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Abstract

This online appendix provides supplemental material for the paper, “Efficient estima-
tion of factor models with time and cross-sectional dependence.” This material contains
the derivation of the GLS estimator as well as proofs of the main results and their auxiliary
lemmas.



A Derivation of GLS Estimators

Using Assumption A, we have

(F̂ , Λ̂) = argmin
F,Λ

vec
(
X − FΛ′

)′
Ω−1 vec

(
X − FΛ′

)
(12)

= argmin
F,Λ

tr
{

Θ−1(X − FΛ′)′Φ−1(X − FΛ′)
}

(13)

The standard theory of multivariate GLS regression yields a preliminary CMLE of Λ′ as a

function of F given by Λ̂′(F ) = (F ′Φ−1F )−1F ′Φ−1X. Hence,

F̂ = argmin
F

tr
{

Θ−1
[
X − F Λ̂′(F )

]′
Φ−1

[
X − F Λ̂′(F )

]}
(14)

= argmin
F

tr
{

Θ−1X ′
[
Φ−1 − Φ−1F (F ′Φ−1F )−1F ′Φ−1

]
X
}

(15)

= argmax
F

tr
{

Θ−1X ′Φ−1F (F ′Φ−1F )−1F ′Φ−1X
}

(16)

Normalizing F̂ ′Φ−1F̂ /T = Ir, results in F̂ = argmax
F

tr
{
G′ 1T Φ−1/2XΘ−1X ′Φ−1/2 ′G

}
, where

G = Φ−1/2F . Therefore under factor stationarity, F̂ = Φ1/2Ĝ with Ĝ being
√
T times the

matrix consisting of the eigenvectors corresponding to the r largest eigenvalues of the matrix

Φ−1/2XΘ−1X ′Φ−1/2 ′ and Λ̂ = 1
TX

′Φ−1F̂ . The non-stationarity case is analogue.

Note that in the more general case, when the (N ,T ) separability assumption is dropped,

the first order conditions of equation (4) state

Λ′⊗Ω−1vec(X − FΛ′) = 0

F ′⊗Ω−1vec(X − FΛ′) = 0 ,

where F⊗ = IN ⊗ F and Λ⊗ = Λ⊗ IT . Thus, the GLS estimates can be obtained iteratively

vec
(
F̂ (n+1)

)
=
[
Λ̂
′(n)
⊗ Ω−1Λ̂

(n)
⊗

]−1
Λ̂
′(n)
⊗ Ω−1vec (X)

vec
(
Λ̂′(n+1)

)
=
[
F̂
′(n)
⊗ Ω−1F̂

(n)
⊗

]−1
F̂
′(n)
⊗ Ω−1vec (X) ,
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where F̂
(n)
⊗ = IN ⊗ F̂ (n) and Λ̂

(n)
⊗ = Λ̂(n) ⊗ IT may be initialized using the PC estimates.

B Proofs of Main Results

B.1 Proof of Theorem 1 and Corollary 1

As defined in Section 4.1, WNT is a r×r diagonal matrix consisting of the r largest eigenvalues

of the matrix 1
NT Φ−1/2XΘ−1X ′Φ−1/2 ′ in descending order20. By the definitions of eigenvalues

and eigenvectors: ĜWNT = 1
NT Φ−1/2XΘ−1X ′Φ−1/2 ′Ĝ. Using F̂ = Φ1/2Ĝ, it follows that

F̂ =
1

NT
XΘ−1X ′Φ−1F̂W−1

NT . (17)

Post-multiplying both sides by J−1 and substitutingXΘ−1X ′ = eΘ−1e′+eΘ−1ΛF ′+FΛ′Θ−1e′+

FΛ′Θ−1ΛF ′, we obtain

F̂ J−1 − F =
1

NT

(
eΘ−1e′ + eΘ−1ΛF ′ + FΛ′Θ−1e′

)
Φ−1F̂W−1

NTJ
−1 (18)

using the definition of J and rearranging. In vector notation, this becomes

J ′−1f̂t − ft

=
(
WNTJ

′)−1
(

1

NT
F̂ ′Φ−1eΘ−1et︸ ︷︷ ︸

=atNT

+
1

NT
F̂ ′Φ−1FΛ′Θ−1et︸ ︷︷ ︸

=btNT

+
1

NT
F̂ ′Φ−1eΘ−1Λft︸ ︷︷ ︸

=ctNT

)
, (19)

where atNT = Op(δ
−2
NT ), btNT = Op(N

−1/2) and ctNT = Op(N
−1/2δ−1

NT ) with δNT = min{
√
N,
√
T}.

These can be proven in the same way as for Lemma A.2 of Bai (2003) once we use ε =

Φ−1/2eΘ−1/2 ′, G = Φ−1/2F and Γ = Θ−1/2Λ in Bai’s proof instead of e, Λ0 and F 0, re-

spectively. Details are not worth reporting here. Since WNTJ
′ = Op(1) by Lemma 1, as

√
N/T → 0, we have

√
N
(
J ′−1f̂t − ft

)
=
(
WNTJ

′)−1√
NbtNT + op(1). Substituting the

20 As for positive definite matrices A and B, the eigenvalues of AB and A1/2BA1/2 ′ are the same
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definition of J , it follows that

√
N
(
J ′−1f̂t − ft

)
=

(
ΛΘ−1Λ

N

)−1
Λ′Θ−1et√

N
+ op(1)

d→ N
(

0,Σ−1
Λ∗ Ξt Σ−1

Λ∗

)
(20)

by Assumptions D and E. Since Λ̂ = X ′Φ−1F̂ /T , F = F − F̂ J−1 + F̂ J−1 and F̂ ′Φ−1F̂ /T = Ir

Λ̂J ′ − Λ =

(
1

T
e′Φ−1FJ +

1

T
Λ(F − F̂ J−1)′Φ−1F̂ +

1

T
e′Φ−1(F̂ − FJ)

)
J ′ (21)

follows, which becomes in vector notation

Jλ̂i − λi =
1

T
JJ ′F ′Φ−1ei +

1

T
JF̂ ′Φ−1(F − F̂ J−1)λi +

1

T
J(F̂ − FJ)′Φ−1ei . (22)

The second term is Op(δ
−2
NT ) by Lemma 1 (ii), Lemma 2 (ii) and Assumption D; the third

term is Op(δ
−2
NT ) by Lemma 1 (ii) and Lemma 2 (iii). Thus, if

√
T/N → 0,

√
T
(
Jλ̂i − λi

)
= JJ ′

F ′Φ−1ei√
T

+ op(1)
d→N

(
0,Σ−1

F∗ΨiΣ
−1
F∗

)
(23)

by Assumption E and Lemma 3 completing Theorem 1. Consider ĉi,t− ci,t = f̂ ′tJ
−1Jλ̂i− f ′tλi

next. Adding and subtracting f ′tJλ̂i + f̂ ′tJ
−1λi + f ′tλi, one obtains

ĉi,t − ci,t =
(
J ′−1f̂t − ft

)′
λi + f ′t

(
Jλ̂i − λi

)
+
(
J ′−1f̂ − ft

)′(
Jλ̂i − λi

)
(24)

after rearranging terms. The last term is Op(δ
−2
NT ) by equations (20) and (23). Then, we have

δNT
(
ĉi,t − ci,t

)
=
δNT√
N

√
N
(
J ′−1f̂t − ft

)′
λi +

δNT√
T

√
T
(
Jλ̂i − λi

)′
ft + op(1) . (25)

√
N
(
J ′−1f̂t−ft

)
and
√
T
(
Jλ̂i−λi

)
are asymptotically independent since the former is the sum

of cross-section random variables and the latter is the sum of a given time series. Corollary 1

follows from Theorem 1 and the almost sure representation argument of Bai (2003; p. 167).
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B.2 Proof of Theorem 2

Let ŴNT be a r × r diagonal matrix consisting of the r largest eigenvalues of the matrix

1
NT Φ−1XΘ−1X ′ in descending order and define Ĵ = 1

NT Λ′Θ̂−1ΛF ′Φ̂−1F̂ Ŵ−1
NT . Similar to the

proof of Theorem 1, we may write

Ĵ ′−1f̂ f
t − ft

=
(
ŴNT Ĵ

′
)−1

(
1

NT
F̂ ′f Φ̂

−1eΘ̂−1et︸ ︷︷ ︸
=âtNT

+
1

NT
F̂ ′f Φ̂

−1FΛ′Θ̂−1et︸ ︷︷ ︸
=b̂tNT

+
1

NT
F̂ ′f Φ̂

−1eΘ̂−1Λft︸ ︷︷ ︸
=ĉtNT

)
. (26)

Lemma 4 implies that ŴNT Ĵ
′ −WNTJ

′ p→ 0. Moreover, Lemma 5 shows that
√
NâtNT and

√
NĉtNT have the same probabilistic order of magnitude as

√
NatNT and

√
NctNT respectively

and that
√
NbtNT and

√
Nb̂tNT have the same limiting distributions. With regard to Theorem

1, it follows that
√
N
(
Ĵ ′−1f̂ f

t − ft
) d→ N(0,Σ−1

Λ∗ Ξt Σ−1
Λ∗). Moreover, we have

Ĵ λ̂f
i − λi =

1

T
ĴĴ ′F ′Φ−1ei +

1

T
ĴĴ ′F ′

(
Φ̂−1 − Φ−1

)
ei

+
1

T
ĴF̂ ′f Φ̂

−1(F − F̂f Ĵ
−1)λi +

1

T
Ĵ(F̂f − F Ĵ)′Φ̂−1ei ,

(27)

where the last two terms can be shown to be Op(δ
−2
NT ) analogue to Theorem 1. By Lemma 3

and 4, we have Ĵ Ĵ ′
p→ Σ−1

F∗. Further, as Φ̂−1−Φ−1 = Φ̂−1(Φ− Φ̂)Φ−1 we have
∣∣∣∣T−1F ′(Φ̂−1−

Φ−1)ei
∣∣∣∣
F ≤

∣∣∣∣Φ̂−1
∣∣∣∣
S
∣∣∣∣Φ − Φ̂

∣∣∣∣
S
∣∣∣∣T−1F ′Φ−1ei

∣∣∣∣
F = Op(1)op(1)Op(T

−1/2) by Assumption E

and G. Together, it follows that the second term is op(T
−1/2). Thus, if

√
T/N → 0,

√
T
(
Ĵ λ̂f

i − λi
)

= Ĵ Ĵ ′
F ′Φ−1ei√

T
+ op(1)

d→N
(

0,Σ−1
F∗ΨiΣ

−1
F∗

)
(28)

by Assumption E and Ĵ Ĵ ′
p→ Σ−1

F∗. Consider ĉf
i,t − ci,t. Analog to equation (24), we have

ĉf
i,t − ci,t =

(
Ĵ ′−1f̂ f

t − ft
)′
λi + f ′t

(
Ĵ λ̂f

i − λi
)

+Op(δ
−2
NT ) . (29)
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As δNT /
√
N and δNT /

√
T are bounded sequences and ft and λi are Op(1), it follows that

δNT
(
ĉf
i,t − ci,t

)
=
δNT√
N

√
N
(
Ĵ ′−1f̂ f

t − ft
)′
λi +

δNT√
T

√
T
(
Ĵ λ̂f

i − λi
)′
ft + op(1)

=
δNT√
N

√
N
(
J ′−1f̂t − ft

)′
λi +

δNT√
T

√
T
(
Jλ̂i − λi

)′
ft + op(1) .

(30)

since
(
Ĵ ′−1f̂ f

t − ft
)

=
√
N
(
J ′−1f̂t − ft

)
+ op(1) and

√
T
(
Ĵ λ̂f

i − λi
)

=
√
T
(
Jλ̂i − λi

)
+ op(1).

The proof is completed with regard to equation (25) and Corollary 1.

B.3 Proof of Theorem 3

As defined in Section 4.1,WNT is a r×r diagonal matrix consisting of the r largest eigenvalues

of the matrix 1
NT 2 Φ−1/2XΘ−1X ′Φ−1/2 ′ in descending order. By the definitions of eigenvalues

and eigenvectors: ĜWNT = 1
NT 2 Φ−1/2XΘ−1X ′Φ−1/2 ′Ĝ. Using F̂ = Φ1/2Ĝ, it follows that

F̂ =
1

NT 2
XΘ−1X ′Φ−1F̂W−1

NT . (31)

Post-multiplying both sides by J−1 and substitutingXΘ−1X ′ = eΘ−1e′+eΘ−1ΛF ′+FΛ′Θ−1e′+

FΛ′Θ−1ΛF ′, we obtain

F̂ J−1 − F =
1

NT 2

(
eΘ−1e′ + eΘ−1ΛF ′ + FΛ′Θ−1e′

)
Φ−1F̂W−1

NTJ
−1 (32)

using the definition of J and rearranging. In vector notation, this becomes

J ′−1f̂t − ft

=
(
WNTJ ′

)−1
(

1

NT 2
F̂ ′Φ−1eΘ−1et︸ ︷︷ ︸

=At
NT

+
1

NT 2
F̂ ′Φ−1FΛ′Θ−1et︸ ︷︷ ︸

=Bt
NT

+
1

NT 2
F̂ ′Φ−1eΘ−1Λft︸ ︷︷ ︸

=Ct
NT

)
, (33)

where AtNT = Op(T
−3/2)+Op(N

−1/2T−1/2), Bt
NT = Op(N

−1/2) and CtNT = Op(N
−1/2T−1/2).

These can be proven in the same way as for Lemma B.2 of Bai (2004) once we use ε =

Φ−1/2eΘ−1/2 ′, G = Φ−1/2F and Γ = Θ−1/2Λ in Bai’s proof instead of e, Λ0 and F 0, respec-

tively. Details are not worth reporting here. Since WNT = Op(1) and J = Op(1) by Lemma

5



1’, as N/T 3 → 0, we have
√
N
(
J ′−1f̂t− ft

)
=
(
WNTJ ′

)−1√
NBt

NT + op(1). Substituting the

definition of J , we have

√
N
(
J ′−1f̂t − ft

)
=

(
ΛΘ−1Λ

N

)−1 Λ′Θ−1et√
N

+ op(1)
d→ N

(
0,Σ−1

Λ∗ Ξt Σ−1
Λ∗

)
. (34)

by Assumptions D’ and E’. Since Λ̂ = X ′Φ−1F̂ /T 2, F = F−F̂J −1+F̂J −1 and F̂ ′Φ−1F̂ /T 2 =

Ir, it follows that

Λ̂J ′ − Λ =

(
1

T 2
e′Φ−1FJ +

1

T 2
Λ(F − F̂J −1)′Φ−1F̂ +

1

T 2
e′Φ−1(F̂ − FJ )

)
J ′ (35)

and in vector notation

J λ̂i − λi =
1

T 2
JJ ′F ′Φ−1ei +

1

T 2
J F̂ ′Φ−1(F − F̂J −1)λi +

1

T 2
J (F̂ − FJ )′Φ−1ei . (36)

The second term is Op(κ
−2
NT ) by Lemma 1’ (ii), Lemma 2’ (ii) and Assumption D’; the third

term is Op(κ
−2
NT ) by Lemma 1’ (ii) and Lemma 2’ (iii). Thus,

T
(
Jλ̂i − λi

)
= JJ ′

F ′Φ−1ei
T

+ op(1)
d→
(∫

BuB
′
u

)−1 ∫
BudB

(i)
e (37)

by Assumption E’ and Lemma 3’.

B.4 Proof of Theorem 4

Let ŴNT be a r × r diagonal matrix consisting of the r largest eigenvalues of the matrix

1
NT 2 Φ−1XΘ−1X ′ in descending order and define Ĵ = 1

NT 2 Λ′Θ̂−1ΛF ′Φ̂−1F̂Ŵ−1
NT . Similar to

the proof of Theorem 3, we may write

Ĵ ′−1f̂ f
t − ft

=
(
ŴNT Ĵ ′

)−1
(

1

NT 2
F̂ ′f Φ̂

−1eΘ̂−1et︸ ︷︷ ︸
=Ât

NT

+
1

NT 2
F̂ ′f Φ̂

−1FΛ′Θ̂−1et︸ ︷︷ ︸
=B̂t

NT

+
1

NT 2
F̂ ′f Φ̂

−1eΘ̂−1Λft︸ ︷︷ ︸
=Ĉt

NT

)
. (38)
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Lemma 4’ implies that
(
ŴNT Ĵ ′

)−1
−
(
WNTJ ′

)−1 p→ 0. Moreover, Lemma 5’ shows that
√
NÂtNT and

√
NĈtNT have the same probabilistic order of magnitude as

√
NAtNT and

√
NCtNT respectively and that

√
NBt

NT and
√
NB̂t

NT have the same limiting distributions.

With regard to Theorem 3, it follows that
√
N
(
Ĵ ′−1f̂ f

t − ft
)

d→ N
(

0,Σ−1
Λ∗ Ξt Σ−1

Λ∗

)
. More-

over, we have

Ĵ λ̂f
i − λi =

1

T 2
Ĵ Ĵ ′F ′Φ−1ei +

1

T 2
Ĵ Ĵ ′F ′

(
Φ̂−1 − Φ−1

)
ei

+
1

T 2
Ĵ F̂ ′f Φ̂−1(F − F̂f Ĵ −1)λi +

1

T 2
Ĵ (F̂f − F Ĵ )′Φ̂−1ei ,

(39)

where the last two terms can be shown to be Op(κ
−2
NT ) with κNT = min{

√
N,T} analogue to

Theorem 4.

By Lemma 3’ and 4’, we have Ĵ Ĵ ′ d→
(∫
BuB

′
u

)−1
. Together with

∣∣∣∣T−2F ′(Φ̂−1 −

Φ−1)ei
∣∣∣∣
F ≤

∣∣∣∣Φ̂−1
∣∣∣∣
S
∣∣∣∣Φ − Φ̂

∣∣∣∣
S
∣∣∣∣T−2F ′Φ−1ei

∣∣∣∣
F = Op(1)op(1)Op(T

−1) by Assumption E’

and G shows that the second term is op(T
−1). Hence,

T
(
Ĵ λ̂f

i − λi
)

= Ĵ Ĵ ′F
′Φ−1ei
T

+ op(1)
d→
(∫

BuB
′
u

)−1 ∫
BudB

(i)
e (40)

by Assumption E’ and Ĵ Ĵ ′
d→
( ∫

BuB
′
u

)−1
.

B.5 Asymptotic Efficiency

Subsequently, we follow Breitung and Tenhofen (2011) closely. Theorem 1 of Bai (2003) states

√
N(H ′−1f̃t − ft) =

(
Λ′Λ

N

)−1 Λ′et√
N

+ op(1)
d→ N(0, Vf̃t) , (41)

where Vf̃t = plim
N,T→∞

φt,tN
(
Λ′Λ

)−1(
Λ′Θ−1Λ

)(
Λ′Λ

)−1
and the matrix H is defined in Bai (2003).

V ar
(
H ′−1f̃t − ft

)
=V ar

(
J ′−1f̂t − ft

)
+ Cov

(
J ′−1f̂t − ft, H ′−1f̃t − J ′−1f̂t

)
+ Cov

(
H ′−1f̃t − J ′−1f̂t, J

′−1f̂t − ft
)

+ V ar
(
H ′−1f̃t − J ′−1f̂t

)
.

(42)
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such that Vf̃t − Vf̂t is positive semidefinite if N Cov
(
J ′−1f̂t − ft, H ′−1f̃t − J ′−1f̂t

)
→ 0 or

equivalently lim
N,T→∞

NE
[(
J ′−1f̂t−ft

)(
H ′−1f̃t−ft

)′]
= lim

N,T→∞
NE

[(
J ′−1f̂t−ft

)(
J ′−1f̂t−ft

)′]
.

lim
N,T→∞

N E
[(
J ′−1f̂t − Ft

)(
H ′−1f̃t − ft

)′]
= lim
N,T→∞

N
(
Λ′Θ−1Λ

)−1
Λ′Θ−1E(ete

′
t)Λ
(
Λ′Λ

)−1

= lim
N,T→∞

N
(
Λ′Θ−1Λ

)−1
Λ′Θ−1φt,tΘΛ

(
Λ′Λ

)−1

= lim
N,T→∞

φt,tN
(
Λ′Θ−1Λ

)−1

= lim
N,T→∞

N E
[(
J ′−1f̂t − ft

)(
J ′−1f̂t − ft

)′]

completes the proof of Vf̃t − Vf̂t being positive semidefinite. The proof of Vλ̃i − Vλ̂i being

positive semidefinite relies on Theorem 2 of Bai (2003) and is analog.

C Auxiliary Lemmas

Lemma 1: Under Assumptions A-D,F, we have

(i) WNT
p→W ;

(ii) ||J ||F = Op(1) ,

where W is a diagonal matrix consisting of the eigenvalues of ΣΛ∗ΣF∗

Proof. Consider (i). Multiplying equation (17) by F̂ ′Φ−1/T and using F̂ ′Φ−1F̂ ′/T = Ir leads

to WNT = 1
NT F̂

′Φ−1XΘ−1X ′Φ−1F̂ . WNT
p→W by Lemma A.3 (i) of Bai (2003) using Ĝ and

Y = Φ−1/2XΘ−1/2′ in Bai’s proof instead of F̃ and X respectively. Next, consider (ii):

||J ||F ≤
∣∣∣∣∣∣W−1

NT

∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣Λ′Θ−1Λ

N

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣F ′Φ−1F̂

T

∣∣∣∣∣∣∣∣
F
. (44)

The first term is Op(1) by (i) and the second term is Op(1) by Assumption D. Using the

Cauchy-Schwarz inequality, we get
∣∣∣∣∣∣ F̂ ′Φ−1F

T

∣∣∣∣∣∣2
F
≤
∣∣∣∣∣∣Φ−1/2F̂√

T

∣∣∣∣∣∣2
F

∣∣∣∣∣∣Φ−1/2F√
T

∣∣∣∣∣∣2
F

= r tr
{
F ′Φ−1F

T

}
such that

∣∣∣∣∣∣F ′Φ−1F̂
T

∣∣∣∣∣∣
F

= Op(1) by Assumption D. It follows that ||J ||F = Op(1).
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Lemma 2: Under Assumptions A-E, we have

(i) (F̂ − FJ)′Φ−1F/T = Op(δ
−2
NT )

(ii) (F̂ − FJ)′Φ−1F̂ /T = Op(δ
−2
NT )

(iii) (F̂ − FJ)′Φ−1ei/T = Op(δ
−2
NT )

Proof. The proofs of (i), (ii) and (iii) are analog to Lemma B.2, Lemma B.3 and Lemma B.1

of Bai (2003) using Ĝ = Φ−1/2F̂ , G = Φ−1/2F and J instead of F̃ , F 0 and H respectively.

Therefore, we only show (i) in detail. Using equation (18), we have (F̂ −FJ)′Φ−1F/T equals

W−1
NT

(
F̂ ′Φ−1FΛ′Θ−1e′Φ−1F

NT 2︸ ︷︷ ︸
=I

+
F̂ ′Φ−1eΘ−1ΛF ′Φ−1F

NT 2︸ ︷︷ ︸
=II

+
F̂ ′Φ−1eΘ−1e′Φ−1F

NT 2︸ ︷︷ ︸
=III

)
. (45)

Consider the first term in brackets:

||I||F ≤
∣∣∣∣Φ−1

∣∣∣∣
S
∣∣∣∣Θ−1

∣∣∣∣
S

∣∣∣∣∣∣∣∣ F̂ ′Φ−1F

T

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣Λ′e′FNT

∣∣∣∣∣∣∣∣
F
. (46)

Within Lemma 1, we have shown
∣∣∣∣F ′Φ−1F̂

T

∣∣∣∣
F = Op(1). By Assumption A

∣∣∣∣Φ−1
∣∣∣∣
S =

1
evmin(Φ) = O(1) and

∣∣∣∣Θ−1
∣∣∣∣
S = O(1). Moreover, one obtains

∑T
t=1

∑N
i=1 ei,tλif

′
t = Op(

√
NT )

using Assumption B such that
∣∣∣∣Λ′e′F

NT

∣∣∣∣
F = Op

(
δ−2
NT

)
. Consider the second term in brackets:

||II||F =

∣∣∣∣∣∣∣∣ T

F ′Φ−1F

F ′Φ−1FF̂ ′Φ−1eΘ−1Λ

NT 2

F ′Φ−1F

T

∣∣∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣∣∣ T

F ′Φ−1F

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣Φ−1FF̂ ′

T

∣∣∣∣∣∣∣∣
S

∣∣∣∣∣∣∣∣F ′Φ−1eΘ−1Λ

NT 2

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣F ′Φ−1F

T

∣∣∣∣∣∣∣∣
F

≤
∣∣∣∣Φ−1

∣∣∣∣
S
∣∣∣∣Θ−1

∣∣∣∣
S

∣∣∣∣∣∣∣∣ T

F ′Φ−1F

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣Φ−1FF̂ ′

T

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣F ′eΛNT 2

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣F ′Φ−1F

T

∣∣∣∣∣∣∣∣
F
.

(47)

The first two terms are Op(1) by previous arguments.
∣∣∣∣ T
F ′Φ−1F

∣∣∣∣
F and

∣∣∣∣F ′Φ−1F
T

∣∣∣∣
F are Op(1)

by Assumption D and
∣∣∣∣Λ′e′F

NT

∣∣∣∣
F = Op

(
δ−2
NT

)
as we have shown before. Moreover,

∣∣∣∣∣∣∣∣Φ−1FF̂ ′

T

∣∣∣∣∣∣∣∣
F
≤
∣∣∣∣Φ−1/2

∣∣∣∣
S
∣∣∣∣Φ1/2

∣∣∣∣
S

∣∣∣∣∣∣∣∣Φ−1/2F√
T

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣Φ−1/2F̂√
T

∣∣∣∣∣∣∣∣
F
. (48)
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We have
∣∣∣∣Φ−1/2

∣∣∣∣
S = 1√

evmin(Φ)
= O(1) and

∣∣∣∣Φ1/2
∣∣∣∣
S ≤ maxt

∑T
s=1 < M = O(1) by

Assumption A. Further,
∣∣∣∣Φ−1/2F̂√

T

∣∣∣∣2
F = r = O(1) and

∣∣∣∣Φ−1/2F√
T

∣∣∣∣2
F = tr

{
F ′Φ−1F

T

}
= Op(1) by

Assumption D. It follows that
∣∣∣∣Φ−1FF̂ ′

T

∣∣∣∣
F = Op(1) and hence ||II||F = Op(δ

−2
NT ). Last,

||III||F =

∣∣∣∣∣∣∣∣ T

F ′Φ−1F

F ′Φ−1FF̂ ′Φ−1eΘ−1e′Φ−1F

NT 3

∣∣∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣∣∣ T

F ′Φ−1F

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣Φ−1FF̂ ′

T

∣∣∣∣∣∣∣∣
F

∣∣∣∣Θ−1
∣∣∣∣
S

∣∣∣∣∣∣∣∣F ′Φ−1ee′Φ−1F

NT 2

∣∣∣∣∣∣∣∣
F
,

(49)

where the first three terms are Op(1) by previous arguments. Concerning the last term

F ′Φ−1ee′Φ−1F
NT 2 = 1

T
1
N

∑N
i=1

F ′Φ−1ei√
T

e′iΦ
−1F ′√
T

= Op(T
−1) with regard to Assumption E such that

||III||F = OP (T−1). Recall, that I and II are Op
(
δ−2
NT

)
and W−1

NT = Op(1) by Lemma 1. It

follows by equation (45) that (F̂ − FJ)′Φ−1F/T = Op
(
δ−2
NT

)
.

Lemma 3: Under Assumptions A-F, we have JJ ′
p→ Σ−1

F∗.

Proof. Using the normalization F̂ ′Φ−1F̂ /T = Ir, we have

(
JJ ′
)−1

=
(F̂ J−1)′Φ−1(F̂ J−1)

T

=
F ′Φ−1F

T
+
F ′Φ−1(F̂ J−1 − F )

T
+

(F̂ J−1 − F )′Φ−1F̂

T
,

(50)

where the last two terms are Op(δ
−2
NT ) by Lemma 2 (i) and Lemma 2 (ii) respectively. Using

Assumption D, we have
(
JJ ′
)−1 p→ ΣF∗.

Lemma 4: Under Assumptions A-G, we have

(i) ŴNT −WNT
p→ 0

(ii) Ĵ − J p→ 0

10



Proof. Analogue to the proof of Lemma B.5 in Choi (2012), we have

∣∣∣∣∣∣∣∣ Φ̂−1XΘ̂−1X ′

NT
− Φ−1XΘ−1X ′

NT

∣∣∣∣∣∣∣∣
S

≤
∣∣∣∣∣∣∣∣
(
Φ̂− Φ

)−1
XΘ̂−1X ′

NT

∣∣∣∣∣∣∣∣
S

+

∣∣∣∣∣∣∣∣Φ−1X
(
Θ̂−Θ

)−1
X ′

NT

∣∣∣∣∣∣∣∣
S

≤
∣∣∣∣∣∣Φ̂−1

∣∣∣∣∣∣
S

∣∣∣∣∣∣Φ−1
∣∣∣∣∣∣
S

∣∣∣∣∣∣Φ̂− Φ
∣∣∣∣∣∣
S

∣∣∣∣∣∣Θ̂−1
∣∣∣∣∣∣
S

∣∣∣∣∣∣∣∣X ′XNT
∣∣∣∣∣∣∣∣
S

+
∣∣∣∣∣∣Θ̂−1

∣∣∣∣∣∣
S

∣∣∣∣∣∣Θ−1
∣∣∣∣∣∣
S

∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣
S

∣∣∣∣∣∣Φ−1
∣∣∣∣∣∣
S

∣∣∣∣∣∣∣∣X ′XNT
∣∣∣∣∣∣∣∣
S
.

(51)

By Assumption G we have
∣∣∣∣Φ̂−1

∣∣∣∣
S = Op(1),

∣∣∣∣Θ̂−1
∣∣∣∣
S = Op(1),

∣∣∣∣Φ̂ − Φ
∣∣∣∣
S = op(1) and∣∣∣∣Θ̂ − Θ

∣∣∣∣
S = op(1). Since X′X

NT = Op(1) and by Assumption A
∣∣∣∣Φ−1

∣∣∣∣
S = 1

evmin(Φ) = Op(1)

and
∣∣∣∣Θ−1

∣∣∣∣
S = Op(1), it follows that Φ̂−1XΘ̂−1X′

NT − Φ−1XΘ−1X′

NT = op(1). As WNT and ŴNT

are diagonal matrices with eigenvalues of Φ−1XΘ−1X′

NT and Φ̂−1XΘ̂−1X′

NT respectively, (i) follows

by the continuity of eigenvalues. Consider (ii):

Ĵ − J =
Λ′Θ̂−1Λ

N

F ′Φ̂−1F̂f

T
Ŵ−1
NT −

Λ′Θ−1Λ

N

F ′Φ−1F̂

T
W−1
NT . (52)

Note that
∣∣∣∣∣∣Λ′Θ̂−1Λ

N − Λ′Θ−1Λ
N

∣∣∣∣∣∣
F
≤
∣∣∣∣Θ̂−1

∣∣∣∣
S
∣∣∣∣Θ−1

∣∣∣∣
S
∣∣∣∣Θ̂−Θ

∣∣∣∣
S

∣∣∣∣∣∣Λ′ΛN ∣∣∣∣∣∣
F

= op(1) by Assumption

D and Assumption G. Since Φ−1XΘ−1X′

NT

(
Φ−1F̂

)
=
(
Φ−1F̂

)
WNT and Φ̂−1XΘ̂−1X′

NT

(
Φ̂−1F̂f

)
=(

Φ̂−1F̂f

)
ŴNT , the continuity of eigenvectors implies Φ̂−1F̂f − Φ−1F̂ = op(1) and hence

F ′Φ̂−1F̂f
T − F ′Φ−1F̂

T = op(1) using Assumptions D. Together with (i) it follows that Ĵ − J =

op(1).

Lemma 5: Under Assumptions A-G, we have

(i)
√
N
(
âtNT − atNT

) p→ 0

(ii)
√
N
(
b̂tNT − btNT

) p→ 0

(iii)
√
N
(
ĉtNT − ctNT

) p→ 0
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Proof. Consider (ii):

∣∣∣∣∣∣√N(b̂tNT − btNT )∣∣∣∣∣∣F
≤
∣∣∣∣∣∣∣∣ 1√

NT

(
F̂ ′f Φ̂

−1 − F̂ ′Φ−1
)
FΛ′Θ−1et

∣∣∣∣∣∣∣∣
F

+

∣∣∣∣∣∣∣∣ 1√
NT

F̂ ′f Φ̂
−1FΛ′

(
Θ̂−1 −Θ−1

)
et

∣∣∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣∣∣ F̂ ′f Φ̂−1F − F̂ ′Φ−1F

T

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣Λ′Θ−1et√
N

∣∣∣∣∣∣∣∣
F

+

∣∣∣∣∣∣∣∣ F̂ ′f Φ̂−1F

T

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣Λ′
(
Θ̂−1 −Θ−1

)
et√

N

∣∣∣∣∣∣∣∣
F

(53)

By Assumption E, we have Λ′Θ−1et√
N

= Op(1). In Lemma 4, it is shown that
F̂ ′f Φ̂−1F−F̂ ′Φ−1F

T =

op(1). Together with Theorem 1, Lemma 1 (ii) and Assumption D, it follows
F̂ ′f Φ̂−1F

T = Op(1).

By Assumption G
Λ′
(

Θ̂−1−Θ−1
)
et√

N
= op(1). Combining the results establishes (ii). Parts (i)

and (iii) can be shown using the same method as the proof of Lemma B.6. in Choi (2012).

Details are omitted.

Lemma 1’: Under Assumptions A,B,C’,D’,F’, we have

(i)
∣∣∣∣WNT

∣∣∣∣
F = Op(1)

(ii) ||J ||F = Op(1)

Proof. Consider (i). Multiplying equation (31) by F̂ ′Φ−1/T 2 and using F̂ ′Φ−1F̂ ′/T 2 = Ir

leads toWNT = 1
NT 2 F̂

′Φ−1XΘ−1X ′Φ−1F̂ . WNT
d→W by Lemma B.3 (i) of Bai (2004) using

Ĝ = Φ−1/2F̂ and Y = Φ−1/2XΘ′−1/2 in Bai’s proof instead of F̃ , X, respectively, where W is

a diagonal matrix consisting of the eigenvalues of ΣΛ∗
∫
BuB

′
u. Next, consider (ii):

||J ||F ≤
∣∣∣∣∣∣W−1

NT

∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣Λ′Θ−1Λ

N

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣F ′Φ−1F̂

T 2

∣∣∣∣∣∣∣∣
F
. (54)

The second term is Op(1) by Assumption D’; the last term is Op(1) by Proposition 3 of Bai

(2004) using Ĝ = Φ−1/2F̂ , and G = Φ−1/2F instead of F̃ and F 0 respectively. Together with

(i), it follows that ||J ||F = Op(1).

Lemma 2’: Under Assumptions A,B,C’-E’, we have

(i) (F̂ − FJ )′Φ−1F/T = Op(T
−1) +Op(N

−1/2)
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(ii) (F̂ − FJ )′Φ−1F̂ /T = Op(T
−1) +Op(N

−1/2)

(iii) (F̂ − FJ )′Φ−1ei/T = Op(κ
−1
NT )

Proof. For (i) and (ii), see Bai (2004) Lemma B.4(i), Lemma B.4(ii) and Lemma B.1 using

Ĝ = Φ−1/2F̂ , G = Φ−1/2F and J instead of F̃ , F 0 and H respectively. Regarding (iii)

∣∣∣∣(F̂ − FJ )′Φ−1ei/T
∣∣∣∣
F ≤

∣∣∣∣Φ−1
∣∣∣∣
S
∣∣∣∣(F̂ − FJ )′ei/T

∣∣∣∣
F

≤
∣∣∣∣Φ−1

∣∣∣∣
S

(
T−1

T∑
t=1

∣∣∣∣F̂ − FJ ∣∣∣∣F)1/2(
T−1

T∑
t=1

e2
it

)1/2

,
(55)

where
∣∣∣∣Φ−1

∣∣∣∣
S = Op(1) and T−1

∑T
t=1 e

2
it = Op(1) by Assumption A and T−1

∑T
t=1

∣∣∣∣F̂ −
FJ

∣∣∣∣
F = Op(κ

−2
NT ) by analogue arguments to Lemma 1 in Bai (2004).

Lemma 3’: Under Assumptions A,B,C’-F’, we have JJ ′ d→
(∫
BuB

′
u

)−1
.

Proof. Using the normalization F̂ ′Φ−1F̂ /T 2 = Ir, we have

(
JJ ′
)−1

=
(F̂ J−1)′Φ−1(F̂ J−1)

T 2

=
F ′Φ−1F

T
+
F ′Φ−1(F̂ J−1 − F )

T 2
+

(F̂ J−1 − F )′Φ−1F̂

T 2
,

(56)

where the last two terms are Op(κ
−2
NT ) by Lemma 2’ (i) and Lemma 2’ (ii). Using Assumption

D’, we have
(
JJ ′
)−1 p→

∫
BuB

′
u.

Lemma 4’: Under Assumptions A-G, we have

(i) ŴNT −WNT
p→ 0

(ii) Ĵ − J p→ 0
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Proof. Similar to Lemma 5’, we have

∣∣∣∣∣∣∣∣ Φ̂−1XΘ̂−1X ′

NT 2
− Φ−1XΘ−1X ′

NT 2

∣∣∣∣∣∣∣∣
S

≤
∣∣∣∣∣∣∣∣
(
Φ̂− Φ

)−1
XΘ̂−1X ′

NT 2

∣∣∣∣∣∣∣∣
S

+

∣∣∣∣∣∣∣∣Φ−1X
(
Θ̂−Θ

)−1
X ′

NT 2

∣∣∣∣∣∣∣∣
S

≤
∣∣∣∣∣∣Φ̂−1

∣∣∣∣∣∣
S

∣∣∣∣∣∣Φ−1
∣∣∣∣∣∣
S

∣∣∣∣∣∣Φ̂− Φ
∣∣∣∣∣∣
S

∣∣∣∣∣∣Θ̂−1
∣∣∣∣∣∣
S

∣∣∣∣∣∣∣∣X ′XNT 2

∣∣∣∣∣∣∣∣
S

+
∣∣∣∣∣∣Θ̂−1

∣∣∣∣∣∣
S

∣∣∣∣∣∣Θ−1
∣∣∣∣∣∣
S

∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣
S

∣∣∣∣∣∣Φ−1
∣∣∣∣∣∣
S

∣∣∣∣∣∣∣∣X ′XNT 2

∣∣∣∣∣∣∣∣
S
.

(57)

Since X′X
NT 2 = Op(1), by Assumption G we have Φ̂−1XΘ̂−1X′

NT 2 − Φ−1XΘ−1X′

NT 2 = op(1). As WNT

and ŴNT are diagonal matrices with eigenvalues of Φ−1XΘ−1X′

NT and Φ̂−1XΘ̂−1X′

NT respectively,

(i) follows by the continuity of eigenvalues. Consider (ii):

Ĵ − J =
Λ′Θ̂−1Λ

N

F ′Φ̂−1F̂f

T 2
Ŵ−1
NT −

Λ′Θ−1Λ

N

F ′Φ−1F̂

T 2
W−1
NT . (58)

Note that
∣∣∣∣∣∣Λ′Θ̂−1Λ

N − Λ′Θ−1Λ
N

∣∣∣∣∣∣
F
≤
∣∣∣∣∣∣Θ̂−1

∣∣∣∣∣∣
S

∣∣∣∣∣∣Θ−1
∣∣∣∣∣∣
S

∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣
S

∣∣∣∣∣∣Λ′ΛN ∣∣∣∣∣∣
F

= op(1) by Assumption

D’ and Assumption G. Since Φ−1XΘ−1X′

NT 2

(
Φ−1F̂

)
=
(
Φ−1F̂

)
WNT and Φ̂−1XΘ̂−1X′

NT 2

(
Φ̂−1F̂f

)
=(

Φ̂−1F̂f

)
ŴNT , the continuity of eigenvectors implies Φ̂−1F̂f − Φ−1F̂ = op(1) and hence

F ′Φ̂−1F̂f
T 2 − F ′Φ−1F̂

T 2 = op(1) using Assumptions D’. Together with (i) it follows that Ĵ − J =

op(1).

Lemma 5’: Under Assumptions A-G, we have

(i)
√
N
(
ÂtNT −AtNT

) p→ 0

(ii)
√
N
(
B̂t
NT −Bt

NT

) p→ 0

(iii)
√
N
(
ĈtNT − CtNT

) p→ 0
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Proof. Consider (ii):

∣∣∣∣∣∣√N(B̂t
NT −Bt

NT

)∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣∣∣ 1√

NT 2

(
F̂ ′f Φ̂

−1 − F̂ ′Φ−1
)
FΛ′Θ−1et

∣∣∣∣∣∣∣∣
F

+

∣∣∣∣∣∣∣∣ 1√
NT 2

F̂ ′f Φ̂
−1FΛ′

(
Θ̂−1 −Θ−1

)
et

∣∣∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣∣∣ F̂ ′f Φ̂−1F − F̂ ′Φ−1F

T 2

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣Λ′Θ−1et√
N

∣∣∣∣∣∣∣∣
F

+

∣∣∣∣∣∣∣∣ F̂ ′f Φ̂−1F

T 2

∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣Λ′
(
Θ̂−1 −Θ−1

)
et√

N

∣∣∣∣∣∣∣∣
F

(59)

By Assumption E, we have Λ′Θ−1et√
N

= Op(1). In Lemma 4’, it is shown that
F̂ ′f Φ̂−1F−F̂ ′Φ−1F

T 2 =

op(1). Together with Theorem 3, Lemma 1’ (ii) and Assumption D’, it follows
F̂ ′f Φ̂−1F

T 2 = Op(1).

By Assumption G
Λ′
(

Θ̂−1−Θ−1
)
et√

N
= op(1). Combining the results establishes (ii). Parts (i)

and (iii) can be shown similarly using the results of Lemma B.6 in Choi (2012) and Bai (2004).

Details are omitted.
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