Supplementary Appendix to (Under)Mining Local Residential Property Values: A Semiparametric Spatial Quantile Autoregression*

EMIR MALIKOV¹ YIGUO SUN² DIANE HITE¹

¹Auburn University, United States ²University of Guelph, Canada

July 9, 2018

Abstract

Rock mining operations, including limestone and gravel production, have considerable adverse effects on residential quality of life due to elevated noise and dust levels resulting from dynamite blasting and increased truck traffic. This paper provides the first estimates of the effects of rock mining—an environmental disamenity—on local residential property values. We focus on the relationship between a house's price and its distance from nearby rock mine. Our analysis studies Delaware County, Ohio which, given its unique features, provides a natural environment for the valuation of property-value-suppressing effects of rock mines on nearby houses. We improve upon the conventional approach to valuating adverse effects of environmental disamenities based on hedonic house price functions. Specifically, in a pursuit of robust estimates, we develop a novel (semiparametric) partially linear spatial quantile autoregressive model which accommodates unspecified nonlinearities, distributional heterogeneity as well as spatial dependence in the data. We derive the consistency and normality limit results for our estimator as well as propose a consistent model specification test. We find statistically and economically significant propertyvalue-suppressing effects of being located near an operational rock mine which gradually decline to insignificant near-zero values at a roughly ten-mile distance. Our estimates suggest that, all else equal, a house located a mile closer to a rock mine is priced, on average, at about 2.3-5.1%discount, with more expensive properties being subject to larger markdowns.

Keywords: Environmental Disamenity, Hedonic Model, Partially Linear, Quantile Regression, Rock Mines, SAR, Semiparametric, Spatial Lag

JEL Classification: C14, C21, R30, Q51

^{*}Email: emalikov@auburn.edu (Malikov), yisun@uoguelph.ca (Sun), hitedia@auburn.edu (Hite).

B Monte Carlo Simulations

In this section, we evaluate the finite-sample performance of our proposed estimator and the test statistic in a small set of Monte Carlo simulations.

B.1 Estimator

We generate the data using a random-coefficient "rendition" of our model in (2.1). Specifically, our PLSQAR model can be motivated by the following random-coefficient partially linear model:

$$y_{i,n} = \rho_0^*(v_{i,n}) \sum_{j \neq i} w_{ij,n} y_{j,n} + \mathbf{x}'_{i,n} \boldsymbol{\beta}_0^*(v_{i,n}) + \alpha_0^*(\mathbf{z}_{i,n}, v_{i,n}),$$
(B.1)

where $v_{i,n} \perp (\mathbf{X}_n, \mathbf{Z}_n, \mathbf{M}_n)$ is the scalar random disturbance. In the structural framework, $v_{i,n}$ can be interpreted as capturing heterogeneity in the outcome variable $y_{i,n}$ due to some unobserved factors. Further, if following Chernozhukov & Hansen (2005, 2006) one were to assume that $v_{i,n} \sim i.i.d$. $\mathbb{U}(0,1)$ and that the so-called structural quantile function of interest

$$q\left(\sum_{j\neq i} w_{ij,n} y_{j,n}, \mathbf{x}_{i,n}, \mathbf{z}_{i,n}, \tau\right) = \rho_0^*(\tau) \sum_{j\neq i} w_{ij,n} y_{j,n} + \mathbf{x}'_{i,n} \boldsymbol{\beta}_0^*(\tau) + \alpha_0^*(\mathbf{z}_{i,n}, \tau)$$
(B.2)

is such that $\partial q(\cdot, \tau)/\partial \tau > 0$, the event $\{y_{i,n} \leq \rho_0^*(\tau) \sum_{j \neq i} w_{ij,n} y_{j,n} + \mathbf{x}'_{i,n} \boldsymbol{\beta}_0^*(\tau) + \alpha_0^*(\mathbf{z}_{i,n}, \tau)\}$ becomes equivalent to the event $\{v_{i,n} \leq \tau\}$. Then, it is straightforward to establish the following quantile restriction:

$$\Pr[u_{i,n}^* \le 0 | \mathbf{X}_n, \mathbf{Z}_n, \mathbf{M}_n] = \tau, \tag{B.3}$$

where, in an analogy to our model in (2.1), the new quantile error term is defined as $u_{i,n}^* \equiv y_{i,n} - \rho_0^*(\tau) \sum_{j \neq i} w_{ij,n} y_{j,n} - \mathbf{x}'_{i,n} \beta_0^*(\tau) - \alpha_0^*(\mathbf{z}_{i,n}, \tau)$. Clearly, (B.1) and (B.3) are respectively analogous to (2.1) and (2.2).

Thus, we use the following two processes to generate the data:

$$y_i = \rho_0(v_i) \sum_{j \neq i} w_{ij} y_j + x_{1,i} \beta_{1,0}(v_i) + \alpha_0(z_{1,i}, v_i)$$
[DGP #1] (B.4)

$$y_i = \rho_0(v_i) \sum_{j \neq i} w_{ij} y_j + x_{1,i} \beta_{1,0}(v_i) + x_{2,i} \beta_{2,0}(v_i) + \alpha_0(z_{1,i}, z_{2,i}, v_i), \quad [\text{DGP } \#2]$$
(B.5)

where the variables are randomly drawn as follows: $z_{1,i} \sim i.i.d. \ \mathbb{U}(-1,1), z_{2,i} \sim i.i.d. \ \mathbb{N}(0,1), x_{1,i} = 0.5z_{1,i} + \xi_i$ with $\xi_i \sim i.i.d. \ \mathbb{N}(0,1), x_{2,i} \sim i.i.d. \ \mathbb{N}(1,1)$, and $v_i \sim i.i.d. \ \mathbb{U}(0,1)$. Fixed parameters are specified as $\rho_{\tau,0} \equiv \rho_0(v)|_{v=\tau} = 0.5 + 0.15\Phi^{-1}(v), \ \beta_{\tau,1,0} \equiv \beta_{1,0}(v)|_{v=\tau} = 0.2 + 0.15\Phi^{-1}(v),$ and $\beta_{\tau,2,0} \equiv \beta_{2,0}(v)|_{v=\tau} = 1 + 0.25\Phi^{-1}(v)$. For each data-generating process, we consider two specifications of a nonparametric intercept function:

$$\alpha_{\tau,0}(z_1) \equiv \alpha_0(z_1, v) \big|_{v=\tau} = \sin(1+1.5z_1) + \begin{cases} 0.15\Phi^{-1}(v) & \text{[DGP \#1A]}\\ 0.15\exp\{-z_1^2\}\Phi^{-1}(v) & \text{[DGP \#1B]} \end{cases}$$

$$\alpha_{\tau,0}(z_1, z_2) \equiv \alpha_0(z_1, z_2, \upsilon) \big|_{\upsilon=\tau} = \sin(1 + 1.5z_1) \times z_2 + z_2 + \begin{cases} 0.15\Phi^{-1}(\upsilon) & \text{[DGP \#2A]}\\ 0.15\exp\{-z_1^2\}\Phi^{-1}(\upsilon). & \text{[DGP \#2B]} \end{cases}$$

We allocate spatial units on a lattice of $25 \times (n/25)$ squares and construct \mathbf{W}_n using a contiguitybased first-order "queen" structure; the spatial weights matrix is then normalized by dividing

	n = 1000		0.04950	0.03949	0.01669	0.01415	0.04707	0.04284		0.04575	0.03684	0.02075	0.01854		0.04454	0.04023
0.75	n = 500		0.07547	0.05824	0.02196	0.01803	0.06580	0.06099		0.07107	0.05736	0.02569	0.02202		0.06301	0.05824
$\tau =$	n = 250		0.12091	0.09172	0.02945	0.02318	0.09441	0.08795		0.10872	0.08329	0.03178	0.02622		0.08602	0.08014
	n = 125		0.19160	0.13141	0.04055	0.03335	0 1 9640	0.11725		0.18307	0.12757	0.04355	0.03624		0.11827	0.11032
	n = 1000		0.03988	0.03118	0.00926	0.00726	0.03777	0.03376		0.03291	0.02579	0.00871	0.00694		0.03159	0.02803
0.50	n = 500		0.06263	0.04834	0.01359	0.01090	0.05493	0.04937		0.05046	0.03939	0.01291	0.01042		0.04425	0.04019
$\tau =$	n = 250	DGP #1A	0.09987	0.07562	0.02036	0.01601	0.07871	0.07284	DGP #1B	0.08180	0.05986	0.01875	0.01474		0.06240	0.05743
	n = 125		0.14683	0.10734	0.02895	0.02322	0 10063	0.09239		0.12321	0.08780	0.02681	0.02175		0.08077	0.07417
	n = 1000		0.04942	0.03920	0.01616	0.01358	0 04556	0.04113		0.04472	0.03551	0.02013	0.01787		0.04070	0.03724
0.25	n = 500		0.07434	0.05902	0.02199	0.01809	0.06617	0.06085		0.06889	0.05511	0.02518	0.02159		0.05969	0.05557
$\tau =$	n = 250		0.11022	0.08633	0.02919	0.02373	0.08855	0.08166		0.09800	0.07731	0.03298	0.02729		0.07786	0.07229
	n = 125		0.18423	0.13588	0.03995	0.03184	0 19111	0.11171		0.16069	0.12101	0.04209	0.03441		0.10402	0.09645
			$ ho_{ au,0}$ RMSE	MAE	$\beta_{ au,1,0}$ RMSE	MAE	$lpha_{ au,0}(z_{1,i})$ RMSF	MAE		$ ho_{ au,0} \mathrm{RMSE}$	MAE	$eta_{ au,1,0}$ BMSE	MAE	$lpha_{ au,0}(z_{1,i})$	RMSE	MAE

Table B.1. Simulation Results for the Estimator: DGP #1

$\tau = 0.25$ $\tau = 0.26$ r = 0.50 r = 0.50 n = 1000 n = 125 n = 250 n = 1000 n = 100	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\tau = 0.50$ $n = 1000 \mid n = 125 n = 250 n = 500 n = 1000 \mid n$	$\tau = 0.50$ $n = 125 n = 250 n = 500 n = 1000 \ n = 10000 \ n = 1000 \ n = 10000 \ n = 10$	$\tau = 0.50$ $n = 250 n = 500 n = 1000 n = 10000 n = 1000 n = 1000 n = 1000 $	n = 500 $n = 1000$ $n = 1000$	n = 1000 $n =$	= u	125	r = n = 250	n = 500	n = 1000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrr} 0.05742 & 0.0340 \\ 0.04514 & 0.0268 \end{array}$	0.034(0.0268	<u>%</u> %	0.02528 0.02036	0.11522 0.09166	0.06573 0.05296	0.04315 0.03492	0.02829 0.02247
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrr} 0.04191 & 0.029 \\ 0.03363 & 0.023 \end{array}$	0.029 0.023	$62 \\ 64$	0.01898 0.01519	0.08208 0.06459	0.04992 0.03999	$0.03714 \\ 0.02895$	0.02365 0.01845
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0.04495 & 0.030 \\ 0.03601 & 0.023 \end{array}$	0.03(0.023)24 399	0.01863 0.01481	$0.08992 \\ 0.07153$	0.05955 0.04802	0.04045 0.03274	0.03135 0.02570
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.29306 0.20501 0.13 0.21896 0.14960 0.09	$\begin{array}{ccc} 0.20501 & 0.13 \\ 0.14960 & 0.09 \end{array}$	$0.13 \\ 0.09$	821 860	0.09355 0.06637	0.33899 0.25232	0.23138 0.16783	0.16123 0.11724	$0.11114 \\ 0.08097$
DGP #2B	DGP #2B	DGP #2B	DGP #2B	DGP #2B							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0.05241 & 0.03 \\ 0.04119 & 0.02 \end{array}$	0.03 0.02	196 505	$0.02250 \\ 0.01795$	$0.10870 \\ 0.08697$	$0.06212 \\ 0.04946$	0.04138 0.03367	$0.02785 \\ 0.02177$
$\left.\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.03982 \\ 0.03187 \\ 0.02 \end{array}$	0.02 0.02	768 234	0.01780 0.01416	0.07955 0.06237	$0.04804 \\ 0.03847$	0.03565 0.02806	$0.02349 \\ 0.01874$
$\left.\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrr} 0.04250 & 0.02 \\ 0.03373 & 0.02 \end{array}$	0.02 0.02	877 278	$0.01782 \\ 0.01421$	0.08721 0.06949	0.05868 0.04701	0.04119 0.03384	0.03245 0.02683
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 0.18753 & 0.12 \\ 0.13636 & 0.08 \end{array}$	0.12 0.08	578 963	0.08387 0.05930	0.31707 0.23700	0.21627 0.15841	0.15044 0.11013	0.10482 0.07771

Table B.2. Simulation Results for the Estimator: DGP #2

its elements by its largest eigenvalue.²⁰ We conduct the experiments at three different quantiles $\tau = \{0.25, 0.50, 0.75\}$ for each of which the considered sample sizes are $n = \{125, 250, 500, 1000\}$. For each τ -n pair, we simulate the model 500 times. We use cubic B-splines (the tensor product thereof, in a multivariate case) to approximate unknown function $\alpha_0(\cdot)$. For simplicity, we set $L_n = 3$ in our experiments for all sample sizes since the range of n is not that large. We compute the root mean squared error (RMSE) and the mean absolute error (MAE) for each fixed coefficient across 500 iterations. For a varying nonparametric intercept function, RMSE and MAE are first computed for each simulation iteration; reported are their averages computed over 500 iterations.

The results are reported in Tables B.1–B.2. Consistent with our theory, performance of the estimator improves with an increase in the sample size across all quantiles. As one would normally expect, it performs better for "middle" quantiles (median, in our case): RMSE and MAE somewhat worsen when we estimate the model closer to tails of the response distribution.

B.2 Specification Tests

We next examine the small-sample performance of our proposed bootstrap specification test. To conserve space, we only consider $\tau = 0.50$. The sample sizes are $n = \{100, 200, 400\}$, and the number of simulation replications is 500. Residuals under H₁ are obtained via our proposed PLSQAR model using cubic B-splines (the tensor product thereof, in a multivariate case) to approximate the unknown function $\alpha_0(\cdot)$. Residuals under H₀ are obtained via Su & Yang's (2011) estimator. Given the sample size, for each simulation, we calculate our modified test statistic J_n from the simulated data plus 199 bootstrap test statistics J_n^b . Then, from the 200 test statistic values, we obtain the 1%, 5%, 10% and 20% upper percentile (critical) values.

To assess power and size of the test, we consider the following experimental designs for the DGP #1 in (B.4):

- (1A) The null in (3.2) is true: $\rho_{\tau,0} \equiv \rho_0(v) \big|_{v=\tau} = 0.5 + 0.15 \Phi^{-1}(v), \ \beta_{\tau,1,0} \equiv \beta_{1,0}(v) \big|_{v=\tau} = 0.2 + 0.15 \Phi^{-1}(v) \text{ and } \alpha_{\tau,0}(z_1) \equiv \alpha_0(z_1,v) \big|_{v=\tau} = 0.5 + 0.5z_1 + 0.15 \Phi^{-1}(v);$
- (1B) The null in (3.3) is true: $\rho_{\tau,0} \equiv \rho_0(v) \big|_{v=\tau} = 0.5 + 0.15 \Phi^{-1}(v), \ \beta_{\tau,1,0} \equiv \beta_{1,0}(v) \big|_{v=\tau} = 0.2 + 0.15 \Phi^{-1}(v) \text{ and } \alpha_{\tau,0}(z_1) \equiv \alpha_0(z_1,v) \big|_{v=\tau} = 0.5 + 0.15 \Phi^{-1}(v) \text{ for all } z_1;$
- (1C) The alternative in (3.4) is true: $\rho_{\tau,0} \equiv \rho_0(v) \big|_{v=\tau} = 0.5 + 0.15 \Phi^{-1}(v), \ \beta_{\tau,1,0} \equiv \beta_{1,0}(v) \big|_{v=\tau} = 0.2 + 0.15 \Phi^{-1}(v) \text{ and } \alpha_{\tau,0}(z_1) \equiv \alpha_0(z_1, v) \big|_{v=\tau} = \sin(1+1.5z_1) + 0.15 \Phi^{-1}(v);$

and the following designs for the DGP #2 in (B.4):

- (2A) The null in (3.2) is true: $\rho_{\tau,0} \equiv \rho_0(v)\big|_{v=\tau} = 0.5 + 0.15\Phi^{-1}(v), \ \beta_{\tau,1,0} \equiv \beta_{1,0}(v)\big|_{v=\tau} = 0.2 + 0.15\Phi^{-1}(v), \ \beta_{\tau,2,0} \equiv \beta_{2,0}(v)\big|_{v=\tau} = 1 + 0.25\Phi^{-1}(v) \text{ and } \alpha_{\tau,0}(z_1, z_2) \equiv \alpha_0(z_1, z_2, v)\big|_{v=\tau} = 0.5 + 0.5z_1 + z_2 + 0.15\Phi^{-1}(v);$
- (2B) The null in (3.3) is true: $\rho_{\tau,0} \equiv \rho_0(v) \big|_{v=\tau} = 0.5 + 0.15 \Phi^{-1}(v), \ \beta_{\tau,1,0} \equiv \beta_{1,0}(v) \big|_{v=\tau} = 0.2 + 0.15 \Phi^{-1}(v), \ \beta_{\tau,2,0} \equiv \beta_{2,0}(v) \big|_{v=\tau} = 1 + 0.25 \Phi^{-1}(v) \text{ and } \alpha_{\tau,0}(z_1, z_2) \equiv \alpha_0(z_1, z_2, v) \big|_{v=\tau} = 0.5 + 0.15 \Phi^{-1}(v) \text{ for all } z_1 \text{ and } z_2;$
- (2C) The alternative in (3.4) is true: $\rho_{\tau,0} \equiv \rho_0(v) \big|_{v=\tau} = 0.5 + 0.15 \Phi^{-1}(v), \ \beta_{\tau,1,0} \equiv \beta_{1,0}(v) \big|_{v=\tau} = 0.2 + 0.15 \Phi^{-1}(v), \ \beta_{\tau,2,0} \equiv \beta_{2,0}(v) \big|_{v=\tau} = 1 + 0.25 \Phi^{-1}(v) \text{ and } \alpha_{\tau,0}(z_1, z_2) \equiv \alpha_0(z_1, v) \big|_{v=\tau} = \sin(1+1.5z_1) \times z_2 + z_2 + 0.15 \Phi^{-1}(v).$

	E	stimated Si	ze	Es	timated Por	wer			
Signif. Level	n = 100	n = 200	n = 400	n = 100	n = 200	n = 400			
Case of $H_0(i$	Case of $\mathbf{H}_0(i)$								
	,	DGP #1A			DGP #1C				
1%	0.012	0.004	0.008	0.888	0.988	1.000			
5%	0.034	0.040	0.062	0.980	1.000	1.000			
10%	0.086	0.084	0.106	0.990	1.000	1.000			
20%	0.214	0.170	0.208	0.994	1.000	1.000			
Case of $H_0(i$	i)			I					
		DGP #1B			DGP #1C				
1%	0.036	0.018	0.030	0.966	0.966	0.996			
5%	0.070	0.048	0.060	1.000	0.998	0.998			
10%	0.102	0.068	0.088	1.000	1.000	1.000			
20%	0.192	0.184	0.182	1.000	1.000	1.000			
Case of $H_0(i$)								
		DGP #2A			DGP $#2C$				
1%	0.010	0.008	0.008	0.336	0.858	0.996			
5%	0.048	0.032	0.046	0.658	0.972	1.000			
10%	0.100	0.110	0.102	0.752	0.984	1.000			
20%	0.186	0.224	0.218	0.852	0.992	1.000			
Case of $H_0(i$	i)			l					
· ·	DGP #2B			DGP $#2C$					
1%	0.008	0.010	0.002	0.992	1.000	1.000			
5%	0.050	0.044	0.044	1.000	1.000	1.000			
10%	0.106	0.094	0.110	1.000	1.000	1.000			
20%	0.186	0.178	0.224	1.000	1.000	1.000			
Note: The repo	Note: The reported are the rejection frequencies over 500 simulations.								

Table B.3. Simulation Results for the J_n Statistic with $\tau = 0.50$

The results presented in Table B.3 show that the bootstrap test has quite an accurate size across all null hypotheses regardless of n. Furthermore, the test exhibits superb power which increases with the sample size, as expected.

C Additional Results

In this section, we briefly comment on the results corresponding to hedonic attributes other than the distance to rock mine included in the estimated house price function. Their fixed parameter estimates (with bootstrap confidence bounds) across quantiles of the house price distribution are reported in Table C.1. For the estimates of median marginal effects of statistically significant covariates, see Table C.2. Among these non-distance variables, log square footage of house, log acreage and story height are the only ones consistently found to be significant across all estimated quantiles of the house price distribution. Interestingly, no other house attribute has a significant impact on property values in the 0.95th quantile. Houses in this top quantile include older (historic) houses in Delaware City as well as recently built McMansion-style houses. More generally, we find that the number of bedrooms and bathrooms in the house, the presence of an attic and the garage being attached to the main house are largely statistically insignificant across all quantiles which

²⁰We have also experimented with lattices of larger sizes where spatial units are allocated on squares randomly as well as with simpler one-dimensional "circular" spatial structures. The results change little.

		Quantiles of I	Property Value	
	0.25th	0.50th	0.75th	0.95th
Log Sq. Footage	0.59100	0.58160	0.59024	0.58871
	(0.53217; 0.64599)	(0.53713; 0.62548)	(0.54446; 0.63067)	(0.49993; 0.74361)
Log Acreage	0.04253	0.06913	0.08138	0.09038
	(0.01883; 0.06745)	(0.04775; 0.08817)	(0.06252; 0.09893)	(0.02675; 0.11778)
Story Height	-0.05092	-0.09042	-0.09235	-0.13096
	(-0.09016; -0.00927)	(-0.11479; -0.06307)	(-0.11880; -0.06453)	(-0.18673; -0.05093)
# Bedrooms	-0.00629	-0.01029	-0.02846	-0.14829
	(-0.14271; 0.10882)	(-0.11146; 0.08000)	(-0.11103; 0.06366)	(-0.35613; 0.20943)
$\# \text{ Bedrooms}^2$	-0.00420	-0.00227	0.00006	0.01576
	(-0.02006; 0.01373)	(-0.01471; 0.01206)	(-0.01374; 0.01176)	(-0.03296; 0.04323)
# Bathrooms	0.06181	0.06611	0.00290	-0.03061
	(-0.00550; 0.12941)	(0.01357; 0.11258)	(-0.05774; 0.05336)	(-0.14870; 0.09881)
$\# \text{ Bathrooms}^2$	-0.00041	0.00180	0.01322	0.02173
	(-0.00877; 0.00853)	(-0.00366; 0.00784)	(0.00655; 0.02102)	(0.00243; 0.03575)
Full Basement	0.17764	0.11541	0.10999	0.07606
	(0.12002; 0.23109)	(0.07540; 0.15296)	(0.08254; 0.14185)	(-0.01222; 0.22164)
Partial Basement	0.14850	0.07297	0.06104	0.01918
	(0.09096; 0.20614)	(0.03693; 0.11070)	(0.03572; 0.09072)	(-0.06952; 0.15137)
Attic	0.02001	0.00833	0.02287	0.01788
	(-0.00580; 0.04998)	(-0.01016; 0.02775)	(0.00395; 0.04785)	(-0.03912; 0.08237)
Attached Garage	0.02530	0.01621	-0.03072	-0.11543
	(-0.03024; 0.07103)	(-0.01856; 0.04644)	(-0.07117; 0.00431)	(-0.23245; 0.04623)
Garage Capacity	0.02446	0.02412	0.02613	0.03682
	(0.00620; 0.04629)	(0.01226; 0.03812)	(0.01350; 0.04132)	(-0.02873; 0.07669)
# Fireplaces	0.05920	0.05461	0.03577	0.02552
	(0.03759; 0.08208)	(0.03640; 0.07530)	(0.01886; 0.05363)	(-0.02504; 0.08159)
Central A/C	0.13311	0.11955	0.08045	0.01313
	(0.06906; 0.19630)	(0.05463; 0.17715)	(0.03524; 0.13024)	(-0.09633; 0.11826)
Age	-0.00603	-0.00464	-0.00258	-0.00108
	(-0.00793; -0.00372)	(-0.00611; -0.00313)	(-0.00400; -0.00120)	(-0.00490; 0.00250)
Age^2	0.00001	0.00001	0.00001	0.00001
	(0.00000; 0.00003)	(0.00000; 0.00003)	(0.00000; 0.00002)	(-0.00002; 0.00003)

Table C.1. Semiparametric Estimates of Constant Parameters on House Attributes in the Conditional Quantile Regression of Property Value across Quantiles

Reported are the estimates from a semiparametric PLSQAR model. The 95% bootstrap (percentile) confidence bounds in parentheses. Statistically significant estimates are in bold.

likely is due to property heterogeneity inherent with rapid urbanization. Among the statistically significant house attributes, the square footage has by far the largest marginal effect on the property value with its magnitude declining as the house price rises. We document a similar declining marginal effects (across quantiles) for the basement variables, the number of fireplaces and the presence of central air-conditioning system in the house. From Table C.2, it appears that garage capacity is equally valued by all home buyers regardless of the property value, whereas the lot size exhibits increasing importance for buyers of higher priced houses. The estimates of the total marginal effects of story height are negative across all quantiles with larger (absolute) magnitudes estimated at the higher house price quantiles. This likely is an artifact of changing consumer preferences as well as building trends in the area given that single-story houses have become more common in recent years.

	Qu	antiles of	Property V	alue
	0.25th	0.50th	0.75th	0.95th
Log Sq. Footage				
TME	0.8961	0.8467	0.7950	0.7882
Median DME	0.6048	0.5928	0.5976	0.5958
Median IME	0.2914	0.2540	0.1974	0.1925
Log Acreage				
TME	0.0645	0.1007	0.1096	0.1210
Median DME	0.0435	0.0705	0.0824	0.0915
Median IME	0.0210	0.0302	0.0272	0.0295
Story Height				
TME	-0.0772	-0.1316	-0.1244	-0.1753
Median DME	-0.0521	-0.0922	-0.0935	-0.1325
Median IME	-0.0251	-0.0395	-0.0309	-0.0428
Full Basement				
TME	0.2694	0.1680	0.1481	0.1018
Median DME	0.1818	0.1176	0.1114	0.0770
Median IME	0.0876	0.0504	0.0368	0.0249
Partial Basement				
TME	0.2252	0.1062	0.0822	0.0257
Median DME	0.1520	0.0744	0.0618	0.0194
Median IME	0.0732	0.0319	0.0204	0.0063
Garage Capacity				
TME	0.0371	0.0351	0.0352	0.0493
Median DME	0.0250	0.0246	0.0265	0.0373
Median IME	0.0121	0.0105	0.0087	0.0120
# Fireplaces				
TME	0.0898	0.0795	0.0482	0.0342
Median DME	0.0606	0.0557	0.0362	0.0258
Median IME	0.0292	0.0238	0.0120	0.0083
Central A/C				
TME	0.2018	0.1741	0.1084	0.0176
Median DME	0.1362	0.1219	0.0814	0.0133
Median IME	0.0656	0.0522	0.0269	0.0043

 Table C.2. Semiparametric Estimates of Median ME of Selected House Attributes on Conditional Quantiles of Property Value across Quantiles

Reported are the medians of point estimates of MEs from the PLSQAR model estimated for a given conditional quantile of property value.

References

Chernozhukov, V. & Hansen, C. (2005). An IV model of quantile treatment effects. *Econometrica*, 73, 245–261.

Chernozhukov, V. & Hansen, C. (2006). Instrumental quantile regression inference for structural and treatment effect models. *Journal of Econometrics*, 132, 491–525.

Su, L. & Yang, Z. (2011). Instrumental variable quantile estimation of spatial autoregressive models. Working Paper, Singapore Management University.