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Abstract

This online appendix provides supplemental material for the paper, “Efficient estima-
tion of factor models with time and cross-sectional dependence.” This material contains
the derivation of the GLS estimator as well as proofs of the main results and their auxiliary
lemmas.



A Derivation of GLS Estimators

Using Assumption A, we have

(F,A) = argmin vec (X — FA') Q1 vec (X — FA) (12)
FA

= argmin tr {6_1(X — FAY o (X — FA/)} (13)
FA

The standard theory of multivariate GLS regression yields a preliminary CMLE of A’ as a
function of F given by A/(F) = (F'®1F)~1F'®1X. Hence,

F = argmin tr {@—1 (X — FA(F))'@7 ' [X — FA'(F)] } (14)
F

— argmin tr {@—1)(’ (! — ¢>—1F(F’<I>—1F)—1F’c1>—1]X} (15)
F

— argmax tr {@*1X’<1>*1F(F’c1r1F)*1F’<1>*1X} (16)
F

Normalizing F'® 'F /T = I, results in ' = argmax tr {G’%(I)’I/ZX@’IX’CI)’UZ’G}, where
G = ®~Y2F. Therefore under factor stationariy, F = ®1/2G with G being /T times the
matrix consisting of the eigenvectors corresponding to the r largest eigenvalues of the matrix
P 12XO1X'®d 12 and A = %X’@flﬁ. The non-stationarity case is analogue.

Note that in the more general case, when the (N,T") separability assumption is dropped,

the first order conditions of equation (4) state

ALQ tvece(X — FA') =0

FLQ tvee(X —FA) =0,
where Fig = Iy ® F and Ag = A ® Ir. Thus, the GLS estimates can be obtained iteratively

vec(F(”H)) = [Agn)ﬁflf\gl)} _1[&%@971’066 (X)

vec([&/(”ﬂ)) = [an)ﬁflﬁgq_1]5(%@9711)60 (X)),



where Fé@n) = Iy ® F™ and f\g) =AM @ Ip may be initialized using the PC estimates.

B Proofs of Main Results

B.1 Proof of Theorem 1 and Corollary 1

As defined in Section 4.1, Wyt is a r X r diagonal matrix consisting of the r largest eigenvalues
of the matrix ﬁ@‘l/ 2XO~1X'®1/2/ in descending order?. By the definitions of eigenvalues

and eigenvectors: GWp = ﬁ@‘l/zXG_lX’Q_l/z’é. Using F' = ®1/2@, it follows that

A 1 -1 —1 ppr—1
F= X0 X0 FW. (17)
Post-multiplying both sides by J~! and substituting X0 1 X’ = e© e/ +e@ 'AF/'+ FA'O e/ +

FAN'O~'AF', we obtain

A 1 _ _ _ A4
FI - F = (07 + cOIAF + FNO) 07 WL (18)

using the definition of J and rearranging. In vector notation, this becomes

I — fi

a1 1 .
—(WyrJ') ™! < ﬁF’<I>—1e@—1et + ﬁF’qleA’@_let +

L ome-1 -1 (19)
NTFq) €0 Aft) 5

~~

~
_t _pt it
=anr =byr =CNT

where aly; = Op(0x7); iy = Op(N~V2) and ¢y = O,(N~V25 %) with Sy = min{v/N, VT}.
These can be proven in the same way as for Lemma A.2 of Bai (2003) once we use ¢ =
PY2071/2/ G = & 1/2F and T = ©~Y/2A in Bai’s proof instead of e, A° and FO, re-
spectively. Details are not worth reporting here. Since WyrJ' = O,(1) by Lemma 1, as

VN/T — 0, we have \/N(J’_lft — ft) = (WNTJ/)_lx/]Vb’}VT + 0p(1). Substituting the

20 As for positive definite matrices A and B, the eigenvalues of AB and AY/2BA'/?' are the same



definition of J, it follows that

-1
13 AOTIA Noe~le e e
\/N(J’ Y- ft) = ( N ) JN ' + op(1) SN (0721\* =t 2Ai) (20)
by Assumptions D and E. Since A = X' 'F/T, F = F—FJ '+ FJ ' and F'®'F/T = I,

. 1 . .1 .
AT — A= Ge’@—lm + FAF - FI Yo 'k + fe’<1>—1(F - FJ)) J (21)

follows, which becomes in vector notation

; 1 1. A 1.
Jhi — N = fJJ’F“I)_lei + fJF’cIrl(F — FJ YA+ 7 (F = FJ)® e, (22)

The second term is Op(6y>) by Lemma 1 (ii), Lemma 2 (ii) and Assumption D; the third

term is Op(dy7) by Lemma 1 (ii) and Lemma 2 (iii). Thus, if vT/N — 0,

. F/q)—l ;
VT (JAi = X) = JJ’Te +0p(1) SN (0,Zplwnyl ) (23)

by Assumption E and Lemma 3 completing Theorem 1. Consider ¢;; —c; ¢ = f{ J LI\ — fiN
next. Adding and subtracting f/J\; + f{J "1\ + f/Ai, one obtains
Cit — Cit Z(J,_lft - ft)/)\i + ft/(z]j\i — i) + (Jl_lf - ft)/(!]j\i - \i) (24)

after rearranging terms. The last term is O, (dy2) by equations (20) and (23). Then, we have

5NT(éi,t — Ci,t) —%\/N(J/_lft — ft)/)\i + % T(JS\Z — )\i)lft + Op(l) . (25)

VN (J =1 ft— ft) and /T (J /A\Z —)\i) are asymptotically independent since the former is the sum
of cross-section random variables and the latter is the sum of a given time series. Corollary 1

follows from Theorem 1 and the almost sure representation argument of Bai (2003; p. 167).



B.2 Proof of Theorem 2

Let Wyr be a r x r diagonal matrix consisting of the r largest eigenvalues of the matrix

ﬁq)_lX@_lX’ in descending order and define J = ﬁA’@_lAF@_lFW&},. Similar to the

proof of Theorem 1, we may write

N
=(Wnrd') (St O e b o BT NS ey a0 A, ). (26)
NT NT NT

VT
—ait _ 7t —at
=anT =br TONT

Lemma 4 implies that WxrJ' — WxpJ' 2 0. Moreover, Lemma 5 shows that v/N. aly, and
VN éﬁ\/T have the same probabilistic order of magnitude as VN afVT and VN cf\,T respectively
and that v/ N. by and VN l;lEVT have the same limiting distributions. With regard to Theorem
1, it follows that \/N(j’*lftf — ft) LN N(0,%,} Z; 53 1). Moreover, we have

an 1 .- 1 .- N

JN =N =—JJF'& e+ —JJF' (7' — & )e
T 1 T 1 (27)

+ fjﬁf’cﬁ—l(F — By J YN+ Tj(ﬁf — FJ)d e,

where the last two terms can be shown to be Op(ég,zT) analogue to Theorem 1. By Lemma 3

and 4, we have J.J' % 271 Further, as ' — =1 = &~ 1(d — $)® ! we have |’T_1F’(<i>_1 -

‘Ifl)e,-H]_. < = 0,(1)0,(1)O,(T~'/?) by Assumption E

ot|gl|e — @

S\ T F' & te;| \f

and G. Together, it follows that the second term is o,(T~/2). Thus, if VT/N — 0,

VT (ﬁﬁ - )\Z-) _ g 0p(1) %N (0, zgiqzizgi) (28)

VT

by Assumption E and JJ 5 E}i. Consider ég,t — ¢i . Analog to equation (24), we have

&y == - F) N+ FLTA = X)) + 0, (03%) - (29)



As 6n7/vV'N and 6n1/v/T are bounded sequences and f; and \; are Op(1), it follows that

S (& — coe) =T VNI — 1) N+ DTN XY i+ 0p(1)

VN VT (30)
_5N7T =17 e\'y, 5]V7T Yo— ) o
_\/N\/N(J ft ft) A + \/T\/T(JAZ >\z) fr+op(1) .

since (j’_lftf — ft) = \/]V(J’_lft — ft) + 0p(1) and \/T(jj\f - Ai) = \/T(JS\Z — )\Z-) + 0p(1).

The proof is completed with regard to equation (25) and Corollary 1.

B.3 Proof of Theorem 3

As defined in Section 4.1, W is a r x r diagonal matrix consisting of the r largest eigenvalues

of the matrix N1T2 d~1/2X01X'®~1/2" in descending order. By the definitions of eigenvalues

and eigenvectors: GWyr = N1T2 d-1/2X0-1X'®d"1/2'G. Using F' = ®1/2G, it follows that

. 1 B IS
F=—75X6 X' Wy (31)
Post-multiplying both sides by J~! and substituting X0 ' X’ = e©~le/+e@ 'AF/'+ FA'O e/ +

FAN'O~'AF', we obtain

Py l_F (e@—le' +eOAF + FA’@—le’) O FWtT ! (32)

T NT?
using the definition of J and rearranging. In vector notation, this becomes

T~ fi

_(WNTJ’)1< F'o~leo e, +

F’CI)_lFA'@_let + 1 F’Q)_le@_lf\ft> , (33)

NT? NT? NT?

— At —_ Rt —(t
7ANT 7BNT 7CNT

where Al = Op(T~3/2)+ O, (NY2T1/2), Bl ). = Op(N~1/2) and Clp = Op(N~1/2T71/2),
These can be proven in the same way as for Lemma B.2 of Bai (2004) once we use £ =
d1/2¢012/ G = & Y2F and T = © /2 in Bai’s proof instead of e, A° and FP, respec-

tively. Details are not worth reporting here. Since Wyt = O,(1) and J = Op(1) by Lemma



1’, as N/T2® — 0, we have \/N(j’*lft — ft) = (WNTJ’)A\/NBR,T +0p(1). Substituting the

definition of J, we have

: AOIA\ TTNO!
VN (7= 1) = ( ¥ > \/Net +o,(1) AN (0,53t E ) . (39)

by Assumptions D’ and E’. Since A = X'® 1F /T2 F = F—FJ '+ FJ ' and F'®&1F/T? =

I, it follows that

o 1 - ,
AJ—A:<T26<I> 'PT + 5 AP~ FT Yo 1F+ﬁe<l> (F—FJ))j (35)

and in vector notation

. 1 _ 1 ., . 1. _
j)\i—Ai:ﬁJJ’F@ 1ei+ﬁjF’<I> YWF—-FT YN —|—ﬁj(F—FJ)’<I> Lei.  (36)

The second term is Op(xy7) by Lemma 1’ (i), Lemma 2’ (i) and Assumption D’; the third

term is O (ky2) by Lemma 1’ (i) and Lemma 2’ (iii). Thus,

. F'ole - :
T (J)w - Ai) = T+ 0,(1 ( / B B’> / B,dBY (37)

by Assumption E’ and Lemma 3’.

B.4 Proof of Theorem 4

Let Wxr be a r x r diagonal matrix consisting of the r largest eigenvalues of the matrix

NT2 ®~1XO X' in descending order and define J = NT2 NOIAF'O1F W;,lT Similar to

the proof of Theorem 3, we may write

VAR

:<WNT‘7/)71 ( e lt® o™

— At _pt
7ANT 7BNT

- A 1 -
(OIFNO ey + o FP

leé_lAft) . (38)

—Ot
7CNT



. ! —1
Lemma 4’ implies that (WNTJ ! ) - <WNTJ ! ) 2 0. Moreover, Lemma 5’ shows that
VN A'}VT and /N, C’fVT have the same probabilistic order of magnitude as VN Al and
VNCH respectively and that VNBt,. and VN Bt have the same limiting distributions.
NT NT NT

With regard to Theorem 3, it follows that VN (j’_lftf — ft) i N (O, Exi =t Exi) More-
over, we have

A;\f )\ _ L A/}71/¢—1 1 A/Fv/ é—l q)—l

TN — z—ﬁ\jj €i+7jj ( - )ei

(39)

1 ~ A~ o~
—J(F;—FJ) !

1 ~=x
+ ﬁij (F Ffj ) T2

where the last two terms can be shown to be O, (k) with £y = min{v/N, T} analogue to
Theorem 4.

By Lemma 3’ and 4’, we have JJ' 4 (f BUB{L)_I. Together with HT_QF’(ti)_1 —
P e

72F/(I)71 i

eil|z = 0p(1)op(1)Op(T~") by Assumption E’

ill7 < 11875

and G shows that the second term is o,(7~!). Hence,

/ 1
T (TN -x) = 3 o0 ( / B B’) / BBl (40)

by Assumption E’ and J.J' 4 (fBuB;)fl.

B.5 Asymptotic Efficiency

Subsequently, we follow Breitung and Tenhofen (2011) closely. Theorem 1 of Bai (2003) states

+0p(1) 5 N(0, V7)., (41)

/ —1 A/
VR i - f) = (“) e

N ) VN

where V; = plim ¢, AN (AA) (A'@’lA) (A’A)f1 and the matrix H is defined in Bai (2003).
N, T—o00

Var (H’_lft — ft) =Var <J/_1ft — ft> + Cov (J'_lft — fi, H/_lft - J,_lft)

(12)
+ Cov (H"lft Ny ft> + Var (H’—lﬁ _ J’—lf;> .



such that sz — Vft

equivalently NlTiIEooNE[(J/_lft_ft) (H’_lﬂ—ft),} = NlTiIEooNE [(J’_lft—ft) (J’_lft—ft)/} .

is positive semidefinite if N Cov (J’_lft — ft,H’_lft — J’_lft> — 0 or

i VB[R (7 5]

:N}Tigm]\T(A’@_lA)_1A’®_1E(ete;)A(A’A)_1

. _ -1 _ -1
:N}THEOON(A’@ "A) N0 g OA (A'A)

. - -1
:N,l%foo@’tN(A/@ 'A)

= lim NE[(Jlflft—ft)(Jlflft—ft),}

N, T—0c0

completes the proof of Vft — Vf} being positive semidefinite. The proof of Vi, — V;\i being

positive semidefinite relies on Theorem 2 of Bai (2003) and is analog.

C Auxiliary Lemmas

Lemma 1: Under Assumptions A-D F, we have
(i) Wyt & W;
(i) 11]1x = Op(1),
where W is a diagonal matrix consisting of the eigenvalues of XYy

Proof. Consider (i). Multiplying equation (17) by F’®~!/T and using F'® 1F’ /T = I, leads
to Wyt = 5p F'@7 1 X0 X'd~1F. Wy 5 W by Lemma A.3 (i) of Bai (2003) using G and

Y = &~ 1/2X0~/? in Bai’s proof instead of F and X respectively. Next, consider (ii):

S, @

Il <[ Wik
H ||.7:— NT F N

The first term is Op(1) by (i) and the second term is O,(1) by Assumption D. Using the

R 2 ) 2
: : Fro-lp o-12F o-1/2F _ F'o-lF
Cauchy-Schwarz inequality, we get HfH}_ < H JT H;H VT H]_. =r tr{ T }

such that H%‘ ‘f = Op(1) by Assumption D. It follows that ||J||z = O,(1). O

8



Lemma 2: Under Assumptions A-E, we have
(i) (F = FJ)®~'F/T = Op(dy7)
(i) (F— FJY®1F/T = 0,(03%)

(i) (F = FJY® e/ T = 0,(632)

Proof. The proofs of (i), (ii) and (iii) are analog to Lemma B.2, Lemma B.3 and Lemma B.1
of Bai (2003) using G = ® V2F, G = ®Y/2F and J instead of F, F® and H respectively.

Therefore, we only show (i) in detail. Using equation (18), we have (F — F.J)® ' F/T equals

3 O LENO /D 1F Flo e IAF'OIF o le@ l/d1F
Wt 5 5 + 5 . (45)
NT NT NT
=7 =II =III
Consider the first term in brackets:
_ B F <1> g Ne'F
o1 < o~ lslle~ | |5 ||| o (1)

Within Lemma 1, we have shown HF/‘I}_IFH]__ = Op(1). By Assumption A H<I)_1HS =

m O(1) and ||©~ 1”3 = O(1). Moreover, one obtains 3.7 S e; N, fi = O,(VNT)

Ne'F

using Assumption B such that ‘ H 7=0p (5&%) Consider the second term in brackets:

1| F'o-FF' - 1e® 1A F'quFH
].'

:’ ‘ F'o—1F NT?

H H Hcplpﬁ/ F'cbleelAH HF’<I>1FH
< (47)
Fo-F|| -] T ||g NT?

_ _ OIFF'|| ||F'eA|| ||F'®'F
o510 s | g || || e[| 7%

The first two terms are Op(1) by previous arguments. Hﬁ“r and HF/CDT_IF ’ ‘f are Op(1)

ANe'F

=0, (5]}2T) as we have shown before. Moreover,

by Assumption D and ‘ H F

(48)

T

Hq>—1FF'
VT

rales

< [Je72]l |2l
F

F



We have H<I>_1/2HS = ﬁ = O(1) and ”@1/2”8 < max; YL, < M = O(1) by

Gl = = 00 and |25 = tr{FHE = 0,00) by

Assumption D. It follows that H‘I)_}Fp/ = 0,(1) and hence ||II||7 = Op(6y>). Last,

f

11| 7

_ F'O'FF'd~le@ 1 dIF
|| Fe-lF NT3
IFF/

> (49)
F'o lee/dIF

NT?

I

1671
f

“[fraeerl |7 I

where the first three terms are O,(1) by previous arguments. Concerning the last term

F'o-led"'F _ 11 N F'ole; ef@ 'F — 0,(T
NT? — TN =1 VT VT -

III1||7 = Op(T"). Recall, that I and I are O,(6y>) and Wy = Op(1) by Lemma 1. It

—1) with regard to Assumption E such that

follows by equation (45) that (F — F.J)®~'F/T = O, (657)- O
Lemma 3: Under Assumptions A-F, we have JJ' 2 Iy

Proof. Using the normalization F'o-LE /T = I, we have

) = (FJYy®d—L(FJ 1)

, R 50
_F'o7'F N F'o Y (FJ ' - F) N (FJ~' - F)o~lF (50)
T T T ’

where the last two terms are Op(dy>) by Lemma 2 (i) and Lemma 2 (ii) respectively. Using

Assumption D, we have (JJ’)_1 R O

Lemma 4: Under Assumptions A-G, we have
(i) Wnr — War 20

(i) J—J B0

10



Proof. Analogue to the proof of Lemma B.5 in Choi (2012), we have

P-1XO0 X' olxO X
NT NT S
(@ -2) ' xetx’ . ch—lx(é ~0) X
- NT S NT / S (51)
<&l llo (1 Nl = ol [1ol, || 7
- S S S S| NT ||
. . X'X
+[lo7 s [lolls 1o - el fl=~ -
S S S S| NT ||
By Assumption G we have H@_lHS = 0,(1), (:)_IHS = 0p(1), | P — <I>HS = 0p(1) and
Hé - @HS = 0p(1). Since % = Op(1) and by Assumption A H(I’_IHS = evm;(@) = 0,(1)
and ||©71| s = Op(1), it follows that &)71)](\%71)(/ - @71)](\2:1)(/ = 0,(1). As Wy and Wyr
are diagonal matrices with eigenvalues of % and % respectively, (i) follows

by the continuity of eigenvalues. Consider (ii):

- NOTIAF'OE . NOIAF'®~IF
I = Wt - NI (52)
N T N T
Note that ’ A/é]\;lA—A,e]\;lAHf <| o1 }SH@*1H8| (:)—@HS‘ %HI = 0p(1) by Assumption

D and Assumption G. Since %(@—lﬁ) = (@_IF)WNT and %(é_lﬁf) =

(<i>_1Ff)WNT, the continuity of eigenvectors implies 1 — ¢ = op(1) and hence

F/é;ﬁf - FICDTA}% = 0,(1) using Assumptions D. Together with (i) it follows that J — J =
op(1). O
Lemma 5: Under Assumptions A-G, we have

() VN (ayr = ag) 50

(i) VA (g — bhy) 5 0

(iii) VN (& — ) 20

11



Proof. Consider (ii):

VN (byr — bivr) ‘ }f
| - 1 ., .
< —==(F{o ' = F'o ) FAN'O ley|| + H o 'FN (07 -0 1)e
_\/NT(f ) Lt At ( )tf (53)
Flo-1F — F/cblFH ‘ NO ey HF@lFH HA’(@1 — 07 Y)e
< —1 +
T | v | ey |
Q- -1l _rdH—1
By Assumption E, we have L\/Nlei = Op(1). In Lemma 4, it is shown that w =
op(1). Together with Theorem 1, Lemma 1 (ii) and Assumption D, it follows Ff/qDT_ L Op(1).
"eH-1_o—1
By Assumption G w = 0p(1). Combining the results establishes (ii). Parts (i)

and (iii) can be shown using the same method as the proof of Lemma B.6. in Choi (2012).

Details are omitted. O
Lemma 1’: Under Assumptions A,B,C’,D’.F’, we have

(@) [[Wrrl] = Op(1)

(i) |T1lF = Op(1)

Proof. Consider (i). Multiplying equation (31) by F'®!/T? and using F'®1F'/T? = I,

leads to WnT = 7o Fo1X0 X0 E. Wyr S W by Lemma B.3 (i) of Bai (2004) using
G=o"12F and Y = & 1/2X0'~1/2 in Bai’s proof instead of F, X, respectively, where W is
a diagonal matrix consisting of the eigenvalues of X5, [ B, B,,. Next, consider (ii):

F'<I>1FH
T2 ||z

1911 <[t || <5 | 64)

The second term is Op(1) by Assumption D’; the last term is Op,(1) by Proposition 3 of Bai
(2004) using G =dY2F, and G = & 1/2F instead of F and FY respectively. Together with
(i), it follows that |||z = Op(1). O

Lemma 2’: Under Assumptions A,B,C’-E’, we have
(i) (B = PI)® /T = Op(T~Y) + Op(N-1/2)

12



(ii) (F— FJ) @ F/T = Op(T~1) + Op(N~1/?)
(iii) (F — FJ)® e;/T = Oplrnh)

Proof. For (i) and (ii), see Bai (2004) Lemma B.4(i), Lemma B.4(ii) and Lemma B.1 using
G=o"Y2F G =& Y2F and J instead of F, FO and H respectively. Regarding (iii)

1P~ Payeteyr|, <llo|[gl|F ~ FaYey]|,

T 1/2 T 1/2
<ol (r P ra) (1)
t=1 t=1

(55)

where H<I>_ = Op(1) and T~1 ZtT:1 e, = O,(1) by Assumption A and T~1 Zle HF -

1
s
FJ| ‘f = O,(k %) by analogue arguments to Lemma 1 in Bai (2004). O

Lemma 3’: Under Assumptions A,B,C’-F’, we have J.J’ L\ (f BUBI’L)A.

Proof. Using the normalization F'o-1F /T? = I, we have

N1 (FI Yo Y FJ1)

(JJ) = T2 (56)
_F'o7'F N F'o— Y (FJ ' - F) N (FJ~' - F)Yo'F
T T2 T2 ’

where the last two terms are O, (k%) by Lemma 2’ (i) and Lemma 2’ (ii). Using Assumption

1

D’, we have (JJ') " & [ B,B.,. O

Lemma 4’: Under Assumptions A-G, we have

(i) Wnr — Wrr 5 0

13



Proof. Similar to Lemma 5’, we have

P-1XO0 X' o lxO X
NT? NT? S
|[(@-2) X6 X . chlx(é) ~0) X’
> 2 2
NT s NTE s (57)
N N A X'X
<[l Nl 1o = ll, 1ol | 72
- S s s S||NT?||g
R A X'X
N INCEC N '
+ H S S S S||NT?||g
Since % = 0p(1), by Assumption G we have éfl%?;lxl - quﬁ?;” = o0p(1). As Wnr

A : : : : P-lxo-1X/ $-1xO6-1X/ :
and Wyt are diagonal matrices with eigenvalues of =——57— and 57— respectively,

(i) follows by the continuity of eigenvalues. Consider (ii):

. NOTTAF'OF . | NOTAFO'F
J-J= N T2 NT = TN T2 Wi -

(58)

Note that ’

AMOIA  ANO~IA A _ ~ NA .
N N H]—‘SHG 1H$H@ 1HSH@—@HSHTHIZOP(1)byAssumptlon

D’ and Assumption G. Since %(@‘1}%) = (CID_IF)WNT and %(@_lﬁﬂ =

(<f>_1ﬁf)WNT, the continuity of eigenvectors implies & 1Fy — &~ 1F = op(1) and hence

F/qsflﬁ'f . F’@71F

= 75— = 0p(1) using Assumptions D’. Together with (i) it follows that J-J =

op(1)- O
Lemma 5°: Under Assumptions A-G, we have

(i) VN (Aly — Afg) 20

(ii) VN (B — Bip) %0

(i) VN (Chp — Clhr) 20

14



Proof. Consider (ii):

VN (Bir — B?VT)H]__
1 A - 1 -, A
< o' —F'e Y FAN'O le|| + HF’(I)lFA’ O -0e
— \/NTQ( f ) t F \/NTQ f ( ) t F (59)
Flo-'F - F'o~'F H HA’@let Hﬁf@lp H HA' (R
< + 5
& | v | e | |
Q- -1l _rd—1
By Assumption E, we have 2 %et = Op(1). In Lemma 4’, it is shown that qu)FT# =
op(1). Together with Theorem 3, Lemma 1’ (ii) and Assumption D’, it follows k q;;lF = Op(1).
"e-1_o—1
By Assumption G w = 0p(1). Combining the results establishes (ii). Parts (i)

and (iii) can be shown similarly using the results of Lemma B.6 in Choi (2012) and Bai (2004).

Details are omitted. O
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