 6.5
Output Growth 1.9 6.6 1.0 10.3 0.1 0.4 8.7 10.3 16.8 17.9 7.7 2.3 15.0 0.9
Consumption Growth 1.5 8.2 0.3 3.6 0.1 0.6 28.8 3.2 0.2 43.2 0.7 0.7 6.2 2.8
Inflation 2.1 1.6 0.2 0.2 0.0 0.1 0.0 3.0 0.0 7.8 36.2 28.4 6.5 13.9
Wage Growth 12.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 3.6 24.0 49.5 3.5 7.2
Imports Growth 0.1 0.7 0.4 13.3 0.0 0.2 2.1 0.1 29.3 20.5 2.4 0.3 6.6 23.9
Exports Growth 0.1 0.8 0.4 1.4 0.2 0.1 0.1 1.4 0.0 20.3 0.2 0.2 64.9 9.9
Nominal Ex Rate, ∆ 0.0 0.3 3.2 0.1 0.3 1.3 0.3 6.0 0.1 44.9 1.5 2.0 27.3 12.7
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Table 5: Variance Decomposition Due to Shocks, %, No Long-Rates in Estimation

Common US Shocks Canadian Shocks

Variable

Shock
Prod. Pref. Policy Gov. Price Wage Pref. Policy Gov. Risk Pr. Price Wage Exports Imports

A. US Variables

Policy Rate 0.1 64.4 12.8 4.7 8.6 9.4 - - - - - - - -
2Y Interest Rate 0.1 74.1 4.1 3.1 8.9 9.8 - - - - - - - -
Output Growth 1.7 38.5 2.0 53.2 2.1 2.6 - - - - - - - -
Consumption Growth 0.9 80.6 4.1 4.5 4.4 5.5 - - - - - - - -
Inflation 2.0 12.7 2.8 0.3 41.8 40.4 - - - - - - - -
Wage Growth 20.8 0.1 0.3 0.0 62.7 16.1 - - - - - - - -

B. Canadian Variables

Policy Rate 0.0 6.0 0.4 0.4 0.4 0.7 2.9 8.0 1.1 58.3 1.4 1.0 9.8 9.7
2Y Interest Rate 0.1 6.8 0.3 0.3 0.4 0.8 2.0 1.9 0.7 64.7 0.6 0.8 9.9 10.7
Output Growth 0.6 2.6 0.6 2.3 0.3 0.2 10.7 6.0 9.5 23.7 13.3 2.4 27.6 0.4
Consumption Growth 0.4 2.7 0.1 0.1 0.1 0.3 54.7 1.4 2.0 30.4 1.3 0.6 3.7 2.1
Inflation 0.5 1.0 0.2 0.0 0.1 0.1 0.0 3.3 0.1 14.1 44.4 11.0 3.8 21.3
Wage Growth 3.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 3.6 30.6 50.0 4.1 8.4
Imports Growth 0.0 0.9 0.3 0.0 0.1 0.1 4.7 0.2 24.5 21.4 4.6 0.4 10.0 32.6
Exports Growth 0.0 2.5 0.1 1.5 0.2 0.1 0.2 0.8 0.0 13.5 0.5 0.1 62.2 18.3
Nominal Ex Rate, ∆ 0.0 0.7 2.3 0.1 0.3 0.3 0.8 5.5 0.1 39.0 0.7 0.3 24.5 25.4
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9 Counterfactual, No US FG and Canadian FG

This section presents a counterfactual where we remove forward guidance in the US but maintain
the fixed interest rates at their posterior draws in Canada. This counterfactual measures the
consequences of removing US forward guidance only, but keeping Canadian forward guidance.
To construct this counterfactual, we set dfg

t = 0 for the US only and keep the expected fixed
interest rate durations in Canada dt at their posterior draws. We plot the change in output
and inflation in Figure 16. As one would expect, the decline in US output in Panel A is the
same as the decline in the counterfactual removing forward guidance in both countries. The
experience of Canada is, however, different. Instead, between 2010 and 2015, output in Canada
is mostly higher when US forward guidance shocks are removed, with output 0.4% higher in
2012Q1. Inflation in Canada is also higher between 2011 and 2016. Over the period that the US
was at the lower bound, 2009Q1 to 2015Q3, Canadian inflation would have been at the mean
almost 0.2% higher on an annualized basis with the credible upper band reaching 4% had the
US not conducted forward guidance but Canada had.
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Figure 16: Counterfactual Paths With Fixed Durations in Canada Only

(a) Output

(b) Inflation

Note: This figure plots the path of output and inflation in the US and Canada in the data (in black), and the 90
percent credible bands of counterfactuals where only forward guidance shocks in the US are removed and the
durations in Canada are at their estimated draws (in blue, with the mean in dashed).
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Model Equations

10 Full Equations: Large Economy

10.1 Normalized Equilibrium Conditions

With the following normalizations: Λ̃∗t = Λ∗tZt, C̃∗t = C∗t /Zt, W̃ ∗
t = W ∗

t /(ZtPt), Ỹ ∗t = Yt/Zt,
G̃∗t = G∗t/Zt, we can write the stationary model as:

Consumption decision:

Λ̃∗t =
eξ

∗
tMt

C̃∗tMt − hC̃∗t−1
− βhEt

eξ
∗
t+1

Mt+1C̃∗t+1 − h∗C̃∗t
(26)

Euler equation:

1 = βR∗tEt

{
Λ̃∗t+1

Mt+1Λ̃∗tΠ
∗
t+1

}
(27)

H∗w1,t:

H∗w1,t = νN∗1+ϕt + βθ∗wEt
(

Ωw∗
t,t+1

Πw∗
t+1

)−ε∗w(1+ϕ)
H∗w1,t+1 (28)

H∗w1,t:

H̃∗w2,t = Λ̃∗t W̃
∗
t N

∗
t + βθ∗wEt

(
Ωw∗
t,t+1

Πw∗
t+1

)1−ε∗w
H̃∗w2,t+1 (29)

Ωw∗
t,t+1:

Ωw∗
t,t+1 = (Π̄∗M)1−χ

∗
w(Πw∗

t )χ
∗
w (30)

Wage index:

1 = (1− θ∗w)

(
ε∗w

(1 + ιw)(ε∗w − 1)

H∗w1,t
H∗w2,t

) 1−ε∗w
1+ε∗wϕ

+ θ∗w

(
(Πw∗

t−1)
χ∗
w(Π̄∗M)1−χ

∗
w

Πw∗
t

)1−ε∗w
(31)

Wage inflation:

Πw∗
t =

W̃ ∗
t

W̃ ∗
t−1

Π∗tMt (32)

Aggregate production function:
Ỹ ∗t = A∗tN

∗
t (33)

Market clearing:
Ỹ ∗t = C̃∗t + G̃∗t (34)

Hp1,t:

H∗p1,t = Λ̃tMC∗t Ỹ
∗
t + βθ∗pEt

(
Ω∗t,t+1

Π∗t+1

)−ε∗p
H∗p1,t+1 (35)

Hp2,t:

H∗p2,t = Λ̃∗t Ỹ
∗
t + βθ∗pEt

(
Ω∗t,t+1

Π∗t+1

)1−ε∗p
H∗p2,t+1 (36)
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Price index:

1 = (1− θ∗p)
(

ε∗p
(1 + ι∗p)(ε

∗
p − 1)

H∗p1,t
H∗p2,t

)1−ε∗p
+ θ∗p

(
(Π̄∗)1−χ

∗
p(Π∗t−1)

χ∗
p

Π∗t

)1−ε∗p
(37)

Marginal costs:

MC∗t =
W̃ ∗
t

A∗t
(38)

Monetary policy rule:

R∗t
R̄∗

=

[
R∗t−1
R̄∗

]ρ∗R ( Π∗t
Π̄t
∗

)φ∗π ( Ỹ ∗t
Ỹ ∗t−1

)φ∗g (
Ỹ ∗t

)φ∗y1−ρ∗R

eε
∗
R,t (39)

10.2 Steady State

Consumption decision:

Λ̄∗ =
M− βh∗

C̄∗(M− h∗)
(40)

Discounted Euler equation:

R̄∗ =
MΠ̄∗

β
(41)

H∗w1:

H̄∗w1 =
νN̄∗1+ϕ

1− βθ∗w
(42)

H∗w2:

H̄∗w2 =
Λ̄∗W̄ ∗N̄∗

1− βθ∗w
(43)

Ωw∗:
Ω̄w∗ = Π̄∗M (44)

Wage index:
H̄∗w1 = H̄∗w2 (45)

Wage inflation:
Π̄w∗ = Π̄∗M (46)

Production function:
Ȳ ∗ = N̄∗ (47)

Marginal costs:
M̄C

∗
= W̄ ∗ (48)

H∗p1:

H̄∗p1 =
Λ̄M̄CȲ

1− βθ∗p
(49)

34



H∗p2:

H̄∗p2 =
Λ̄∗Ȳ ∗

1− βθ∗t
(50)

Price index:
H̄∗p1 = H̄∗p2 (51)

Market clearing:
Ȳ ∗ = C̄∗ + Ḡ∗ (52)

Monetary policy rule:
Π̄∗ = Π̄∗ (53)

Discounted Euler equation

1 = βR∗tEt

{
(Λ̃∗t+1)

κ

Mt+1Λ̃∗tΠ
∗
t+1

}
(54)

10.3 Log-linearized Equilibrium Conditions

Consumption decision:

(M2 + βh∗2)c∗t =βh∗MEt{c∗t+1}+ h∗Mc∗t−1 − (M− βh∗)(M− h∗)λ∗t
− h∗M(µt − βEt{µt+1}) +M((M− h∗)ξ∗t − βh∗Et{ξ∗t+1}) (55)

Discounted Euler equation:

λ∗t = κλ∗t+1 − Et{µt+1}+ (r∗t − Et{π∗t+1}) (56)

Hw∗
w1,t:

h∗w1,t = (1− βθ∗w)(1 + ϕ)n∗t + βθ∗w
[
h∗w1,t+1 + (1 + ϕ)ε∗w(πw∗t+1 − χ∗wπw∗t )

]
(57)

H∗w2,t:

h∗w2,t = (1− βθ∗w)(λ∗t + w∗t + n∗t ) + βθ∗w
[
h∗w2,t+1 + (ε∗w − 1)(πw∗t+1 − χ∗wπw∗t )

]
(58)

Wage index:

πw∗t =
1− θ∗w
θ∗w

1

1 + ε∗wϕ
(h∗w1,t − h∗w2,t + ξ∗w,t) + χ∗wπ

w∗
t−1 (59)

Wage inflation:
πw∗t = w∗t − w∗t−1 + π∗t + µt (60)

Aggregate production function:
y∗t = a∗t + n∗t (61)

Marginal costs:
mc∗t = w∗t − a∗t (62)

H∗p1,t:
h∗p1,t = (1− βθ∗p)(λ∗t +mc∗t + y∗t ) + βθ∗t (h

∗
p1,t+1 + ε∗p(π

∗
t+1 − χ∗pπ∗t )) (63)
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H∗p2,t:
h∗p2,t = (1− βθ∗p)(λ∗t + y∗t ) + βθ∗t (h

∗
p2,t+1 + (ε∗p − 1)(π∗t+1 − χ∗pπ∗t )) (64)

Price index:
π∗t =

1− θ∗p
θ∗p

(h∗p1,t − h∗p2,t + ξ∗p,t) + χ∗pπ
∗
t−1 (65)

Market clearing
Ȳ y∗t = C̄c∗t + Ḡg∗t (66)

Monetary policy rule:

r∗t = ρ∗Rr
∗
t−1 + (1− ρ∗R(φ∗ππ

∗
t + φ∗g(y

∗
t − y∗t−1) + φ∗yy

∗
t ) + ε∗R,t (67)

This is a system of 13 equations in 13 unknowns r∗t , y∗t , π∗t , πw∗t , λ∗t , n∗t , c∗t , mc∗t , h∗p1,t, h∗p2,t,
h∗w1,t, h∗w2,t, wt plus shocks.

11 Full Equations: Small Economy

11.1 Normalized Equilibrium Conditions

With the following normalizations, we can express the system of equations in terms of stationary
variables: Λ̃t = ΛtZt, C̃t = Ct/Zt, C̃H,t = CH,t/Zt, ∆St = St/St−1, X̃t = YX,t/Zt, ỸF,t = YF,t/Zt,
W̃t = Wt/(PtZt), B̃F,t+1 = StBF,t+1/(PtZt)

The stationary equations are:
Consumption decision:

Λ̃t =
eξtMt

C̃tMt − hC̃t−1
− βhEt

{
eξt+1

Mt+1C̃t+1 − hC̃t

}
(68)

Euler equation:

1 = βRtEt

{
Λ̃t+1

Mt+1Λ̃tΠt+1

}
(69)

UIP:
Rt = RF,tEt {∆St+1} (70)

Real exchange rate:

Qt =
Qt−1∆StΠ

∗
t

Πt

(71)

Interest rate on foreign borrowing:

RF,t = R∗t (B̃F,t+1/Ỹt)− bF )−ψHeψt (72)

Demand for imports:
ỸF,t = α (ΓF,t)

−τ C̃t (73)

Demand for home-produced goods:

C̃H,t = (1− α) (ΓH,t)
−τ C̃t (74)
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Consumer price index:

Πt =
[
α (ΠF,tΓF,t−1)

1−τ + (1− α) (ΠH,tΓH,t−1)
1−τ] 1

1−τ (75)

HX1,t:

HX1,t = Λ̃tΓH,tX̃t + βθXEt

{(
(Π∗X,t)

χX (Π̄∗)1−χX

Π∗X,t+1

)−εX
HX1,t+1

}
(76)

HX2,t:

HX2,t = Λ̃tΓX,tX̃t + βθXEt


(

(Π∗X,t)
χX (Π̄∗)1−χX

Π∗X,t+1

)1−εX

HX2,t+1

 (77)

Exports inflation:

1 = θX

(
(Π∗X,t−1)

χX (Π̄∗)1−χX

Π∗X,t

)1−εX

+ (1− θX)

(
εX

(1 + τX)(εX − 1)

HX1,t

HX2,t

)1−εX
(78)

Exports demand:

X̃t = α

(
ΓX,t
Qt

)−τ
Y ∗t (79)

HF1,t:

HF1,t = QtΛ̃tỸF,t + βθp,FEt

{(
ΠχF
F,t(Π̄)1−χF

ΠF,t+1

)−εF
HF1,t+1

}
(80)

HF2,t:

HF2,t = Λ̃tΓF,tỸF,t + βθp,FEt


(

ΠχF
F,t(Π̄)1−χF

ΠF,t+1

)1−εF

HF2,t+1

 (81)

Imports inflation:

1 = θp,F

(
ΠχF
F,t−1(Π̄)1−χF

ΠF,t

)1−εF

+ (1− θp,F )

(
εF

(1 + τF )(εF − 1)

HF1,t

HF2,t

)1−εF
(82)

Production of domestically-produced goods:

Ỹt = AtNt (83)

Marginal costs:

MCt =
W̃t

ΓH,tAt
(84)

Hp1,t:

Hp1,t = Λ̃tMCtΓH,tỸt + βθpEt

{(
(ΠH,t)

χp(Π̄)1−χp

ΠH,t+1

)−εp
Hp1,t+1

}
(85)
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Hp2,t:

Hp2,t = Λ̃tΓH,tỸt + βθpEt

{(
(ΠH,t)

χp(Π̄)1−χp

ΠH,t+1

)1−εp

Hp2,t+1

}
(86)

Domestic price inflation:

1 = (1− θp)
(

εp
(1 + τp)(εp − 1)

Hp1,t

Hp2,t

)1−εp
+ θp

(
Π̄1−χp(ΠH,t−1)

χp

ΠH,t

)1−εp

(87)

Hw1,t:

Hw1,t = νN1+ϕ
t + βθwEt

{(
Ωw
t,t+s

Πw
t+1

)−εw(1+ϕ)
Hw1,t+1

}
(88)

Hw2,t:

Hw2,t = Λ̃tW̃tNt + βθwEt

{(
Ωw
t,t+1

Πw
t+1

)1−εw
Hw1,t+1

}
(89)

Wage index:

1 = (1− θw)

(
εw

(1 + τw)(εw − 1)

Hw1,t

Hw2,t

) 1−εw
1+εwϕ

+ θw

(
(Πw

t−1)
χw(Π̄M)1−χw

Πw
t

)1−εw

(90)

Wage inflation

Πw
t =

W̃t

W̃t−1
ΠtMt (91)

Domestic market clearing:
Ỹt = C̃H,t + X̃t (92)

Financial market clearing:

B̃F,t+1

RF,t

=
∆StB̃F,t

MtΠt

+ ΓX,tXt −QtYF,t (93)

Monetary policy:

Rt

R̄
=

[
Rt−1

R̄

]ρR (Πt

Π̄t

)φπ ( Ỹt

Ỹt−1

)φg
1−ρR

eεR,t (94)

Relative prices:

ΓX,t =ΓX,t−1
∆StΠX,t

Πt

(95)

ΓF,t =ΓF,t−1
ΠF,t

Πt

(96)

ΓH,t =ΓH,t−1
ΠH,t

Πt

(97)

This is a system of 30 equations in 30 unknowns, Λ̃t, C̃t, C̃H,t, Rt, RF,t, Πt, ∆St, Qt, ΠF,t,
ΠH,t, ΠX,t, ΠW,t, HX1,t, HX2,t, HF1,t, HF2,t, Hp1,t, Hp2,t, Hw1,t, Hw2,t, ΓF,t, ΓH,t, ΓX,t, Xt, ỸF,t,
MCt, Ỹt, Nt, W̃t, B̃F,t+1, plus shocks and foreign variables.
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11.2 Steady State

The steady state relationships are:
Consumption decision:

Λ̄C̄ =
M− βh
M− h

(98)

Euler equation:

R̄ =
MΠ̄

β
(99)

UIP:
R̄ = R̄F ∆̄S (100)

Real exchange rate:

∆̄S =
Π̄

Π̄∗
(101)

Interest rate on foreign borrowing:
B̄F

Ȳ
= bF (102)

Imports demand:
ȲF = α(Γ̄F )−τ C̄ (103)

Demand for home-produced goods:

C̄H = (1− α)(Γ̄H)−τ C̄ (104)

Consumer price index:
Γ̄F = Γ̄H (105)

HX1:
H̄X1 = (1− βθX)Λ̄Γ̄HX̄ (106)

HX2:
H̄X2 = (1− βθX)Λ̄Γ̄XX̄ (107)

Exports inflation:
H̄X1 = H̄X2 (108)

Exports demand:

X̄ = α

(
Γ̄X
Q̄

)−τ
Ȳ ∗ (109)

HF1:
H̄F1 = (1− θF )Q̄Λ̄ȲF (110)

HF2:
H̄F2 = (1− θF )Λ̄Γ̄F ȲF (111)

Imports inflation:
H̄F1 = H̄F2 (112)
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Production of domestically produced goods:

Ȳ = N̄ (113)

Marginal costs

M̄C =
W̄

Γ̄H
(114)

Hp1:
H̄p1 = (1− βθp)Λ̄M̄CΓ̄H Ȳ (115)

Hp2:
H̄p2 = (1− βθp)Λ̄Γ̄H Ȳ (116)

Domestic price inflation:
H̄p1 = H̄p2 (117)

Hw1:
H̄w1 = (1− βθw)νN̄1+ϕ (118)

Hw2:
H̄w2 = (1− βθw)Λ̄W̄ N̄ (119)

Wage index:
H̄w1 = H̄w2 (120)

Wage inflation:
Π̄w = Π̄M (121)

Domestic goods market clearing:

Ȳ = C̄H + W̄ (122)

Financial market clearing:
Γ̄xX̄ = Q̄ȲF (123)

Monetary policy:
Π̄ = Π̄ (124)

Relative prices exports:

Π̄W =
Π̄

∆̄S
(125)

Relative price imports:
Π̄F = Π̄ (126)

Relative price home goods:
Π̄H = Π̄ (127)
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11.3 Log-linearized Equilibrium Conditions

Consumption decision:

(M2 + βh2)ct =βhMEt{ct+1}+ hMct−1 − (M− βh)(M− h)λt

− hM(µt − βEt{µt+1}) +M((M− h)ξt − βhEt{ξt+1}) (128)

Discounted Euler equation:

λt = κEt {λt+1}+ (rt − Et {πt+1 + µt+1}) (129)

UIP:
rt = rF,t + Et {∆st+1} (130)

Real exchange rate:
qt = qt−1 + ∆st + π∗t − πt (131)

Interest rate on foreign borrowing:

rF,t = r∗t − ψH b̂F,t+1 + ψt (132)

Imports demand
yF,t = ct − τγF,t (133)

Demand for home-produced goods:

cH,t = ct − τγH,t (134)

Consumer price index:

πt = α(πF,t + γF,t−1) + (1− α)(πH,t + γH,t−1) (135)

HX1,t:

hX1,t = (1− βθx)(λt + γH,t + xt) + βθXEt {(hX1,t+1 + εX(πX,t+1 + χXπX,t))} (136)

HX2,t:

hX2,t = (1− βθx)(λt + γX,t + xt) + βθXEt {(hX2,t+1 + (εX − 1)(πX,t+1 + χXπX,t))} (137)

Exports inflation:

πX,t =
1− θX
θX

(hx1,t − hx2,t + ξX,t) + χXπX,t−1 (138)

Exports demand:
xt = y∗t − τ(γX,t − qt) (139)

HF1,t:

hF1,t = (1− βθF )(qt + λt + yF,t) + βθFEt {(hF1,t+1 + εF (πF,t+1 − χFπF,t))} (140)
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HF2,t:

hF2,t = (1− βθF )(γF,t + λt + yF,t) + βθFEt {(hF2,t+1 + (εF − 1)(πF,t+1 − χFπF,t))} (141)

Imports inflation:

πF,t =
1− θF
θF

(hF1,t − hF2,t + ξF,t) + χFπF,t−1 (142)

Production of domestic goods:
yt = at + nt (143)

Marginal costs:
mct = wt − γH,t − at (144)

Hp1,t:

hp1,t = (1− βθp)(λt +mct + γH,t + yt) + βθEt {(hp1,t+1 + εp(πH,t+1 − χpπH,t))} (145)

Hp2,t:

hp2,t = (1− βθp)(λt + γH,t + yt) + βθEt {(hp2,t+1 + (εp − 1)(πH,t+1 − χpπH,t))} (146)

Domestic inflation:

πH,t =
1− θp
θp

(hp1,t − hp2,t + ξH,t) + χpπH,t−1 (147)

Hw1,t:

hw1,t = (1− βθw)(1 + ϕ)nt + βθwEt
{

(hw1,t+1 + εw(1 + ϕ)(πwt+1 − χwπw,t))
}

(148)

Hw2,t:

hw2,t = (1− βθw)(λt + wt + nt) + βθwEt
{

(hw2,t+1 + (εw − 1)(πwt+1 − χwπw,t))
}

(149)

Wage index:

πwt =
1− θw

θw(1 + εwϕ)
(hw1,t − hw2,t + ξw,t) + χwπ

2
t−1 (150)

Wage inflation:
πwt = wt − wt−1 + πt + µt (151)

Domestic market clearing:

yt =
CH
Y
cH,t +

X

Y
xt (152)

Financial market clearing:

b̂F,t+1 = b̂F,t + γX,t + xt − qt − yF,t (153)

Monetary policy:
rt = ρRrt−1 + (1− ρR)(φππt + φyyt) + εR,t (154)

Relative prices:

γX,t = γX,t−1 + ∆st + πX,t − πt (155)
γF,t = γF,t−1 + πF,t − πt (156)
γH,t = γH,t−1 + πH,t − πt (157)
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