Supplemental Appendix: GMM with Multiple Missing Variables

Appendix B gives further details on the series estimators used in the paper. Appendix C collects proofs of all
the theoretical results and claims. The notations are the same as in the original paper, and the equations are

also numbered accordingly in the same order.

B Appendix: Series estimation of the nuisance parameters

For a variable U, consider Py (U) = (PL(U),..., PE(U)) that is a K-truncation of some approximating
series such that the minimum eigenvalue of E[Pk(U)Pk(U)’] is bounded away from 0 uniformly in K. Let
Ry (U) := (E[Px(U)Pg(U)'])~'/?Pg (U) be a standardization for Py (U). See Newey (1997) for details. For
estimation of p(W) and ¢(W; 3) we take U = W, while for ¢(Z1, W; 3) and q(Z2, W; 8) we take U = (Z1, W'’
and U = (Z5, W'")’ respectively.

p(W) = (poo(W), pro(W), po1 (W), p11(W)) is estimated by multinomial series logit as:

exp[ R (W) (4, dy) K]
=01 €XP[ R (W) (i) K |

Pdydy (W) := La,a, (R (w), Trc) where La,a, (Ric(w), 7xc) = 5

for dy,ds = 0,1. p1(w) = pr1(w) +pro(w) and p2(w) = p11(w)+Po1(w). See Hirano et al. (2003) and Cattaneo
(2010). For mx = [T(og) 1 T(10)K> T(o1)x» T(11)rc) the estimates are:

N
Tk = arg max > > UDyi =dy, Dy = dy)1og La,a, (R (W;), 7).

4d —
i ERTU o0 0 =057 4, G=0,1

Series estimators for the elements of g(5) are obtained following Newey (1997) and Cattaneo (2010):

qw;8) = (Ia, ® Rx(w) )7k (B),
d(zj,w; 8) = (la, ® Ric(u;)" 7% (8) where U; = (2, W')' for j =1,2.

For vk (8) = [vx1(B)', ..., Yka,(B)'] and fyg)(ﬁ) = [fyg%(ﬂ)’, . ,’ygzig (8)') the estimates are:

~ERKdg

N
Ak (B) := arg min %ZDHD% (9(Zi, W3 8) — (1, ® RK(Wi)/)'Y)/ (9(Zi, W3 B) — (1o, ® Rx(W3)'y))
im1

~ERK g

N
39)(8) := arg min % > D1iDai (9(Zi, Wi B) — (La, @ Ric(U;i)' V)" (9(Zi, Wi3 B) — (La, ® Ric(U;i)'7))
=1

for j = 1,2. Dividing D1;Ds; by p11(W;) in the definitions for 4 (8) and ﬁg)(ﬂ) often leads to improvement
in the finite-sample properties of the AIPW estimators [see Hirano and Imbens (2001)]. Similarly, instead
of using Zf\il D1;Dy; observations for all, improvement is possible in the P-case by taking advantage of the
partition in (5) to estimate the elements of ¥k () more precisely by using Zfil Dy, observations for the first

Kdg, elements and Zivzl Do; observations for the last Kd,, elements. We follow this in Sections 4 and 5.
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C Appendix: Proof of main results

Proof of Proposition 2.1:

Let f and F' denote the density and distribution functions, with the concerned random variables specified
inside parentheses. LZ(F) denotes the space of mean-zero, square integrable functions with respect to F.
The proof consists of three standard steps. (1) Obtain the tangent set for all regular parametric submodels
satisfying the semiparametric assumptions on the observed data. (2) Conjecture the efficient influence function
and then show pathwise differentiability of 5 and verify that the efficient influence function lies in the tangent
set. (3) Obtain the efficiency bound as the expectation of the outer product of the efficient influence function.

STEP - 1: Consider a regular parametric sub-model indexed by a finite-dimensional parameter 6 for
the joint distribution of the observed data O := (D1, Dy, D171, Do Z5,W). So the joint density fp(O) of the

observed data can be expressed in terms of the full data (D1, Do, Z1, Zo, W) as

.11 (W) fo(Z1, Zo| WP P2 [pg.10(W) £ (Z2 W] P72 [pg 01 (W) fo (Za| W) PP [pg o (W) 2D =P2) 1, ()

where (4) gives the factorization of the first three terms. The score with respect to 6 is

Po.dyd> (W)

SQ(O) = DlDQSQ(Z17Z2‘W) + Z Dj(l — Dk»)SQ(Z]“W) + SQ(W) + Z 1(D1 =dy, Dy = d2)p9 o (W)

j#k=1,2 dy,d2=0,1
where s9(Z1, Za|W) = Zlog fo(Z1, Zo|W), se(Z1|W) = Zlog fo(Z1|W), so(Zo|W) := 2 log fo(Za|W),
sg(W) = a% log fo(W), and pg 4,4, (W) = %p@dldQ(W) for dy,d> = 0,1. Henceforth, we omit the subscript
0 from quantities evaluated at 6 = 6.

The tangent set for the model is characterized by functions of the form:

bdl d2 (W)

Cdyid- (W) (25)

T := D1Dya(Z1, Zo, W)+ > Dj(1— Di)aj(Z;, W) +ao(W)+ > 1(Dy =dy, Dy = dy)
j#£k=1,2 dy,d2=0,1

where a(Z1,Z2,W) € L§(F(Z1, Zo|W)), a1(Z1, W) € LY(F(Z1|W)), as(Z2, W) € L§(F(Z2|W)), ao(W) €

L3(F(W)) and 3, 4o, 1Dy = dy, Dy = da) 2252500 € L3(F(D1, Dy[W)) with the additional restriction
’ ’ 142

that Zdl,dzzo,l ba,a,(W) =0 and Zdl,dzzo,l Cdydy (W) =1 for all W.

STEP - 2: The moment conditions in (1) are equivalent to the requirement that for any dg x d, matrix A,
the just-identified system of moment conditions AE[g(Z, W;3%)] = 0 hold. Differentiating under the integral,

and taking a full row rank A, we obtain by using (4) that

95°(6o)

9log fo, (2, W)
¢’

— —(AG)flAE g(Z,W;ﬂo) 96’

= —(AG)AE [g(Z,W; B°) {s(W)' + 5(Z1, Zo|W)'}] .
For an arbitrary A, pathwise differentiability follows if we can find (A, D1, Do, Z1, Za, W; 8°) € T such that

0
E[{(A, Dy, Da, 21, Z5, W; 8°)S(0)'] = 663(5/90)'

(26)
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Conjecture: (A, Dy, Do, Zy, Z2,W; 8°) = —(AG) "t Ap(Dy, Dy, Z1, Zo, W; B°). Then verify (26) by showing
E[p(Dy, Dy, Z1, 22, W)S(0)'] = E [g(Z,W; 8°) {s(W) + s(Z1, Zo|W)'}] . (27)
We proceed term-by-term for the four terms in (D1, Do, Z1, Zo, W; 3%). Dependence on Y is suppressed.

Consider the first term. Taking expectation conditional on W and then using (4) we obtain:

DD,

Elpnmm

(9(2,W) —q(W)) S(O)| = E[(9(2,W) — ¢(W)) (21, Z2|W)'| = E[9(Z,W)s(Z1, Zo|W)']

since Elq(W)s(Z1,Z3|W)'] = 0 by using s(Zy1, Zo|W) € L3(F(Z1,Z2|W)). Now consider the second term.
Taking expectation conditional on W and then using (4) we obtain: E [¢(W)S(O)'] = E [¢(Z, W)s(W)’] since
$(21, Zo|W) € LY(F (21, Z2|W)), s(Z1|W) € L§(F(Z1|W)), 5(Za|W) € L§(F(Z2|W)), and 32, 4,1 Para> (W) =

0. Now consider the third term and note that similar arguments give

_plo(W) D1(1 — Dg) D1D2 ,
p |l (PO - ) (o w) - aw) S(0)
_ o [po(W) (Di(1—D5)  DiDy B s CD)s /
=k :P1(W) < p1o(W) pu(W)) (¢(Z1, W) — q(W)){D1D2s(Z1, Z2|W) + D1(1 — D3)s(Z1|W)}
= 5| @21 W) — ) (217 - (20, 20|
W)

e

q(Z1, W) — q(W)) S(Z2|Zl7W)'} [since s(Z1, Zo|W) € s(Z0|W) + s(Za|Z1, W) |

where the last line follows because, by definition of conditional score, s(Z2|Z1, W) € LE(F(Z3|Z1,W)). Similar

p2(W) po1 (W) p11(W)
Hence (27) (and thereby (26)) is verified. To show that (D1, D2, Z1, Z>, W; 3°) belongs to the tangent

arguments show that for the fourth term, F [p°1(W) (<17D1)D2 — DiDy ) (¢(Zo, W) — q(W)) S(O)’] =0.

set T in (25), rearrange its terms suitably as follows:

PD1, Doy 20,2, W3 ) = D ((2,) = a9) = P00 (a0, ) - a9) = P20 20— a0
Dl(l—Dz) (1—D1)D2

The first term of the RHS involves Dy Do, Z1, Zo, W and belongs to L3(F(Z1, Z2|W)) by (4). It corresponds to
D1Dsa(Zy, Zo, W) of T in (25). The second term of the RHS Dy (1 — Ds), Z1, W and belongs to L3(F(Z1|W))
by (4). It corresponds to Di(1 — Ds)ai(Z1, W) of T in (25). Similarly, the third term corresponds to
(1 — D1)Dsag(Za, W) of T in (25). The fourth term involves W and belongs to LZ(F(W)). It corresponds
ap(W) of T in (25). Remaining terms of 7 are corresponded identically by Os.

STEP - 3: We verified that any regular estimator for 3° is asymptotically linear with influence function
of the form —(AG)~*Ag(Z,W;j3°). For a given A the projection of the above influence function on to the

tangent set T is (A, D1, Do, Z1, Zo, W; %) which, therefore, is the efficient influence function given the A. The
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variance of ¥(A, D1, Dy, Z1, Zo, W; 3°) is (AG) 1AV A’(AG)’l/ where V := Var (@(Dl, Do, 71, Zs, W;BO)).
The efficient influence function involves the A that minimizes the above variance. Standard arguments give
that the minimizer is A, = G’V 1. Hence the efficiency bound is Q := (G’V~!G)~! and the efficient influence

function with variance equal to the efficiency bound is
w(Dla D2, Zla Z2) W) = ¢(A*7 Dla D2, Zla Z2a W) = —Q_lG/V_l(p(Dh D2a Z17 ZQa W7 60) u

Remark: From the verification of (27) in Step 2 involving the first two terms of ¢(D1, Ds, Z1, Zo, W), it
follows naturally that the conventional form [see Chen et al. (2008)] based on the common complete sub-

sample (D1 = Dy = 1):
D1Ds
p11(W)

(9(Z,W;8°) — q(W; B°)] + q(W; 8°)

is an influence function. However, in general it does not belong in 7 defined in (25) because that requires the
parametric submodel to satisfy s(Z1|W) = s(Z2|W) = 0 but s(Z1, Za|W) # 0. This is not possible except
in the special case s(Z1, Zo|W) = s(Z1|Z2, W) = s(Z2|Z1, W) which imposes the additional restrictions on T
that a(Zy, Za, W) € L3(F(Z1|Z2,W)) and a(Z1, Z2, W) € L3(F(Z|Z1, W)).

Proof of Proposition 2.2:

STEP - 1: Same as that in the proof of Proposition 2.1 with W denoting the distinct collection of all
elements of W and Ws, and allowing for the possibility that W = W and/or W = Ws.

STEP - 2: The moment conditions in (1) under (5) are equivalent to the requirement that for any dg x d,

matrix A = [A1, As] where A; is dg xdg, for j = 1,2, the following just-identified system of moment conditions

.30 R0
AE[g(Z,W;8%)] = [Ay, A)E 91(Z1, Wh; B, BY) .

92(Z2, Wa; 83, B3)

hold. Differentiating under the integral, and taking a full row rank A, we obtain by using (4) that

850(90) _ —(Aé)ilAE 91(Z17W1§587ﬂ?) {S(Wl)/—’_S(Zl‘Wl)/}
90" 92(Zo, W3 33, B9) {s(Wa) + s(Z2|W2)'}

Now as in STEP-2 in the proof of Proposition 2.1 we show that, for j =1, 2:
E [opj(Dj, Z;, W3 53, 87)S(0)]| = E [g;(Z;, Wy; B0, 57) {s(W)' + s(Z;|W)'}] . (28)

For j = 1, taking expectation conditional on W and then noting that Dy Das(Z1, Z3|W)+D1(1—D3)s(Z1|W) =
D18(21|W) + D1D28(22|Z1, W) in S(Dl, DQ, D1Z17 DQZQ, W)7 it follows that

o1 V) [91(Z1, W1) = qu(W)] S(O)' | = E[91(Z1, W1) — u(W)] s(Z1|[W)'] = E [91(Z1, W1)s(Z:|[W)']
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where the first equality follows from s(Z3|Z1, W) € L3(F(Z2|Z1,W)), and the second from s(Z;|W) €
L3(F(Z:1|W)). On the other hand, E [q;(W; 5o, 3;)S(O)] = E[g1(Z1,W1)s(W)'] by using s(Z1, Z|W) €
L§(F(Z1,Z5|W)), s(Z1[W) € L§(F(Z1|W)), s(Z2|W) € L§(F(Z2|W)) and 3", 4. Paya, (W) = 0. Therefore,
(28) is verified for j = 1. Similarly, it can be verified for j = 2.

Now rearranging the terms in pp (D1, D2, Z1, Zo, W; 3°) as follows:

Dy, 7y, W 91(Z1,W1)—q1 (W) 91(Z1,W1)—q1 (W)
or(Dr Do, 20, 2o, ) = | PPN 1S b1 by P
op2(Ds, Zy, W) % 0
0 (W
FA=DIDz | w—mon | T o ’
g2 2;p2(2W)q2 q2(W)

it is easy to see that when evaluated at 3 = 3%, the four terms on the RHS, by virtue of (4), are respectively
in LZ(F(Zy1,Z2|W)), LE(F(Z1|W)), L3(F(Z3]W)) and LZ(F(W)). The terms DyDaa(Zy, Za, W), D1(1 —
Dy)ay(Z1,W), (1 — Dy1)Daas(Ze, W) and ag(W) of T in (25) are corresponded by these four terms, whereas
the remaining terms in 7 are corresponded identically by 0s. This completes step 2.

STEP - 3: Follows similarly as in the proof of Proposition 2.1. =

Notations to be used in the rest of the Appendix: For any a x b matrix A (includingb=1ora=>b=1),
let |A| := y/Trace(A’A). For any a x b matrix A(u,3) where the (7, j)-th element is a function A4;;(u, 5) :
UxO =R, let [[A(B)|cc = sup,ey |A(u, B)| for any given 5 € B, and let ||Al|cc = supgep sup,ey |A(u, B)|.

Proof of Proposition-2.3:

Define the following quantities that will be used throughout the proof for notational convenience:

p1o(Ws) . pW)
w; = , and @; := = ,
p1(Ws) p(Wi)
 D1u(1—=Dy) DDy . D1u(1=Dy) Di;Dy
v, = - , and U 1= —— - = )
p1o(Wi) p1(W3) p1o(W3) pu1(Ws)

7i(B) 4(Z1i, Wi; B) — ¢(Wi; ) and 73(8) = q(Zvi, Wi; B) — (Wi B).

Under the conditions of the proposition,

P —pllc = op(N~H1), (29)

sup  ||g(B) —q¢(B)llc = 0p(1) for some constant § > 0 and, (30)
[B—BC1<6

173 8%) = (U3 B)lloo = 0p(NTH4). (31)

(29) is Cattaneo’s condition (5.1), and holds by Theorem B-1 of Cattaneo (2010). (30) is Cattaneo’s condition
(5.2), and holds from the first result of Proposition A1(i) of Chen et al. (2005). (31) is shown in the proof of
Theorem 8 (page 152) in Cattaneo (2010) [Theorem 4 of Newey (1997)].
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Therefore, all that are left to be verified are two conditions: a condition similar to (5.3) of Cattaneo (2010)
and a stochastic equicontinuity condition that, by virtue of the previous condition, gives (iii) in Theorem 3.3
in Pakes and Pollard (1989). Thanks to (a) symmetry in the terms in the second and third lines of (6), and

(b) the proofs of Theorem 5 and 8 in Cattaneo (2010) this boils down to verifying:

op(1) = VN (En(8°5.7(8")) — En (8 p,a(8"))) , (32)
o _ su \/N|EN(ﬂ’paq /3)) B [fN(Bapa q(ﬂ))} 751\/'(607?)\3 A(ﬂo))|
P P 1+ CVN|8 - 8] )

for all positive sequences éy = o(1) and a generic constant C' > 0, where in terms of the notation above,

N N
E(B.5,3(P)) : Z DF(B) and Ex(8,p,4(8)) = 1= S wwiri(F)
el i=1

We start with the verification of (32). (Dependence on 3 is suppressed at 3 = 3°.) Note that (32)’s RHS is:

N N N
1 1 1
— Wi —w) ([ —v)(Ti — ) + —= WiV —v) (T — ) + —= (Wi — wi)vi(Ts — 1)
mz 72 ¥ 2
N 1N N
—w;) (Vs WiV (T — ;) wi(U; —v)Ti + —= (Wi — wi) Vi
e W "R P>

Thanks to (29) and (31), and the fact that & >, ws|, & >, [vi| and & >, |7:| are O, (1) under our assumptions,
it is straightforward to show that the first four terms in the above expression are 0,(1). We focus on the last
three terms and show that each of them is 0,(1). Since the convergence rates are faster for series estimators
based on splines than on power series, it suffices to show the desired results for the power series case, i.e., with
7 =1 in the statement of the proposition. We use Lemma A (below) with s, = s, = s and K, = K, = K.

Let us start with the fifth term:

N N
\/%Z;wim(ﬁ— i 22: Q(Z1is W3) — q(Z15, W5) szl/z W;) — q(W7)).

We use Lemma A to show the second term on the RHS is 0, (1). Modifying (B4)-(B6) in Lemma A accordingly,
and then following the same steps as below will give the first term on the RHS is 0, (1). Hence this is omitted

for brevity. Note that \/iﬁ vazl wivi((Z1i, W3) — q(Z1, W3)) = Tsan + Tspn where
N N
T: =1 qQ(Z1, W, I R (W) d T: - 1 I R (Wi W,
SN = Z:ini(Q( 1, Wi) — (L, @ R (Wi))vk) and Tspy := i Zwiw(( dy @ Re(Wi))vie — q(W5)).
Consider T5,y and note that |Ts,n| < \/% ZZ]\LI wivi(Iq, ® R’K(Wz))‘ k=75 = O, (KN—1/2 + K1/2—S/dzu)7
because under our assumptions, Elw;v;(ls, @ Ry (W;))] = 0, Var(wvi(lg, @ Ry (W;))) = O(K) and hence

ﬁ vazl w;ivi(Ia, @Ry (W;)) = Op(K'/?); while Lemma A (B4) gives [Jx —vi| = O, (KY2N71/2 4 K=3/dw).

Since taking 7 = 1 means v < 1/6 and s/d,, > 3 under our assumptions, noting K = NV gives |Tsqn| = 0,(1).
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Our assumptions give Ew;v;((1a, ® Ry (Wi))vic — a(Z1s, Ws))] = 0 and Var(wvi((la, ® R (Wi))vi —
q(Z1i,W;)) = O (supw [((1a, ® Ry (w))v — w))HQ) So |Tsen| = Op(K_S/dw) = 0p(1) by Lemma A (B4).

(
Now consider the sixth term: ﬁ 21111 w;i(U; — v;)7 = Tean + Tepn where

. N Dyu(1-Dy) .
Toan = T z:: W(Plo(wi) — Pro(Wi))m,
N
Teon = T; ‘%(ﬁll(wi) = p1r(Wi))Ti.

We will show Tgon = 0,(1). Define 1%, := 1 (infyew pro(w) > k). 1% Py 1 under Assumption M(2) since

I = plloc = 0p(1). (4) gives E[1X,Toan| Wi, ..., Wn] = 0 and hence E[15,Ts,n] = 0. Similarly, (4) also gives

Dy;(1 — Doy)

Dis(1 — D)
E |18 ww;— i
N p1o(W;)p1o(W;)

S Ty Po(7e) = Pio(W0)

(P1o(W;) — pro(W;))mim|Wh,...,Wn| =0

for all i # j. Hence Var(13Toan) = E [Var(1} Toan|Wh, ..., Wn)] = E [O,(||p — p||%,)] under our assump-
tions. Now (29) gives Var(15,Ts.n) = 0p(1) and hence |Tgon| = 0,(1). Similar steps give Topn = 0p(1).

Finally consider the seventh (last) term: ﬁ Zfil(@ —w;)v;7; and note that steps similar to that for the
sixth term also show that this last term is 0, (1). Hence (32) is verified.

Now we verify (33), i.e., for all positive d5 = 0,(1) and a generic positive constant C,

S 2,0 (7(8) - 7(8)|
op(l) = sup
|8—B0|<én 1+ CVNI|B - 8|

using that E [Ex(8,p,q(8))] = 0 under (4). Define ¢15(8) = 7:(8) — E[n(8)] and C2i(B8) = 7i(B) — 7 ().
Therefore, the RHS of the above is

VN |Ain (8) + Aan (B)]
1+ CVNI|B - B
Ain(B) =% Zi\;l wiv; (Gi(B) — ¢1i(B%)) , and Aon(B) = % va:l @i (C2i(B) — ¢2i(87))

SUP|3_g0|<sy , where

since E[r;(8)] = 0 for all 8 by (4). Now, the verification of (33) follows directly by following exactly the
same steps as that for the corresponding terms Ron () (for A1n(5)) and Ry () (for Aan(5)) in the proof

of Proposition -2.4 below. (Details are available from the authors.) =

The series estimators in Proposition-2.4 are based on power series. Lemma A summarizes some well known
results for such estimators. The presentation omits an important intermediate step concerning the maximizer
and minimizer of the limiting objective functions for the coeflicients for the power series that are treated care-
fully in Hirano et al. (2003) and Imbens et al. (2009). Instead we directly consider the approximation error
(B2) and (B5) for the intermediate target quantities defined below in (B1) and (B4) respectively. (B4)-(B6)

can be modified to accommodate for the nuisance parameters q(Z;, W; ) and q(Za, W; ).
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Lemma A: The following results hold under the conditions of Proposition-2.4:

(B1) For a fixed K), there exists a mj € RE» such that ||pag,a, — Ld,d, (Ri, 7, oo = O(Kp ~sp/dw ).

(B2) [7x, — i | = O, (K,l,/zN—l/Q + K;,/QK;SP/CI“’) as N — oo.

(B3) 15— plloe = Oy (I K *N/2 4+ K} 1, /%)) as N = o,

(B4) For a fixed K, there exists a 'y}‘(q (8°) € R¥a such that |q(3°) — (Ia, ® R’Kq) * ( )| = O(K, —5q/dw )
(B5) 7k, (8°) - VK, (B =0, (K;/2N’1/2 + Kq_s"/d“’> as N — oo.

(B6) For G(8°) = (Ia, ® Rix, )ik, (8), 17(8°) — a(8°) e = Op (KqlK/*N=1/2 4 Kg*/™]) as N — oo,

Proof of Lemma A:

See Theorem B-1 of Cattaneo (2010) for (B1)-(B3). See Lemma 1 of Newey (1994) for (B4). See Theorem
1 (including the proof) and Theorem 4 of Newey (1997) for (B5) and (B6). m
Proof of Proposition-2.4:

Since the idea is the same, for notational simplicity let us present the proof for the case with only two-level
missingness. Accordingly, only in this proof let D := D1Dy, p(W) := p11(W), and let it be known that
Dy(1 — D3) = (1 — D1)Dy = 0 and p1o(W) = por(W) = 0. Without loss of generality, let d; = 1. Define
L(u) := exp(u)/[1 + exp(u)] for some scalar u (to replace the general formula L4, 4,(.)).

The proof is similar to that of Theorem 5 in Cattaneo (2010). The main difference is that we will not

require his condition (5.1), i.e., |p — plloc = 0,(N~1/4). His condition (5.2), i.e

sup  [|g(8) — q(B)llec = 0p(1) (34)
|B—B0|<d

is still satisfied in the same way from the first result of Proposition A1(i) of Chen et al. (2005). His condition
(5.3) also holds under our setup as is shown in Lemma B below (note the contrast with the proof of Theorem
8 in Cattaneo (2010)). Hence, similar to (33) in the proof of Proposition 2.3, we only need to verify that for

any positive dy = o(1) and some generic positive constant C:

VN BN _
|B— ﬁo\<5N 1+C\F|5 50| =oll) %)
where Ry (8) = mn(8,5,3(8)) — E [mn (8, p,a(8))] — mn (8%, 5,3(8°))

and m(B,p*,¢*) == ZJ\; { ey 19 [9(Z;, W3 8) — ¢*(W;; B)] + q*(Wi;ﬁ)} for some generic p* and q*.
,0.4(8)] = Elg(Zi, W;; B)] = Elg(Wi; 8)] and E[g(Z;, Wy; 8°)] = Elq(Wy; 8°)] = 0 by (1),

Since F [my (8
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we obtain: VNRy(8) = Rin(8) + Ran(B) + Rsn(B) where

Rin(B) =

Y. D,
Zﬁ( : [’UI(ZMWUB)_Ul(ZhWi;ﬁo)L

5

> [v2(Wis B) — v2(Wy; 82)],

Rsn(B) =

1
VN
;X
Ron(B) = N 4 Z 1-
N
vON(E ﬁ(fvii)> [3(Wis ) — va(Wis 8],
and the individual components are v1(Z;, W;; 8) := g(Z;, W;; B) — Elg(Z;, Wi; B)], va(Wi; 8) == q(W;; 5) —
q(Wy; B) and v3(Wy; B8) := q¢(W;; 8) — E[q(Wy; 8)]. Now we verify (35) by working through the terms Ry (3),
Ron(B) and R3n(B) respectively. First choose dx converging to zero slowly enough to ensure that 1%, :=
1 (SUPQENJN 17(8) — a(B)]loo < 5N) B by appealing to (34). Also define 1%, := 1 (inf,ew p(w) > k).
Lemma (B3) gives [|p — p|loc = 0,(1) because v, < + and > 1 by (14). So 1% 2, 1 by Assumption M(2).
Consider Ry (8). Using Assumption M(2), Assumptions g(2), g(3) and g(4), arguments along the line of

pO) 1
finite integrable envelope and Ly continuous. Recalling that 1%, o (not depending on ), it follows that

supgens,, [Biv(B)I/[1+ CVN|B — 8] = 0,(1).

Now consider Ron(3). First by a mean-value expansion (with the mean-value being subsumed by the

Theorem 4 in Cattaneo (2010) imply that the class of functions {lll’viv (;8):8€ J\/(;N} is Donsker with

SUDgeN; clause) and then by appealing to (34) to use Assumption q(2b) we obtain

N
1
sup 1315 |Ran (B)] < sup VN|B -85 Y 1415 Wi 8) — a(Wi; B)]| -
BENs BENs slld—alloc <N N ; M (9ﬁ’
Since 1%,1% ‘1 p(W ’ < max (1, |1 — 1) is bounded, using (4) and Assumption q(2b) we obtain

|Ran (B))] 1
1q 1 < C105% | — E b(W;
B:%EN NiyovNip-po = TN [N- ( )]

for some generic positive constant Cy, some non-negative measurable function b(w) with E[b(W)] < oo,
and some € > 0. Letting 6y — 0 and recalling that 1% P 1 and 1% K| (not depending on j3) give
suPge s, [Ren (B)l/[1+ CVN|B = B = op(1).

Finally consider Rsy(8). By a mean-value expansion and then using Assumption q(2a) that allows for

interchanging the order of integration and differentiation we obtain

BE%N 15 [Rsn ()] < SHI:N VN|B - 60\— Z 1% ( ) ‘aﬂ, [g(Wi; B) — Elg(Wi; B)]]
. p |R3n (B)] { } ‘
jﬁé’%ﬁv 1N1+C’\/N\/J’—B°| = o ﬁiﬁﬁN Wiib) -

for some generic positive constant Cy. The dominating integrable function in Assumption q(2a) also ensures
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that + Zz 1 aﬁ, qWy;8)—FE [(%,q(Wi;ﬁ)” 0 uniformly in 8 € Ny, . Recalling that 1%, R (not de-
pending on f3) gives SUDgen; |Rsn (B)|/[1 + C\/NW —B% =o0,(1). m

Lemma B: The following result holds under the conditions of Proposition-2.4 and its proof:

mx (8°,5,4(8%) = mn (5%, p,a(8%)) + 0, (N712).
where, my (8,p%,q") = % XI5, { 586y [9(Zis Wi 8) — a" (Wi )] +

q*(Wy; 6)} for some generic p* and q¢*.

Proof of Lemma B:

Note that v N [mN(ﬂO,;ﬁ aB8%) — mN(BOaplaQ(BO))] = A1y + Aoy + Asn where
1 Y D,
A= ﬁ;p a0y 9% Was 8%) = a(Wis )] [p(W:) —p(Wa)].
Ao = \/lﬁi(p(lv)v ) a(Ws; %) = a(Ws; )]
1 Y D
Ay = 30 D ol 8% - G0V )] OV:) — V).

Il
—

K2

This is an exact relation in contrast to the proof of Theorem 8 in Cattaneo (2010). We will show one by one
that AlN = Op(l), AQN = Op(l) and A3N = Op(l).

We start with Ay y. Now, by (4), E[18,Ain|W1, ..., W] = E[15,A1n] =0, and Var (15 A1 x| Wh, ..., WN) =

" (||]’5— pHio) further using Assumption T, and because for each i # j, we can condition on W;, W, to obtain

DiD; [p(Wy) = BW)] [p(W;) — B(W;)] " R
E p(WZ)p(W) (Wj)ﬁ(W) [(szwzaﬁ) ( Zaﬂ)] [g(Z],W],I@) Q(Wﬁﬂ)]

by (4). Therefore, Assumption T(2) gives Var(1%A1nx) = O (||p — pl|%) and hence 18 A1x = O, ([P — p||so)-

Recalling that 1%, Ly 1, we obtain Ay y = O, (|Ip — pllco) which is 0,(1) by Lemma (B3) under (14).

Now consider Aoy = Biny + Bany where

Bin = \;ﬁé( o, lz ) {q(WiQBO)_RKq<Wi)/'7;<J7
Bon = \/lﬁgv;< (M;z ) [RK (Wi)'vk, _a(Wi§/BO):|-

NOW, by (4), E[BlN|W1,...,WN]

= E[Biv] = 0, and Var(Biy|Wi,..,Wx) = 0y (¢ = Rig, vk, I% ).
Therefore, Var(Bin) = O, (qu -

K, VK, ||§O) by Assumption T(2) and using the same arguments as for

Ain. Therefore, Biy = O, (qu - R'quﬁ(quo) which is 0,(1) by Lemma (B1) since ;— > 0 under (14). On
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the other hand,

< Ak, — 1k, |

7 i_v: (G —1) oy

E [ﬁ Zf\il (P([V)[;T) - 1) RKq(Wi)/} =0 and Var (ﬁ Zivzl (7:0(1‘7/‘7/1) — 1) RKq (Wz)/) =0 (E|RKq(W)|2) —
O(K) by definition of Rk, (W) and using the same arguments as for A;y. Hence |Ban| = O, (W?(q — Yk, |K;/2>,

[Bax| = |¢1N§j (s 1) B O (3, )

which is 0,(1) by Lemma (B5) because (14) requires v, < % and 3+ > 3. Therefore, we obtain Ay =

Bin + Bany = Op(].).

Finally consider Asy = B3y + Byny + Bsy + Bgny where

By = ﬁ i ST 40V B%) = Rac, (W), | [pOV) = L(Ruc, (Wo)'m, )]
B = i s [0V )~ R, (W3] (B0, 0V ) 0%
Bsy = ﬁ i; pi(sz)j;;(Wi) [RKQ(Wi)’V}'}q - qA(Wi;ﬁo)} {p(Wi) - L(RKP(Wi)'W?p)} ;
B = i s [, i, — 70750 [ LR, (W)~ 0

—

N . * * N i _

Note that | Bsv| < | & LIy s | VNI~ R, ik, o Ip—L(Rig, mic, Moo Also, 13 % S0 sy =

Op(1). Hence £ Y |~ = 0,(1) recalling that 13, = 1. Thus, |Bsy| < VNO, (K, */*")O(K, /™)
by Lemmas (B1) and (B4). Since v, 7= + v, 3= > 5 by (14), it follows that |Bzy| = o,(1).

Now denoting L(u) := %L(u)7 a mean-value expansion gives for some mean-value 7

1 < D e T i  (~ ,
Bav = =75 0 ey (1Y% — R, (W0 i | £, (W e, (09 (s, = ik, )

=

Noting that L(u) = L(u)[1 — L(u)] € (0,1) for all u, we obtain

E1%,Byn|

IN

N [1‘]’\,DiL(RKp(W¢)’7‘r)

1
0 / * -~ * /
q — /y iy » — T —— 17 — R » M/’L
|| Ky KqHOO' K Kp‘ /7N ;:1 p(”rz)p(”rz) ‘ K ( ) |‘|

IN

16 = Rl i loolfic, — i |—= i\/E [W’i ] E (1R, (W]
o P 4 RAYY . P ? .
¢ VN — p(Wi)p(W;)

But E [|Rk,(W;)'|?] = K, by definition of Rx,(W). Therefore, by Lemmas (B4), (B2), and (4) and Assump-

tion M(2) respectively,
B8 Biy| < O(K; /)0, (K;/QN*W + K;/2K;Sv/dw) VNO()/E,.

Sq 1 Sp 5q
p Vp—Vq 7L stop—(vp gt tvagt )| : Sq Sp Sq 1
Hence, E|15,Ban| < Op (N dw + N2 (vo @ +vaay)) = op(1) since vgq > vp and vy, - Tvegt > 5+

by (14). This gives |1% Byn| = 0,(1). Recalling that 1%, =5 1, we obtain that Byy = 0p(1).
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Following steps similar for B4y we obtain

N
_ 1 D7« 1 (=0 * AN ¥
B =~ 7% & w7 (3, = k) [WW L(Ric, (Wi)'mi, )], and bence
B Bon] < llo— LB il A%, — f§: [ R, (7 >'|}

O, /)0, (Ky/AN =12 4 K ale ) \/NO(l)\/f?q

by Lemmas (B1), (B5), and (4) and Assumption M(2), and the definition of Rk, (W) respectively. Therefore,
E|1%Bsn| < O, (N”q*”P;TZL + N%*%*(”P%*”q%)) = 0,(1) since vpd" > vy and vpd —|—qu" > 1+ % by
(14). Hence, as before, it follows that Bsy = 0,(1).

Finally, again denoting L(u) = B%L(u), a mean-value expansion gives for some mean-value 7,

R, W) (5, =i, ) ERi, (W) 7) Bae, (W (7o, =, ).

;X
Bin = —=

‘ VN ; p(W)p(W;
Using L(u) € (0,1), note that (4) and Assumption M(2) give

g~ I DR, (7))

<0 * ~ * N 1 /
< Pk, =7k, Ik, — 7TK1,|?N Z |Ric,(Wi)Ri, (W3)'].
=1
E[|Rk,(W)Rk,(WY|] < E[|Ri,(W)||Ri, (W \/E [|Ri,(W)[2) E [|Ric, (W) [2] = /K,K,. Hence

+ Zf\il |Ri,(Wi)Rp,(W3)'| < Op((/KqKp). Therefore7 by Lemmas (B5) and (B2),

112 Ben| < O, (K;/QNA/Q _‘_Kq—sq/dw) 0, (K;/2N*1/2 +K;/2K;5p/dw) VNVE,K,,

giving |15, Bsn| < O, (N’%“JP*”‘? 4 Nuetva(a—ak) 4 Nvetee(i-ah) 4 patvet g —(ve gl +vaa; )> = 0p(1) since
; : ; ; , P
Up Vg < 5y Vgt > U+ G vyt > vp +vg and vy T + v 3t > v, + 5+ 5 by (14). 1% — 1 implies

Bsn = 0p(1). Hence Asy = 0,(1). m

Verification of the comment in Section 2 that the asymptotic variance of IPW-GMM equals the
efficiency bound based on a smaller set of moment restrictions:

Toward the end of Section 2 we noted that: The asymptotic variance of the semiparametric IPW-GMM
estimator in the general case equals the efficiency bound for estimation of 8 by combining the moment restric-

tions in (15) and (18) and instead considering a modified restriction:

E [Projy (¢(D1, Da, Z,W; B)|¢9)] = 0 for B € B C R% if and only if 8 = °.
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We verify this by obtaining the concerned efficiency bound. The idea is same as Theorem 2.1 and the discussion
following it in Graham (2011). To convert the conditional (on W) restrictions into unconditional ones, we con-
sider W with a known finite support W = {w1,ws,...,wr}. This gets rid of the infinite dimensional nuisance
parameters p(W) that arises with an infinite support of W, and instead introduces a finite number of unknown
nuisance parameters p = (pig, po1, P11) where pj = (pjx(1) == P(D1 = j,Da = k|W = wn),...,pjx(L) ==
P(Dy = j,Dy = k|W = wp))’ for j,k = 0,1. In Lemma C we obtain the Fisher information bound for 3°
in this model treating p as an unknown (finite dimensional) nuisance parameter. Since the bound does not
depend on the multinomial assumption for W, the same arguments as in Graham (2011) (page 442) establish
that this is the semiparametric efficiency bound 8% under the moment restrictions (15) and (18).
Lemma C: Suppose that (i) the distribution of W has a known, finite support W = {wx, ..., wr}, (ii) there
is some 8% € B € R% and p° = (p%, p31,091)" € Ry X ... x Ry, such that (15) and (18) hold. (iii) For each
l=1,...,L the space R; := {(r;(1),7(2),r(3)) : such that r;(1),7(2),7(3),1 — (r1(1) +r(2) + r(3)) > Kk €
(0,1)} satisfies Assumption M(2). (iv) Other assumptions in Theorem 2.1 of Graham (2011) hold. Then the
Fisher information bound for 8% is (G'[V + A]_lG)_1 [see (8)].
Proof of Lemma C: To simplify notations let 3 and p denote 8° and p° unless explicitly stated otherwise.
The result follows from the same three steps in the proof of Theorem 2.1 in Graham (2011).

Step 1: Let C be an L x 1 vector with 1 in the I-th row if W = w; and 0 elsewhere, and 7, := P(W =
wy). Exactly following Graham (2011), it can be established that the restrictions (15) and (18) are, in the

multinomial case, equivalent to a finite number (dy 4+ 3L) of unconditional moment restrictions:

ml(Dl’D27Z15Z27W;va)
E[m(D17D27ZhZ27W;57p)]:E :0’
ma (D1, Dy, W p)

Di(1— D3) —C'p1o

DD
= : 2g(Z1;Z27W;6) and m2(,P):C® (1—D1>D2—C/p01

where ma(.;B8,p) =
1( ﬁ p) 0/011

D1Dy — C'p11

Step 2: Following Graham (2011) it can be shown that the variance bound for 5 under the sole restriction

E[m(D1, D2, Z1, Zo,W; B3, p)] = 0 is the upper (north-west) dg x dg block of the matrix (M'V ~1M)~! where

M = [MB =F L;;/m(.;ﬂ,p)] =G,M,:=E [;p,m(-;ﬂ,p)”
oo Vir = Elmi(;; 8, p)ma(;; 8,0)']  Viz := Elma(; 8, p)ma(.; p)']

Va1 := E[ma(; p)ma(; 8, p)] Vag := Elma(; p)ma(.; p)']

Since ma(.; 8) does not involve 3 (meaning, Mg = [G',0]’, i.e., the bottom 3L rows of Mz are identically 0),

it follows after some algebra (shown below) that this bound is equal to

_ L _ _ —1
(G’ (Vi1 — ViaViy Vi) 1G) . (36)

48



This holds because the dg x 3L block in the north-east of (M’V~1M)~! is a zero-block (and same for the
3L x dg block in the south-west). Under assumptions M(2)-(4), we show this below by equivalently showing
that the dg x 3L block in the north-east of M’ V~1M is a zero-block. This is equivalent to showing that the
dg x 3L matrix G (Viy — ViaViy ' Var) ™' My, — G (Viy — ViaViy ' Vi)~ VaaViy' My, is zero, where My, and

M, respectively denote the first d, and the last 3L rows of M,. A sufficient condition for this is M;, =

o
q(l) := E[g(Z,W; 8°)|W = w;]. Hence M;, = —[0,0, A]. On the other hand, Ms, = —[r1B(1),...,7.B(L)")

V12‘7251M2p, and in the rest of Step 2 we verify that it holds. Define A := [ T~q(1),..., pl%h)q(L)} where

where, for I = 1,...,L, B(l) := [e(l),e(L +1),e(2L + 1))’ and e(k) is a 3L x 1 unit vector with 1 in the k-th
element and zeros elsewhere. Define E[¢(.; 8%)¢o(.)/|[W] = H(W) and (E[¢o(.)do(.)|W]) " = K(W) where

HW)" = —[pio(W),por(W),p11(W) — 1] g(W),
poo(W)+p1o(W) 1 1
Poo(W)p1o(W) poo (W) poo (W)
— -1 _ 1 Poo (W) +po1 (W) 1
EW) = JW) P00 (W) P00 (W)por (W) P00 (W) and
1 1 poo(W)+p11 (W)
poo (W) poo (W) Poo(W)p11 (W)
p1o(W)(1 — pro(W)) —p10(W)por (W) —p1o(W)p11 (W)
JW) = —por(W)p1o(W)  por(W)(1 — por(W)) —por(W)p11 (W) )
—p11(W)p1o(W) —p1u1(W)por (W) pru(W)(1 = p11(W))

and for W =w; (I=1,...,L) denote them by H(l), K(I) and J(I). Therefore, some algebra gives

Vie = [mHQ),nH?2),...,7H(L)| = V3,
Voo = diag{nJ(1),mJ(2),...,70J(L)},
and V' = diag{le(l),;K(Z),...77_1LK(L)},
and hence VioVyy! = [H(1)'K(1), H(2)'K(2),...,H(L)K(L)].

Letting T} (1) denote the j-th column of the dy x 3 matrix H(l)'K(l) for j =1,2,3 and l =1,..., L, we obtain
V12‘7251M2p = — [{TlTl(l), e ,TLTl(L)}, {TlTQ(l), e ,TLTQ(L)}7 {TlT3(1), ey TLTg(L)}] = Mlp

by distributing the columns according to the selection elements in the matrices B(1),...,B(L). Therefore, the
sufficient condition is verified and hence (36) gives the variance bound.'6

Step 3: Since Viy = E[o(+ 89)6(: 8°)'] and ViaVig Vor = Sty nH(Y KWV H() = E [E064[W] (B [6005|W]) ™
E [¢po¢'|W]], simple algebra gives Vi; — V12‘72§1‘721 =V + A [see (8)] and hence completes the proof . m

16Recall that this sufficient condition has the important implication that knowing the nuisance parameters p° does
not lead to more efficient estimator of 8° under the current setup.
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