
Supplemental Appendix: GMM with Multiple Missing Variables

Appendix B gives further details on the series estimators used in the paper. Appendix C collects proofs of all

the theoretical results and claims. The notations are the same as in the original paper, and the equations are

also numbered accordingly in the same order.

B Appendix: Series estimation of the nuisance parameters

For a variable U , consider PK(U) = (P 1
K(U), . . . , PK

K (U))′ that is a K-truncation of some approximating

series such that the minimum eigenvalue of E[PK(U)PK(U)′] is bounded away from 0 uniformly in K. Let

RK(U) := (E[PK(U)PK(U)′])−1/2PK(U) be a standardization for PK(U). See Newey (1997) for details. For

estimation of p(W ) and q(W ;β) we take U =W , while for q(Z1,W ;β) and q(Z2,W ;β) we take U = (Z ′
1,W

′)′

and U = (Z ′
2,W

′)′ respectively.

p̂(W ) = (p̂00(W ), p̂10(W ), p̂01(W ), p̂11(W )) is estimated by multinomial series logit as:

p̂d1d2(w) := Ld1d2(RK(w), π̂K) where Ld1d2(RK(w), πK) =
exp[RK(w)′π(d1d2)K ]∑
j,l=0,1 exp[RK(w)′π(jl)K ]

for d1, d2 = 0, 1. p̂1(w) = p̂11(w)+ p̂10(w) and p̂2(w) = p̂11(w)+ p̂01(w). See Hirano et al. (2003) and Cattaneo

(2010). For πK = [π′
(00)K , π

′
(10)K , π

′
(01)K , π

′
(11)K ]′ the estimates are:

π̂K := arg max
πK∈R4dK |π(00)K=0

N∑
i=1

∑
d1,d2=0,1

1(D1i = d1, D2i = d2) logLd1d2(RK(Wi), πK).

Series estimators for the elements of q(β) are obtained following Newey (1997) and Cattaneo (2010):

q̂(w;β) = (Idg ⊗RK(w)′)γ̂K(β),

q̂(zj , w;β) = (Idg ⊗RK(uj)
′)γ̂

(j)
K (β) where Uj = (Z ′

j ,W
′)′ for j = 1, 2.

For γK(β) = [γK1(β)
′, . . . , γKdg (β)

′]′ and γ
(j)
K (β) = [γ

(j)
K1(β)

′, . . . , γ
(j)
Kdg

(β)′]′ the estimates are:

γ̂K(β) := arg min
γ∈RKdg

1

N

N∑
i=1

D1iD2i

(
g(Zi,Wi;β)− (Idg ⊗RK(Wi)

′)γ
)′ (

g(Zi,Wi;β)− (Idg ⊗RK(Wi)
′γ)
)
,

γ̂
(j)
K (β) := arg min

γ∈RKdg

1

N

N∑
i=1

D1iD2i

(
g(Zi,Wi;β)− (Idg

⊗RK(Uji)
′)γ
)′ (

g(Zi,Wi;β)− (Idg
⊗RK(Uji)

′γ)
)
,

for j = 1, 2. Dividing D1iD2i by p̂11(Wi) in the definitions for γ̂K(β) and γ̂
(j)
K (β) often leads to improvement

in the finite-sample properties of the AIPW estimators [see Hirano and Imbens (2001)]. Similarly, instead

of using
∑N

i=1D1iD2i observations for all, improvement is possible in the P-case by taking advantage of the

partition in (5) to estimate the elements of γ̂K(β) more precisely by using
∑N

i=1D1i observations for the first

Kdg1 elements and
∑N

i=1D2i observations for the last Kdg2 elements. We follow this in Sections 4 and 5.
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C Appendix: Proof of main results

Proof of Proposition 2.1:

Let f and F denote the density and distribution functions, with the concerned random variables specified

inside parentheses. L2
0(F ) denotes the space of mean-zero, square integrable functions with respect to F .

The proof consists of three standard steps. (1) Obtain the tangent set for all regular parametric submodels

satisfying the semiparametric assumptions on the observed data. (2) Conjecture the efficient influence function

and then show pathwise differentiability of β0 and verify that the efficient influence function lies in the tangent

set. (3) Obtain the efficiency bound as the expectation of the outer product of the efficient influence function.

STEP - 1: Consider a regular parametric sub-model indexed by a finite-dimensional parameter θ for

the joint distribution of the observed data O := (D1, D2, D1Z1, D2Z2,W ). So the joint density fθ(O) of the

observed data can be expressed in terms of the full data (D1, D2, Z1, Z2,W ) as

[pθ,11(W )fθ(Z1, Z2|W )]
D1D2 [pθ,10(W )fθ(Z1|W )]

D1(1−D2) [pθ,01(W )fθ(Z2|W )]
(1−D1)D2 [pθ,00(W )]

(1−D1)(1−D2) fθ(W )

where (4) gives the factorization of the first three terms. The score with respect to θ is

Sθ(O) = D1D2sθ(Z1, Z2|W ) +
∑

j ̸=k=1,2

Dj(1−Dk)sθ(Zj |W ) + sθ(W ) +
∑

d1,d2=0,1

1(D1 = d1, D2 = d2)
ṗθ,d1d2(W )

pθ,d1d2(W )
.

where sθ(Z1, Z2|W ) := ∂
∂θ log fθ(Z1, Z2|W ), sθ(Z1|W ) := ∂

∂θ log fθ(Z1|W ), sθ(Z2|W ) := ∂
∂θ log fθ(Z2|W ),

sθ(W ) := ∂
∂θ log fθ(W ), and ṗθ,d1d2(W ) := ∂

∂θpθ,d1d2(W ) for d1, d2 = 0, 1. Henceforth, we omit the subscript

θ from quantities evaluated at θ = θ0.

The tangent set for the model is characterized by functions of the form:

T := D1D2a(Z1, Z2,W ) +
∑

j ̸=k=1,2

Dj(1−Dk)aj(Zj ,W ) + a0(W ) +
∑

d1,d2=0,1

1(D1 = d1, D2 = d2)
bd1d2(W )

cd1d2(W )
(25)

where a(Z1, Z2,W ) ∈ L2
0(F (Z1, Z2|W )), a1(Z1,W ) ∈ L2

0(F (Z1|W )), a2(Z2,W ) ∈ L2
0(F (Z2|W )), a0(W ) ∈

L2
0(F (W )) and

∑
d1,d2=0,1 1(D1 = d1, D2 = d2)

bd1d2
(W )

cd1d2
(W ) ∈ L2

0(F (D1, D2|W )) with the additional restriction

that
∑

d1,d2=0,1 bd1d2
(W ) = 0 and

∑
d1,d2=0,1 cd1d2

(W ) = 1 for all W .

STEP - 2: The moment conditions in (1) are equivalent to the requirement that for any dβ×dg matrix A,

the just-identified system of moment conditions AE[g(Z,W ;β0)] = 0 hold. Differentiating under the integral,

and taking a full row rank A, we obtain by using (4) that

∂β0(θ0)

∂θ′
= −(AG)−1AE

[
g(Z,W ;β0)

∂ log fθ0(Z,W )

∂θ′

]
= −(AG)−1AE

[
g(Z,W ;β0) {s(W )′ + s(Z1, Z2|W )′}

]
.

For an arbitrary A, pathwise differentiability follows if we can find ψ(A,D1, D2, Z1, Z2,W ;β0) ∈ T such that

E[ψ(A,D1, D2, Z1, Z2,W ;β0)S(O)′] =
∂β0(θ0)

∂θ′
. (26)
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Conjecture: ψ(A,D1, D2, Z1, Z2,W ;β0) = −(AG)−1Aφ(D1, D2, Z1, Z2,W ;β0). Then verify (26) by showing

E[φ(D1, D2, Z1, Z2,W )S(O)′] = E
[
g(Z,W ;β0) {s(W )′ + s(Z1, Z2|W )′}

]
. (27)

We proceed term-by-term for the four terms in φ(D1, D2, Z1, Z2,W ;β0). Dependence on β0 is suppressed.

Consider the first term. Taking expectation conditional on W and then using (4) we obtain:

E

[
D1D2

p11(W )
(g(Z,W )− q(W ))S(O)′

]
= E [(g(Z,W )− q(W )) s(Z1, Z2|W )′] = E [g(Z,W )s(Z1, Z2|W )′]

since E[q(W )s(Z1, Z2|W )′] = 0 by using s(Z1, Z2|W ) ∈ L2
0(F (Z1, Z2|W )). Now consider the second term.

Taking expectation conditional on W and then using (4) we obtain: E [q(W )S(O)′] = E [g(Z,W )s(W )′] since

s(Z1, Z2|W ) ∈ L2
0(F (Z1, Z2|W )), s(Z1|W ) ∈ L2

0(F (Z1|W )), s(Z2|W ) ∈ L2
0(F (Z2|W )), and

∑
d1,d2=0,1 ṗd1d2(W ) =

0. Now consider the third term and note that similar arguments give

E

[
p10(W )

p1(W )

(
D1(1−D2)

p10(W )
− D1D2

p11(W )

)
(q(Z1,W )− q(W ))S(O)′

]
= E

[
p10(W )

p1(W )

(
D1(1−D2)

p10(W )
− D1D2

p11(W )

)
(q(Z1,W )− q(W )) {D1D2s(Z1, Z2|W ) +D1(1−D2)s(Z1|W )}′

]
= E

[
p10(W )

p1(W )
(q(Z1,W )− q(W )) {s(Z1|W )− s(Z1, Z2|W )}′

]
= −E

[
p10(W )

p1(W )
(q(Z1,W )− q(W )) s(Z2|Z1,W )′

]
[since s(Z1, Z2|W )

def
= s(Z1|W ) + s(Z2|Z1,W ) ]

= 0

where the last line follows because, by definition of conditional score, s(Z2|Z1,W ) ∈ L2
0(F (Z2|Z1,W )). Similar

arguments show that for the fourth term, E
[
p01(W )
p2(W )

(
(1−D1)D2

p01(W ) − D1D2

p11(W )

)
(q(Z2,W )− q(W ))S(O)′

]
= 0.

Hence (27) (and thereby (26)) is verified. To show that φ(D1, D2, Z1, Z2,W ;β0) belongs to the tangent

set T in (25), rearrange its terms suitably as follows:

φ(D1, D2, Z1, Z2,W ;β0) =
D1D2

p11(W )

[
(g(Z,W )− q(W ))− p10(W )

p1(W )
(q(Z1,W )− q(W ))− p01(W )

p2(W )
(q(Z2,W )− q(W ))

]
+
D1(1−D2)

p1(W )
(q(Z1,W )− q(W )) +

(1−D1)D2

p2(W )
(q(Z2,W )− q(W )) + q(W ).

The first term of the RHS involves D1D2, Z1, Z2,W and belongs to L2
0(F (Z1, Z2|W )) by (4). It corresponds to

D1D2a(Z1, Z2,W ) of T in (25). The second term of the RHS D1(1−D2), Z1,W and belongs to L2
0(F (Z1|W ))

by (4). It corresponds to D1(1 − D2)a1(Z1,W ) of T in (25). Similarly, the third term corresponds to

(1 − D1)D2a2(Z2,W ) of T in (25). The fourth term involves W and belongs to L2
0(F (W )). It corresponds

a0(W ) of T in (25). Remaining terms of T are corresponded identically by 0s.

STEP - 3: We verified that any regular estimator for β0 is asymptotically linear with influence function

of the form −(AG)−1Ag(Z,W ;β0). For a given A the projection of the above influence function on to the

tangent set T is ψ(A,D1, D2, Z1, Z2,W ;β0) which, therefore, is the efficient influence function given the A. The
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variance of ψ(A,D1, D2, Z1, Z2,W ;β0) is (AG)−1A V A′(AG)−1′ where V := V ar
(
φ(D1, D2, Z1, Z2,W ;β0)

)
.

The efficient influence function involves the A that minimizes the above variance. Standard arguments give

that the minimizer is A∗ = G′V −1. Hence the efficiency bound is Ω := (G′V −1G)−1 and the efficient influence

function with variance equal to the efficiency bound is

ψ(D1, D2, Z1, Z2,W ) := ψ(A∗, D1, D2, Z1, Z2,W ) = −Ω−1G′V −1φ(D1, D2, Z1, Z2,W ;β0).

Remark: From the verification of (27) in Step 2 involving the first two terms of φ(D1, D2, Z1, Z2,W ), it

follows naturally that the conventional form [see Chen et al. (2008)] based on the common complete sub-

sample (D1 = D2 = 1):

D1D2

p11(W )

[
g(Z,W ;β0)− q(W ;β0)

]
+ q(W ;β0)

is an influence function. However, in general it does not belong in T defined in (25) because that requires the

parametric submodel to satisfy s(Z1|W ) ≡ s(Z2|W ) ≡ 0 but s(Z1, Z2|W ) ̸= 0. This is not possible except

in the special case s(Z1, Z2|W ) ≡ s(Z1|Z2,W ) ≡ s(Z2|Z1,W ) which imposes the additional restrictions on T

that a(Z1, Z2,W ) ∈ L2
0(F (Z1|Z2,W )) and a(Z1, Z2,W ) ∈ L2

0(F (Z2|Z1,W )).

Proof of Proposition 2.2:

STEP - 1: Same as that in the proof of Proposition 2.1 with W denoting the distinct collection of all

elements of W1 and W2, and allowing for the possibility that W =W1 and/or W =W2.

STEP - 2: The moment conditions in (1) under (5) are equivalent to the requirement that for any dβ×dg

matrix A = [A1, A2] where Aj is dβ×dgj for j = 1, 2, the following just-identified system of moment conditions

AE[g(Z,W ;β0)] ≡ [A1, A2]E

 g1(Z1,W1;β
0
0 , β

0
1)

g2(Z2,W2;β
0
0 , β

0
2)

 = 0

hold. Differentiating under the integral, and taking a full row rank A, we obtain by using (4) that

∂β0(θ0)

∂θ′
= −(AG̃)−1AE

 g1(Z1,W1;β
0
0 , β

0
1) {s(W1)

′ + s(Z1|W1)
′}

g2(Z2,W2;β
0
0 , β

0
2) {s(W2)

′ + s(Z2|W2)
′}

 .
Now as in STEP-2 in the proof of Proposition 2.1 we show that, for j = 1, 2:

E
[
φPj(Dj , Zj ,W ;β0

0 , β
0
j )S(O)′

]
= E

[
gj(Zj ,Wj ;β

0
0 , β

0
j ) {s(W )′ + s(Zj |W )′}

]
. (28)

For j = 1, taking expectation conditional onW and then noting thatD1D2s(Z1, Z2|W )+D1(1−D2)s(Z1|W ) =

D1s(Z1|W ) +D1D2s(Z2|Z1,W ) in S(D1, D2, D1Z1, D2Z2,W ), it follows that

E

[
D1

p1(W )
[g1(Z1,W1)− q1(W )]S(O)′

]
= E [[g1(Z1,W1)− q1(W )] s(Z1|W )′] = E [g1(Z1,W1)s(Z1|W )′]
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where the first equality follows from s(Z2|Z1,W ) ∈ L2
0(F (Z2|Z1,W )), and the second from s(Z1|W ) ∈

L2
0(F (Z1|W )). On the other hand, E [qj(W ;β0, βj)S(O)′] = E [g1(Z1,W1)s(W )′] by using s(Z1, Z2|W ) ∈

L2
0(F (Z1, Z2|W )), s(Z1|W ) ∈ L2

0(F (Z1|W )), s(Z2|W ) ∈ L2
0(F (Z2|W )) and

∑
d1d2

ṗd1d2(W ) = 0. Therefore,

(28) is verified for j = 1. Similarly, it can be verified for j = 2.

Now rearranging the terms in φP (D1, D2, Z1, Z2,W ;β0) as follows:

φP (D1, D2, Z1, Z2,W ) =

 φP1(D1, Z1,W1)

φP2(D2, Z2,W )

=D1D2

 g1(Z1,W1)−q1(W )
p1(W )

g2(Z2,W2)−q2(W )
p2(W )

+D1(1−D2)

 g1(Z1,W1)−q1(W )
p1(W )

0


+(1−D1)D2

 0

g2(Z2,W2)−q2(W )
p2(W )

+

 q1(W )

q2(W )

 ,
it is easy to see that when evaluated at β = β0, the four terms on the RHS, by virtue of (4), are respectively

in L2
0(F (Z1, Z2|W )), L2

0(F (Z1|W )), L2
0(F (Z2|W )) and L2

0(F (W )). The terms D1D2a(Z1, Z2,W ), D1(1 −

D2)a1(Z1,W ), (1−D1)D2a2(Z2,W ) and a0(W ) of T in (25) are corresponded by these four terms, whereas

the remaining terms in T are corresponded identically by 0s. This completes step 2.

STEP - 3: Follows similarly as in the proof of Proposition 2.1.

Notations to be used in the rest of the Appendix: For any a× b matrix A (including b = 1 or a = b = 1),

let |A| :=
√
Trace(A′A). For any a × b matrix A(u, β) where the (i, j)-th element is a function Aij(u, β) :

U ×Θ → R, let ∥A(β)∥∞ = supu∈U |A(u, β)| for any given β ∈ B, and let ∥A∥∞ = supβ∈B supu∈U |A(u, β)|.

Proof of Proposition-2.3:

Define the following quantities that will be used throughout the proof for notational convenience:

ωi :=
p10(Wi)

p1(Wi)
, and ω̂i :=

p̂10(Wi)

p̂1(Wi)
,

νi :=
D1i(1−D2i)

p10(Wi)
− D1iD2i

p11(Wi)
, and ν̂i :=

D1i(1−D2i)

p̂10(Wi)
− D1iD2i

p̂11(Wi)
,

τi(β) := q(Z1i,Wi;β)− q(Wi;β) and τ̂i(β) := q̂(Z1i,Wi;β)− q̂(Wi;β).

Under the conditions of the proposition,

∥p̂− p∥∞ = op(N
−1/4), (29)

sup
|β−β0|<δ

∥q̂(β)− q(β)∥∞ = op(1) for some constant δ > 0 and, (30)

∥q̂(U ;β0)− q(U ;β0)∥∞ = op(N
−1/4). (31)

(29) is Cattaneo’s condition (5.1), and holds by Theorem B-1 of Cattaneo (2010). (30) is Cattaneo’s condition

(5.2), and holds from the first result of Proposition A1(i) of Chen et al. (2005). (31) is shown in the proof of

Theorem 8 (page 152) in Cattaneo (2010) [Theorem 4 of Newey (1997)].
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Therefore, all that are left to be verified are two conditions: a condition similar to (5.3) of Cattaneo (2010)

and a stochastic equicontinuity condition that, by virtue of the previous condition, gives (iii) in Theorem 3.3

in Pakes and Pollard (1989). Thanks to (a) symmetry in the terms in the second and third lines of (6), and

(b) the proofs of Theorem 5 and 8 in Cattaneo (2010) this boils down to verifying:

op(1) =
√
N
(
ξ̄N (β0, p̂, q̂(β0))− ξ̄N (β0, p, q̄(β0))

)
, (32)

op(1) = sup
|β−β0|≤δN

√
N
∣∣ξ̄N (β, p̂, q̂(β))− E

[
ξ̄N (β, p, q̄(β))

]
− ξ̄N (β0, p̂, q̂(β0))

∣∣
1 + C

√
N |β − β0|

(33)

for all positive sequences δN = o(1) and a generic constant C > 0, where in terms of the notation above,

ξ̄N (β, p̂, q̂(β)) :=
1

N

N∑
i=1

ω̂iν̂iτ̂i(β) and ξ̄N (β, p, q̄(β)) :=
1

N

N∑
i=1

ωiνiτi(β).

We start with the verification of (32). (Dependence on β is suppressed at β = β0.) Note that (32)’s RHS is:

1√
N

N∑
i=1

(ω̂i − ωi)(ν̂i − νi)(τ̂i − τi) +
1√
N

N∑
i=1

ωi(ν̂i − νi)(τ̂i − τi) +
1√
N

N∑
i=1

(ω̂i − ωi)νi(τ̂i − τi)

+
1√
N

N∑
i=1

(ω̂i − ωi)(ν̂i − νi)τi +
1√
N

N∑
i=1

ωiνi(τ̂i − τi) +
1√
N

N∑
i=1

ωi(ν̂i − νi)τi +
1√
N

N∑
i=1

(ω̂i − ωi)νiτi.

Thanks to (29) and (31), and the fact that 1
N

∑
i |ωi|, 1

N

∑
i |νi| and

1
N

∑
i |τi| are Op(1) under our assumptions,

it is straightforward to show that the first four terms in the above expression are op(1). We focus on the last

three terms and show that each of them is op(1). Since the convergence rates are faster for series estimators

based on splines than on power series, it suffices to show the desired results for the power series case, i.e., with

η = 1 in the statement of the proposition. We use Lemma A (below) with sp = sq = s and Kp = Kq = K.

Let us start with the fifth term:

1√
N

N∑
i=1

ωiνi(τ̂i − τi) =
1√
N

N∑
i=1

ωiνi(q̂(Z1i,Wi)− q(Z1i,Wi))−
1√
N

N∑
i=1

ωiνi(q̂(Wi)− q(Wi)).

We use Lemma A to show the second term on the RHS is op(1). Modifying (B4)-(B6) in Lemma A accordingly,

and then following the same steps as below will give the first term on the RHS is op(1). Hence this is omitted

for brevity. Note that 1√
N

∑N
i=1 ωiνi(q̂(Z1i,Wi)− q(Z1i,Wi)) = T5aN + T5bN where

T5aN :=
1√
N

N∑
i=1

ωiνi(q̂(Z1i,Wi)− (Idg ⊗R′
K(Wi))γ

∗
K) and T5bN :=

1√
N

N∑
i=1

ωiνi((Idg ⊗R′
K(Wi))γ

∗
K − q(Wi)).

Consider T5aN and note that |T5aN | ≤
∣∣∣ 1√

N

∑N
i=1 ωiνi(Idg

⊗R′
K(Wi))

∣∣∣ |γ̂K−γ∗K | = Op

(
KN−1/2 +K1/2−s/dw

)
,

because under our assumptions, E[ωiνi(Idg ⊗ R′
K(Wi))] = 0, V ar(ωiνi(Idg ⊗ R′

K(Wi))) = O(K) and hence

1√
N

∑N
i=1 ωiνi(Idg⊗R′

K(Wi)) = Op(K
1/2); while Lemma A (B4) gives |γ̂K−γ∗K | = Op

(
K1/2N−1/2 +K−s/dw

)
.

Since taking η = 1 means v < 1/6 and s/dw > 3 under our assumptions, noting K = Nv gives |T5aN | = op(1).
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Our assumptions give E[ωiνi((Idg ⊗ R′
K(Wi))γ

∗
K − q(Z1i,Wi))] = 0 and V ar(ωiνi((Idg ⊗ R′

K(Wi))γ
∗
K −

q(Z1i,Wi)) = O
(
supw ∥((Idg ⊗R′

K(w))γ∗K − q(w))∥2
)
. So |T5bN | = Op(K

−s/dw) = op(1) by Lemma A (B4).

Now consider the sixth term: 1√
N

∑N
i=1 ωi(ν̂i − νi)τi = T6aN + T6bN where

T6aN :=
1√
N

N∑
i=1

ωi
D1i(1−D2i)

p̂10(Wi)p10(Wi)
(p10(Wi)− p̂10(Wi))τi,

T6bN :=
1√
N

N∑
i=1

ωi
D1iD2i

p̂11(Wi)p11(Wi)
(p̂11(Wi)− p11(Wi))τi.

We will show T6aN = op(1). Define 1p
N := 1 (infw∈W p̂10(w) ≥ κ). 1p

N
P−→ 1 under Assumption M(2) since

∥p̂− p∥∞ = op(1). (4) gives E[1p
NT6aN |W1, . . . ,WN ] = 0 and hence E[1p

NT6aN ] = 0. Similarly, (4) also gives

E

[
1p
Nωiωj

D1i(1−D2i)

p̂10(Wi)p10(Wi)
(p10(Wi)− p̂10(Wi))

D1j(1−D2j)

p̂10(Wj)p10(Wj)
(p10(Wj)− p̂10(Wj))τiτj |W1, . . . ,WN

]
= 0

for all i ̸= j. Hence V ar(1p
NT6aN ) = E [V ar(1p

NT6aN |W1, . . . ,WN )] = E
[
Op(∥p̂− p∥2∞)

]
under our assump-

tions. Now (29) gives V ar(1p
NT6aN ) = op(1) and hence |T6aN | = op(1). Similar steps give T6bN = op(1).

Finally consider the seventh (last) term: 1√
N

∑N
i=1(ω̂i −ωi)νiτi and note that steps similar to that for the

sixth term also show that this last term is op(1). Hence (32) is verified.

Now we verify (33), i.e., for all positive δN = op(1) and a generic positive constant C,

op(1) = sup
|β−β0|≤δN

∣∣∣ 1√
N

∑N
i=1 ω̂iν̂i

(
τ̂i(β)− τ̂i(β

0)
)∣∣∣

1 + C
√
N |β − β0|

using that E
[
ξ̄N (β, p, q̄(β))

]
= 0 under (4). Define ζ1i(β) = τi(β) − E[τi(β)] and ζ2i(β) = τ̂i(β) − τi(β).

Therefore, the RHS of the above is

sup|β−β0|≤δN

√
N |A1N (β) +A2N (β)|
1 + C

√
N |β − β0|

, where

A1N (β) = 1
N

∑N
i=1 ω̂iν̂i

(
ζ1i(β)− ζ1i(β

0)
)
, and A2N (β) = 1

N

∑N
i=1 ω̂iν̂i

(
ζ2i(β)− ζ2i(β

0)
)

since E[τi(β)] = 0 for all β by (4). Now, the verification of (33) follows directly by following exactly the

same steps as that for the corresponding terms R2N (β) (for A1N (β)) and R3N (β) (for A2N (β)) in the proof

of Proposition -2.4 below. (Details are available from the authors.)

The series estimators in Proposition-2.4 are based on power series. Lemma A summarizes some well known

results for such estimators. The presentation omits an important intermediate step concerning the maximizer

and minimizer of the limiting objective functions for the coefficients for the power series that are treated care-

fully in Hirano et al. (2003) and Imbens et al. (2009). Instead we directly consider the approximation error

(B2) and (B5) for the intermediate target quantities defined below in (B1) and (B4) respectively. (B4)-(B6)

can be modified to accommodate for the nuisance parameters q(Z1,W ;β) and q(Z2,W ;β).
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Lemma A: The following results hold under the conditions of Proposition-2.4:

(B1) For a fixed Kp there exists a π∗
Kp

∈ RKp such that ∥pd1d2 − Ld1d2(RKp , π
∗
Kp

)∥∞ = O(K
−sp/dw
p ).

(B2) |π̂Kp − π∗
Kp

| = Op

(
K

1/2
p N−1/2 +K

1/2
p K

−sp/dw
p

)
as N → ∞.

(B3) ∥p̂− p∥∞ = Op

(
Kp[K

1/2
p N−1/2 +K

1/2
p K

−sp/dw
p ]

)
as N → ∞.

(B4) For a fixed Kq there exists a γ∗Kq
(β0) ∈ RKq such that ∥q(β0)− (Idg ⊗R′

Kq
)γ∗Kq

(β0)∥∞ = O(K
−sq/dw
q ).

(B5) |γ̂Kq (β
0)− γKq (β

0)| = Op

(
K

1/2
q N−1/2 +K

−sq/dw
q

)
as N → ∞.

(B6) For q̂(β0) = (Idg ⊗R′
Kq

)γ̂Kq (β
0), ∥q̂(β0)− q(β0)∥∞ = Op

(
Kq[K

1/2
q N−1/2 +K

−sq/dw
q ]

)
as N → ∞.

Proof of Lemma A:

See Theorem B-1 of Cattaneo (2010) for (B1)-(B3). See Lemma 1 of Newey (1994) for (B4). See Theorem

1 (including the proof) and Theorem 4 of Newey (1997) for (B5) and (B6).

Proof of Proposition-2.4:

Since the idea is the same, for notational simplicity let us present the proof for the case with only two-level

missingness. Accordingly, only in this proof let D := D1D2, p(W ) := p11(W ), and let it be known that

D1(1 − D2) ≡ (1 − D1)D2 ≡ 0 and p10(W ) ≡ p01(W ) ≡ 0. Without loss of generality, let dg = 1. Define

L(u) := exp(u)/[1 + exp(u)] for some scalar u (to replace the general formula Ld1d2(.)).

The proof is similar to that of Theorem 5 in Cattaneo (2010). The main difference is that we will not

require his condition (5.1), i.e., ∥p̂− p∥∞ = op(N
−1/4). His condition (5.2), i.e.,

sup
|β−β0|<δ

∥q̂(β)− q(β)∥∞ = op(1) (34)

is still satisfied in the same way from the first result of Proposition A1(i) of Chen et al. (2005). His condition

(5.3) also holds under our setup as is shown in Lemma B below (note the contrast with the proof of Theorem

8 in Cattaneo (2010)). Hence, similar to (33) in the proof of Proposition 2.3, we only need to verify that for

any positive δN = o(1) and some generic positive constant C:

sup
|β−β0|≤δN

√
N |RN (β)|

1 + C
√
N |β − β0|

= op(1), (35)

where RN (β) = m̄N (β, p̂, q̂(β))− E [m̄N (β, p, q(β))]− m̄N (β0, p̂, q̂(β0))

and m̄(β, p∗, q∗) := 1
N

∑N
i=1

{
Di

p∗(Wi)
[g(Zi,Wi;β)− q∗(Wi;β)] + q∗(Wi;β)

}
for some generic p∗ and q∗.

Since E [m̄N (β, p, q(β))] = E[g(Zi,Wi;β)] = E[q(Wi;β)] and E[g(Zi,Wi;β
0)] = E[q(Wi;β

0)] = 0 by (1),
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we obtain:
√
NRN (β) = R1N (β) +R2N (β) +R3N (β) where

R1N (β) =
1√
N

N∑
i=1

Di

p̂(Wi)
[v1(Zi,Wi;β)− v1(Zi,Wi;β

0)],

R2N (β) =
1√
N

N∑
i=1

(
1− Di

p̂(Wi)

)
[v2(Wi;β)− v2(Wi;β

0)],

R3N (β) =
1√
N

N∑
i=1

(
1− Di

p̂(Wi)

)
[v3(Wi;β)− v3(Wi;β

0)],

and the individual components are v1(Zi,Wi;β) := g(Zi,Wi;β) − E[g(Zi,Wi;β)], v2(Wi;β) := q̂(Wi;β) −

q(Wi;β) and v3(Wi;β) := q(Wi;β)−E[q(Wi;β)]. Now we verify (35) by working through the terms R1N (β),

R2N (β) and R3N (β) respectively. First choose δN converging to zero slowly enough to ensure that 1q
N :=

1
(
supβ∈NδN

∥q̂(β)− q(β)∥∞ ≤ δN

)
P−→ 1 by appealing to (34). Also define 1p

N := 1 (infw∈W p̂(w) ≥ κ).

Lemma (B3) gives ∥p̂− p∥∞ = op(1) because vp <
1
3 and

sp
dw

> 1
2 by (14). So 1p

N
P−→ 1 by Assumption M(2).

Consider R1N (β). Using Assumption M(2), Assumptions g(2), g(3) and g(4), arguments along the line of

Theorem 4 in Cattaneo (2010) imply that the class of functions
{
1p
N

D
p̂(.)v1(.;β) : β ∈ NδN

}
is Donsker with

finite integrable envelope and L2 continuous. Recalling that 1p
N

P−→ 1 (not depending on β), it follows that

supβ∈NδN
|R1N (β)|/[1 + C

√
N |β − β0|] = op(1).

Now consider R2N (β). First by a mean-value expansion (with the mean-value being subsumed by the

supβ∈NδN
clause) and then by appealing to (34) to use Assumption q(2b) we obtain

sup
β∈NδN

1q
N1p

N |R2N (β)| ≤ sup
β∈NδN

,∥q̃−q∥∞≤δN

√
N |β − β0| 1

N

N∑
i=1

1q
N1p

N

∣∣∣∣1− Di

p̂(Wi)

∣∣∣∣ ∣∣∣∣ ∂∂β′ [q̃(Wi;β)− q(Wi;β)]

∣∣∣∣ .
Since 1q

N1p
N

∣∣∣1− Di

p̂(Wi)

∣∣∣ ≤ max
(
1,
∣∣1− 1

κ

∣∣) is bounded, using (4) and Assumption q(2b) we obtain

sup
β∈NδN

1q
N1p

N

|R2N (β)|
1 + C

√
N |β − β0|

≤ C1δ
ϵ
N

[
1

N

N∑
i=1

b(Wi)

]

for some generic positive constant C1, some non-negative measurable function b(w) with E[b(W )] < ∞,

and some ϵ > 0. Letting δN → 0 and recalling that 1q
N

P−→ 1 and 1p
N

P−→ 1 (not depending on β) give

supβ∈NδN
|R2N (β)|/[1 + C

√
N |β − β0|] = op(1).

Finally consider R3N (β). By a mean-value expansion and then using Assumption q(2a) that allows for

interchanging the order of integration and differentiation we obtain

sup
β∈NδN

1p
N |R3N (β)| ≤ sup

β∈NδN

√
N |β − β0| 1

N

N∑
i=1

1p
N

∣∣∣∣1− Di

p̂(Wi)

∣∣∣∣ ∣∣∣∣ ∂∂β′ [q(Wi;β)− E[q(Wi;β)]]

∣∣∣∣
⇒ sup

β∈NδN

1p
N

|R3N (β)|
1 + C

√
N |β − β0|

≤ C1 sup
β∈NδN

1

N

N∑
i=1

∣∣∣∣ ∂∂β′ q(Wi;β)− E

[
∂

∂β′ q(Wi;β)

]∣∣∣∣
for some generic positive constant C1. The dominating integrable function in Assumption q(2a) also ensures
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that 1
N

∑N
i=1

∣∣∣ ∂
∂β′ q(Wi;β)− E

[
∂

∂β′ q(Wi;β)
]∣∣∣ P−→ 0 uniformly in β ∈ NδN . Recalling that 1p

N
P−→ 1 (not de-

pending on β) gives supβ∈NδN
|R3N (β)|/[1 + C

√
N |β − β0|] = op(1).

Lemma B: The following result holds under the conditions of Proposition-2.4 and its proof:

m̄N (β0, p̂, q̂(β0)) = m̄N (β0, p, q(β0)) + op(N
−1/2).

where, m̄N (β, p∗, q∗) := 1
N

∑N
i=1

{
Di

p∗(Wi)
[g(Zi,Wi;β)− q∗(Wi;β)] + q∗(Wi;β)

}
for some generic p∗ and q∗.

Proof of Lemma B:

Note that
√
N
[
m̄N (β0, p̂, q̂(β0))− m̄N (β0, p1, q(β

0))
]
= A1N +A2N +A3N where

A1N =
1√
N

N∑
i=1

Di

p(Wi)p̂(Wi)

[
g(Zi,Wi;β

0)− q(Wi;β
0)
]
[p(Wi)− p̂(Wi)] ,

A2N =
1√
N

N∑
i=1

(
Di

p(Wi)
− 1

)[
q(Wi;β

0)− q̂(Wi;β
0)
]
,

A3N =
1√
N

N∑
i=1

Di

p(Wi)p̂(Wi)

[
q(Wi;β

0)− q̂(Wi;β
0)
]
[p(Wi)− p̂(Wi)] .

This is an exact relation in contrast to the proof of Theorem 8 in Cattaneo (2010). We will show one by one

that A1N = op(1), A2N = op(1) and A3N = op(1).

We start withA1N . Now, by (4), E[1p
NA1N |W1, . . . ,WN ] = E[1p

NA1N ] = 0, and V ar(1p
NA1N |W1, . . . ,WN ) =

Op

(
∥p̂− p∥2∞

)
further using Assumption T, and because for each i ̸= j, we can condition on Wi,Wj to obtain

E

[
DiDj [p(Wi)− p̂(Wi)] [p(Wj)− p̂(Wj)]

p(Wi)p̂(Wi)p(Wj)p̂(Wj)
[g(Zi,Wi;β)− q(Wi;β)] [g(Zj ,Wj ;β)− q(Wj ;β)]

′
]
= 0

by (4). Therefore, Assumption T(2) gives V ar(1p
NA1N ) = O

(
∥p̂− p∥2∞

)
and hence 1p

NA1N = Op (∥p̂− p∥∞).

Recalling that 1p
N

P−→ 1, we obtain A1N = Op (∥p̂− p∥∞) which is op(1) by Lemma (B3) under (14).

Now consider A2N = B1N +B2N where

B1N =
1√
N

N∑
i=1

(
Di

p(Wi)
− 1

)[
q(Wi;β

0)−RKq (Wi)
′γ∗Kq

]
,

B2N =
1√
N

N∑
i=1

(
Di

p(Wi)
− 1

)[
RKq (Wi)

′γ∗Kq
− q̂(Wi;β

0)
]
.

Now, by (4), E[B1N |W1, . . . ,WN ] = E[B1N ] = 0, and V ar(B1N |W1, . . . ,WN ) = Op

(
∥q0 −R′

Kq
γ∗Kq

∥2∞
)
.

Therefore, V ar(B1N ) = Op

(
∥q0 −R′

Kq
γ∗Kq

∥2∞
)

by Assumption T(2) and using the same arguments as for

A1N . Therefore, B1N = Op

(
∥q0 −R′

Kq
γ∗Kq

∥∞
)
which is op(1) by Lemma (B1) since

sq
dw

> 0 under (14). On
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the other hand,

|B2N | =

∣∣∣∣∣ 1√
N

N∑
i=1

(
Di

p(Wi)
− 1

)
RKq (Wi)

′
(
γ∗Kq

− γ̂0Kq

)∣∣∣∣∣ ≤ |γ̂0Kq
− γ∗Kq

|

∣∣∣∣∣ 1√
N

N∑
i=1

(
Di

p(Wi)
− 1

)
RKq (Wi)

′

∣∣∣∣∣ .
E
[

1√
N

∑N
i=1

(
Di

p(Wi)
− 1
)
RKq (Wi)

′
]
= 0 and V ar

(
1√
N

∑N
i=1

(
Di

p(Wi)
− 1
)
RKq (Wi)

′
)
= O

(
E|RKq (W )|2

)
=

O(Kq) by definition ofRKq (W ) and using the same arguments as forA1N . Hence |B2N | = Op

(
|γ̂0Kq

− γ∗Kq
|K1/2

q

)
,

which is op(1) by Lemma (B5) because (14) requires vq < 1
2 and

sq
dw

> 1
2 . Therefore, we obtain A2N =

B1N +B2N = op(1).

Finally consider A3N = B3N +B4N +B5N +B6N where

B3N =
1√
N

N∑
i=1

Di

p(Wi)p̂(Wi)

[
q(Wi;β

0)−RKq (Wi)
′γ∗Kq

] [
p(Wi)− L(RKp(Wi)

′π∗
Kp

)
]
,

B4N =
1√
N

N∑
i=1

Di

p(Wi)p̂(Wi)

[
q(Wi;β

0)−RKq (Wi)
′γ∗Kq

] [
L(RKp(Wi)

′π∗
Kp

)− p̂(Wi)
]
,

B5N =
1√
N

N∑
i=1

Di

p(Wi)p̂(Wi)

[
RKq (Wi)

′γ∗Kq
− q̂(Wi;β

0)
] [
p(Wi)− L(RKp(Wi)

′π∗
Kp

)
]
,

B6N =
1√
N

N∑
i=1

Di

p(Wi)p̂(Wi)

[
RKq (Wi)

′γ∗Kq
− q̂(Wi;β

0)
] [
L(RKp(Wi)

′π∗
Kp

)− p̂(Wi)
]
.

Note that |B3N | ≤
[

1
N

∑N
i=1

Di

p(Wi)p̂(Wi)

]√
N∥q0−R′

Kq
γ∗Kq

∥∞∥p−L(R′
Kp
π∗
Kp

)∥∞. Also, 1p
N

1
N

∑N
i=1

Di

p(Wi)p̂(Wi)
=

Op(1). Hence 1
N

∑N
i=1

Di

p(Wi)p̂(Wi)
= Op(1) recalling that 1

p
N

P−→ 1. Thus, |B3N | ≤
√
NOp(K

−sq/dw
q )O(K

−sp/dw
p )

by Lemmas (B1) and (B4). Since vp
sp
dw

+ vq
sq
dw

> 1
2 by (14), it follows that |B3N | = op(1).

Now denoting L̇(u) := ∂
∂uL(u), a mean-value expansion gives for some mean-value π̃

B4N = − 1√
N

N∑
i=1

Di

p(Wi)p̂(Wi)

[
q(Wi;β

0)−RKq (Wi)
′γ∗Kq

]
L̇(RKp(Wi)

′π̃)RKp(Wi)
′
(
π̂Kp − π∗

Kp

)
.

Noting that L̇(u) = L(u)[1− L(u)] ∈ (0, 1) for all u, we obtain

E|1p
NB4N | ≤ ∥q0 −R′

Kq
γ∗Kq

∥∞|π̂Kp − π∗
Kp

| 1√
N

N∑
i=1

E

[
1p
NDiL̇(RKp(Wi)

′π̄)

p(Wi)p̂(Wi)
|RKp(Wi)

′|

]

≤ ∥q0 −R′
Kq
γ∗Kq

∥∞|π̂Kp − π∗
Kp

| 1√
N

N∑
i=1

√
E

[
1p
NDi

p(Wi)p̂(Wi)

]2√
E
[
|RKp(Wi)′|2

]
.

But E
[
|RKp(Wi)

′|2
]
= Kp by definition of RKp(W ). Therefore, by Lemmas (B4), (B2), and (4) and Assump-

tion M(2) respectively,

E|1p
NB4N | ≤ O(K−sq/dw

q )Op

(
K1/2

p N−1/2 +K1/2
p K−sp/dw

p

)√
NO(1)

√
Kp.

Hence, E|1p
NB4N | ≤ Op

(
Nvp−vq

sq
dw +N

1
2+vp−(vp

sp
dw

+vq
sq
dw

)
)
= op(1) since vq

sq
dw

> vp and vp
sp
dw

+vq
sq
dw

> 1
2+vp

by (14). This gives |1p
NB4N | = op(1). Recalling that 1p

N
P−→ 1, we obtain that B4N = op(1).
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Following steps similar for B4N we obtain

B5N = − 1√
N

N∑
i=1

Di

p(Wi)p̂(Wi)
RKq (Wi)

′
(
γ̂0Kq

− γ∗Kq

) [
p(Wi)− L(RKp(Wi)

′π∗
Kp

)
]
, and hence

E|1p
NB5N | ≤ ∥p− L(R′

Kq
γ∗Kp

)∥∞|γ̂0Kq
− γ∗Kq

| 1√
N

N∑
i=1

E

[
1p
NDi

p(Wi)p̂(Wi)
|RKq (Wi)

′|
]

= O(K−sp/dw
p )Op

(
K1/2

q N−1/2 +K−sq/dw
q

)√
NO(1)

√
Kq

by Lemmas (B1), (B5), and (4) and Assumption M(2), and the definition of RKq (W ) respectively. Therefore,

E|1p
NB5N | ≤ Op

(
Nvq−vp

sp
dw +N

1
2+

vq
2 −(vp

sp
dw

+vq
sq
dw

)
)
= op(1) since vp

sp
dw

> vq and vp
sp
dw

+ vq
sq
dw

> 1
2 +

vq

2 by

(14). Hence, as before, it follows that B5N = op(1).

Finally, again denoting L̇(u) := ∂
∂uL(u), a mean-value expansion gives for some mean-value π̃,

B6N =
1√
N

N∑
i=1

Di

p(Wi)p̂(Wi)
RKq (Wi)

′
(
γ̂0Kq

− γ∗Kq

)
L̇(RKp(Wi)

′π̃)RKp(Wi)
′
(
π̂Kp − π∗

Kp

)
.

Using L̇(u) ∈ (0, 1), note that (4) and Assumption M(2) give

|1p
NB6N | ≤ |γ̂0Kq

− γ∗Kq
||π̂Kp − π∗

Kp
| 1√
N

N∑
i=1

1p
NDiL̇(RKp(Wi)

′π̄)

p(Wi)p̂(Wi)
|RKq (Wi)RKp(Wi)

′|

≤ |γ̂0Kq
− γ∗Kq

||π̂Kp − π∗
Kp

|
√
N

κ2
1

N

N∑
i=1

|RKq (Wi)RKp(Wi)
′|.

E
[
|RKq (W )RKp(W )′|

]
≤ E

[
|RKq (W )||RKp(W )′|

]
≤
√
E
[
|RKq (W )|2

]
E
[
|RKp(W )′|2

]
=
√
KqKp. Hence

1
N

∑N
i=1 |RKq (Wi)RKp(Wi)

′| ≤ Op(
√
KqKp). Therefore, by Lemmas (B5) and (B2),

|1p
NB6N | ≤ Op

(
K1/2

q N−1/2 +K−sq/dw
q

)
Op

(
K1/2

p N−1/2 +K1/2
p K−sp/dw

p

)√
N
√
KpKq,

giving |1p
NB6N | ≤ Op

(
N− 1

2+vp+vq +Nvp+vq( 1
2−

sq
dw

) +Nvq+vp(1−
sp
dw

) +N
1
2+vp+

vq
2 −(vp

sp
dw

+vq
sq
dw

)
)
= op(1) since

vp + vq <
1
2 , vq

sq
dw

> vp +
vq

2 , vp
sp
dw

> vp + vq and vp
sp
dw

+ vq
sq
dw

> vp +
vq

2 + 1
2 by (14). 1p

N
P−→ 1 implies

B6N = op(1). Hence A3N = op(1).

Verification of the comment in Section 2 that the asymptotic variance of IPW-GMM equals the

efficiency bound based on a smaller set of moment restrictions:

Toward the end of Section 2 we noted that: The asymptotic variance of the semiparametric IPW-GMM

estimator in the general case equals the efficiency bound for estimation of β by combining the moment restric-

tions in (15) and (18) and instead considering a modified restriction:

E
[
ProjW (ϕ(D1, D2, Z,W ;β)|ϕ0)

]
= 0 for β ∈ B ⊂ Rdβ if and only if β = β0.
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We verify this by obtaining the concerned efficiency bound. The idea is same as Theorem 2.1 and the discussion

following it in Graham (2011). To convert the conditional (onW ) restrictions into unconditional ones, we con-

sider W with a known finite support W = {w1, w2, . . . , wL}. This gets rid of the infinite dimensional nuisance

parameters p(W ) that arises with an infinite support ofW , and instead introduces a finite number of unknown

nuisance parameters ρ = (ρ′10, ρ
′
01, ρ

′
11)

′ where ρjk = (ρjk(1) := P (D1 = j,D2 = k|W = w1), . . . , ρjk(L) :=

P (D1 = j,D2 = k|W = wL))
′ for j, k = 0, 1. In Lemma C we obtain the Fisher information bound for β0

in this model treating ρ as an unknown (finite dimensional) nuisance parameter. Since the bound does not

depend on the multinomial assumption for W , the same arguments as in Graham (2011) (page 442) establish

that this is the semiparametric efficiency bound β0 under the moment restrictions (15) and (18).

Lemma C: Suppose that (i) the distribution of W has a known, finite support W = {w1, . . . , wL}, (ii) there

is some β0 ∈ B ⊂ Rdβ and ρ0 = (ρ0
′

10, ρ
0′

01, ρ
0′

11)
′ ∈ R1 × . . . × RL such that (15) and (18) hold. (iii) For each

l = 1, . . . , L the space Rl := {(rl(1), rl(2), rl(3)) : such that rl(1), rl(2), rl(3), 1− (rl(1) + rl(2) + rl(3)) ≥ κ ∈

(0, 1)} satisfies Assumption M(2). (iv) Other assumptions in Theorem 2.1 of Graham (2011) hold. Then the

Fisher information bound for β0 is
(
G′[V +∆]−1G

)−1
[see (8)].

Proof of Lemma C: To simplify notations let β and ρ denote β0 and ρ0 unless explicitly stated otherwise.

The result follows from the same three steps in the proof of Theorem 2.1 in Graham (2011).

Step 1: Let C be an L × 1 vector with 1 in the l-th row if W = wl and 0 elsewhere, and τl := P (W =

wl). Exactly following Graham (2011), it can be established that the restrictions (15) and (18) are, in the

multinomial case, equivalent to a finite number (dg + 3L) of unconditional moment restrictions:

E[m(D1, D2, Z1, Z2,W ;β, ρ)] = E

 m1(D1, D2, Z1, Z2,W ;β, ρ)

m2(D1, D2,W ; ρ)

 = 0,

where m1(.;β, ρ) =
D1D2

C ′ρ11
g(Z1, Z2,W ;β) and m2(.; ρ) = C ⊗


D1(1−D2)− C ′ρ10

(1−D1)D2 − C ′ρ01

D1D2 − C ′ρ11

 .

Step 2: Following Graham (2011) it can be shown that the variance bound for β under the sole restriction

E[m(D1, D2, Z1, Z2,W ;β, ρ)] = 0 is the upper (north-west) dβ × dβ block of the matrix (M ′V̄ −1M)−1 where

M =

[
Mβ := E

[
∂

∂β′m(.;β, ρ)

]
= G,Mρ := E

[
∂

∂ρ′
m(.;β, ρ)

]]

V̄ =

 V̄11 := E[m1(.;β, ρ)m1(.;β, ρ)
′] V̄12 := E[m1(.;β, ρ)m2(.; ρ)

′]

V̄21 := E[m2(.; ρ)m1(.;β, ρ)
′] V̄22 := E[m2(.; ρ)m2(.; ρ)

′]


Since m2(.;β) does not involve β (meaning, Mβ = [G′, 0]′, i.e., the bottom 3L rows of Mβ are identically 0),

it follows after some algebra (shown below) that this bound is equal to

(
G′ (V̄11 − V̄12V̄

−1
22 V̄21

)−1
G
)−1

. (36)

48



This holds because the dβ × 3L block in the north-east of (M ′V̄ −1M)−1 is a zero-block (and same for the

3L × dβ block in the south-west). Under assumptions M(2)-(4), we show this below by equivalently showing

that the dβ × 3L block in the north-east of M ′V̄ −1M is a zero-block. This is equivalent to showing that the

dβ × 3L matrix G′ (V̄11 − V̄12V̄
−1
22 V̄21

)−1
M1ρ − G′ (V̄11 − V̄12V̄

−1
22 V̄21

)−1
V̄12V̄

−1
22 M2ρ is zero, where M1ρ and

M2ρ respectively denote the first dg and the last 3L rows of Mρ. A sufficient condition for this is M1ρ =

V̄12V̄
−1
22 M2ρ, and in the rest of Step 2 we verify that it holds. Define A :=

[
τ1

ρ11(1)
q(1), . . . , τL

ρ11(L)q(L)
]
where

q(l) := E[g(Z,W ;β0)|W = wl]. Hence M1ρ = −[0, 0, A]. On the other hand, M2ρ = −[τ1B(1)′, . . . , τLB(L)′]′

where, for l = 1, . . . , L, B(l) := [e(l), e(L + l), e(2L + l)]′ and e(k) is a 3L × 1 unit vector with 1 in the k-th

element and zeros elsewhere. Define E[ϕ(.;β0)ϕ0(.)
′|W ] = H(W )′ and (E[ϕ0(.)ϕ0(.)

′|W ])
−1

= K(W ) where

H(W )′ := − [p10(W ), p01(W ), p11(W )− 1] q(W ),

K(W ) := J(W )−1 =


p00(W )+p10(W )
p00(W )p10(W )

1
p00(W )

1
p00(W )

1
p00(W )

p00(W )+p01(W )
p00(W )p01(W )

1
p00(W )

1
p00(W )

1
p00(W )

p00(W )+p11(W )
p00(W )p11(W )

 and

J(W ) :=


p10(W )(1− p10(W )) −p10(W )p01(W ) −p10(W )p11(W )

−p01(W )p10(W ) p01(W )(1− p01(W )) −p01(W )p11(W )

−p11(W )p10(W ) −p11(W )p01(W ) p11(W )(1− p11(W ))

 ,

and for W = wl (l = 1, . . . , L) denote them by H(l), K(l) and J(l). Therefore, some algebra gives

V̄12 = [τ1H(1)′, τ2H(2)′, . . . , τLH(L)′] = V̄ ′
21,

V̄22 = diag{τ1J(1), τ2J(2), . . . , τLJ(L)},

and V̄ −1
22 = diag

{
1

τ1
K(1),

1

τ2
K(2), . . . ,

1

τL
K(L)

}
,

and hence V̄12V̄
−1
22 = [H(1)′K(1),H(2)′K(2), . . . , H(L)′K(L)] .

Letting Tj(l) denote the j-th column of the dg × 3 matrix H(l)′K(l) for j = 1, 2, 3 and l = 1, . . . , L, we obtain

V̄12V̄
−1
22 M2ρ = − [{τ1T1(1), . . . , τLT1(L)}, {τ1T2(1), . . . , τLT2(L)}, {τ1T3(1), . . . , τLT3(L)}] =M1ρ

by distributing the columns according to the selection elements in the matrices B(1),. . . ,B(L). Therefore, the

sufficient condition is verified and hence (36) gives the variance bound.16

Step 3: Since V̄11 = E[ϕ(.;β0)ϕ(.;β0)′] and V̄12V̄
−1
22 V̄21 =

∑L
l=1 τlH(l)′K(l)H(l) = E

[
E [ϕϕ′0|W ] (E [ϕ0ϕ

′
0|W ])

−1

E [ϕ0ϕ
′|W ]], simple algebra gives V̄11 − V̄12V̄

−1
22 V̄21 = V +∆ [see (8)] and hence completes the proof .

16Recall that this sufficient condition has the important implication that knowing the nuisance parameters ρ0 does
not lead to more efficient estimator of β0 under the current setup.
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