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Abstract

Rock mining operations, including limestone and gravel production, have considerable adverse
effects on residential quality of life due to elevated noise and dust levels resulting from dynamite
blasting and increased truck traffic. This paper provides the first estimates of the effects of rock
mining—an environmental disamenity—on local residential property values. We focus on the
relationship between a house’s price and its distance from nearby rock mine. Our analysis studies
Delaware County, Ohio which, given its unique features, provides a natural environment for the
valuation of property-value-suppressing effects of rock mines on nearby houses. We improve upon
the conventional approach to valuating adverse effects of environmental disamenities based on
hedonic house price functions. Specifically, in a pursuit of robust estimates, we develop a novel
(semiparametric) partially linear spatial quantile autoregressive model which accommodates
unspecified nonlinearities, distributional heterogeneity as well as spatial dependence in the data.
We derive the consistency and normality limit results for our estimator as well as propose a
consistent model specification test. We find statistically and economically significant property-
value-suppressing effects of being located near an operational rock mine which gradually decline
to insignificant near-zero values at a roughly ten-mile distance. Our estimates suggest that, all
else equal, a house located a mile closer to a rock mine is priced, on average, at about 2.3–5.1%
discount, with more expensive properties being subject to larger markdowns.
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B Monte Carlo Simulations

In this section, we evaluate the finite-sample performance of our proposed estimator and the test
statistic in a small set of Monte Carlo simulations.

B.1 Estimator

We generate the data using a random-coefficient “rendition” of our model in (2.1). Specifically, our
PLSQAR model can be motivated by the following random-coefficient partially linear model:

yi,n = ρ∗0(υi,n)
∑
j 6=i

wij,nyj,n + x′i,nβ
∗
0(υi,n) + α∗0(zi,n, υi,n), (B.1)

where υi,n ⊥ (Xn,Zn,Mn) is the scalar random disturbance. In the structural framework, υi,n
can be interpreted as capturing heterogeneity in the outcome variable yi,n due to some unobserved
factors. Further, if following Chernozhukov & Hansen (2005, 2006) one were to assume that υi,n ∼
i.i.d. U(0, 1) and that the so-called structural quantile function of interest

q

∑
j 6=i

wij,nyj,n,xi,n, zi,n, τ

 = ρ∗0(τ)
∑
j 6=i

wij,nyj,n + x′i,nβ
∗
0(τ) + α∗0(zi,n, τ) (B.2)

is such that ∂q(·, τ)/∂τ > 0, the event {yi,n ≤ ρ∗0(τ)
∑

j 6=iwij,nyj,n+x′i,nβ
∗
0(τ)+α∗0(zi,n, τ)} becomes

equivalent to the event {vi,n ≤ τ}. Then, it is straightforward to establish the following quantile
restriction:

Pr[u∗i,n ≤ 0|Xn,Zn,Mn] = τ, (B.3)

where, in an analogy to our model in (2.1), the new quantile error term is defined as u∗i,n ≡ yi,n −
ρ∗0(τ)

∑
j 6=iwij,nyj,n − x′i,nβ

∗
0(τ) − α∗0(zi,n, τ). Clearly, (B.1) and (B.3) are respectively analogous

to (2.1) and (2.2).

Thus, we use the following two processes to generate the data:

yi = ρ0(υi)
∑
j 6=i

wijyj + x1,iβ1,0(υi) + α0(z1,i, υi) [DGP #1] (B.4)

yi = ρ0(υi)
∑
j 6=i

wijyj + x1,iβ1,0(υi) + x2,iβ2,0(υi) + α0(z1,i, z2,i, υi), [DGP #2] (B.5)

where the variables are randomly drawn as follows: z1,i ∼ i.i.d. U(−1, 1), z2,i ∼ i.i.d. N(0, 1), x1,i =
0.5z1,i + ξi with ξi ∼ i.i.d. N(0, 1), x2,i ∼ i.i.d. N(1, 1), and υi ∼ i.i.d. U(0, 1). Fixed parameters
are specified as ρτ,0 ≡ ρ0(υ)

∣∣
υ=τ

= 0.5 + 0.15Φ−1(υ), βτ,1,0 ≡ β1,0(υ)
∣∣
υ=τ

= 0.2 + 0.15Φ−1(υ),

and βτ,2,0 ≡ β2,0(υ)
∣∣
υ=τ

= 1 + 0.25Φ−1(υ). For each data-generating process, we consider two
specifications of a nonparametric intercept function:

ατ,0(z1) ≡ α0(z1, υ)
∣∣
υ=τ

= sin(1 + 1.5z1) +

{
0.15Φ−1(υ) [DGP #1A]

0.15 exp{−z2
1}Φ−1(υ) [DGP #1B]

ατ,0(z1, z2) ≡ α0(z1, z2, υ)
∣∣
υ=τ

= sin(1 + 1.5z1)× z2 + z2 +

{
0.15Φ−1(υ) [DGP #2A]

0.15 exp{−z2
1}Φ−1(υ). [DGP #2B]

We allocate spatial units on a lattice of 25×(n/25) squares and construct Wn using a contiguity-
based first-order “queen” structure; the spatial weights matrix is then normalized by dividing
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its elements by its largest eigenvalue.20 We conduct the experiments at three different quantiles
τ = {0.25, 0.50, 0.75} for each of which the considered sample sizes are n = {125, 250, 500, 1000}.
For each τ -n pair, we simulate the model 500 times. We use cubic B-splines (the tensor product
thereof, in a multivariate case) to approximate unknown function α0(·). For simplicity, we set
Ln = 3 in our experiments for all sample sizes since the range of n is not that large. We compute
the root mean squared error (RMSE) and the mean absolute error (MAE) for each fixed coefficient
across 500 iterations. For a varying nonparametric intercept function, RMSE and MAE are first
computed for each simulation iteration; reported are their averages computed over 500 iterations.

The results are reported in Tables B.1–B.2. Consistent with our theory, performance of the
estimator improves with an increase in the sample size across all quantiles. As one would normally
expect, it performs better for “middle” quantiles (median, in our case): RMSE and MAE somewhat
worsen when we estimate the model closer to tails of the response distribution.

B.2 Specification Tests

We next examine the small-sample performance of our proposed bootstrap specification test. To
conserve space, we only consider τ = 0.50. The sample sizes are n = {100, 200, 400}, and the number
of simulation replications is 500. Residuals under H1 are obtained via our proposed PLSQAR
model using cubic B-splines (the tensor product thereof, in a multivariate case) to approximate the
unknown function α0(·). Residuals under H0 are obtained via Su & Yang’s (2011) estimator. Given
the sample size, for each simulation, we calculate our modified test statistic Jn from the simulated
data plus 199 bootstrap test statistics Jbn. Then, from the 200 test statistic values, we obtain the
1%, 5%, 10% and 20% upper percentile (critical) values.

To assess power and size of the test, we consider the following experimental designs for the
DGP #1 in (B.4):

(1A) The null in (3.2) is true: ρτ,0 ≡ ρ0(υ)
∣∣
υ=τ

= 0.5 + 0.15Φ−1(υ), βτ,1,0 ≡ β1,0(υ)
∣∣
υ=τ

=

0.2 + 0.15Φ−1(υ) and ατ,0(z1) ≡ α0(z1, υ)
∣∣
υ=τ

= 0.5 + 0.5z1 + 0.15Φ−1(υ);

(1B) The null in (3.3) is true: ρτ,0 ≡ ρ0(υ)
∣∣
υ=τ

= 0.5 + 0.15Φ−1(υ), βτ,1,0 ≡ β1,0(υ)
∣∣
υ=τ

=

0.2 + 0.15Φ−1(υ) and ατ,0(z1) ≡ α0(z1, υ)
∣∣
υ=τ

= 0.5 + 0.15Φ−1(υ) for all z1;

(1C) The alternative in (3.4) is true: ρτ,0 ≡ ρ0(υ)
∣∣
υ=τ

= 0.5 + 0.15Φ−1(υ), βτ,1,0 ≡ β1,0(υ)
∣∣
υ=τ

=

0.2 + 0.15Φ−1(υ) and ατ,0(z1) ≡ α0(z1, υ)
∣∣
υ=τ

= sin(1 + 1.5z1) + 0.15Φ−1(υ);

and the following designs for the DGP #2 in (B.4):

(2A) The null in (3.2) is true: ρτ,0 ≡ ρ0(υ)
∣∣
υ=τ

= 0.5 + 0.15Φ−1(υ), βτ,1,0 ≡ β1,0(υ)
∣∣
υ=τ

=

0.2 + 0.15Φ−1(υ), βτ,2,0 ≡ β2,0(υ)
∣∣
υ=τ

= 1 + 0.25Φ−1(υ) and ατ,0(z1, z2) ≡ α0(z1, z2, υ)
∣∣
υ=τ

=
0.5 + 0.5z1 + z2 + 0.15Φ−1(υ);

(2B) The null in (3.3) is true: ρτ,0 ≡ ρ0(υ)
∣∣
υ=τ

= 0.5 + 0.15Φ−1(υ), βτ,1,0 ≡ β1,0(υ)
∣∣
υ=τ

=

0.2 + 0.15Φ−1(υ), βτ,2,0 ≡ β2,0(υ)
∣∣
υ=τ

= 1 + 0.25Φ−1(υ) and ατ,0(z1, z2) ≡ α0(z1, z2, υ)
∣∣
υ=τ

=
0.5 + 0.15Φ−1(υ) for all z1 and z2;

(2C) The alternative in (3.4) is true: ρτ,0 ≡ ρ0(υ)
∣∣
υ=τ

= 0.5 + 0.15Φ−1(υ), βτ,1,0 ≡ β1,0(υ)
∣∣
υ=τ

=

0.2 + 0.15Φ−1(υ), βτ,2,0 ≡ β2,0(υ)
∣∣
υ=τ

= 1 + 0.25Φ−1(υ) and ατ,0(z1, z2) ≡ α0(z1, υ)
∣∣
υ=τ

=
sin(1 + 1.5z1)× z2 + z2 + 0.15Φ−1(υ).
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Table B.3. Simulation Results for the Jn Statistic with τ = 0.50

Estimated Size Estimated Power
Signif. Level n = 100 n = 200 n = 400 n = 100 n = 200 n = 400

Case of H0(i)
DGP #1A DGP #1C

1% 0.012 0.004 0.008 0.888 0.988 1.000
5% 0.034 0.040 0.062 0.980 1.000 1.000
10% 0.086 0.084 0.106 0.990 1.000 1.000
20% 0.214 0.170 0.208 0.994 1.000 1.000

Case of H0(ii)
DGP #1B DGP #1C

1% 0.036 0.018 0.030 0.966 0.966 0.996
5% 0.070 0.048 0.060 1.000 0.998 0.998
10% 0.102 0.068 0.088 1.000 1.000 1.000
20% 0.192 0.184 0.182 1.000 1.000 1.000

Case of H0(i)
DGP #2A DGP #2C

1% 0.010 0.008 0.008 0.336 0.858 0.996
5% 0.048 0.032 0.046 0.658 0.972 1.000
10% 0.100 0.110 0.102 0.752 0.984 1.000
20% 0.186 0.224 0.218 0.852 0.992 1.000

Case of H0(ii)
DGP #2B DGP #2C

1% 0.008 0.010 0.002 0.992 1.000 1.000
5% 0.050 0.044 0.044 1.000 1.000 1.000
10% 0.106 0.094 0.110 1.000 1.000 1.000
20% 0.186 0.178 0.224 1.000 1.000 1.000

Note: The reported are the rejection frequencies over 500 simulations.

The results presented in Table B.3 show that the bootstrap test has quite an accurate size across
all null hypotheses regardless of n. Furthermore, the test exhibits superb power which increases
with the sample size, as expected.

C Additional Results

In this section, we briefly comment on the results corresponding to hedonic attributes other than
the distance to rock mine included in the estimated house price function. Their fixed parameter
estimates (with bootstrap confidence bounds) across quantiles of the house price distribution are
reported in Table C.1. For the estimates of median marginal effects of statistically significant
covariates, see Table C.2. Among these non-distance variables, log square footage of house, log
acreage and story height are the only ones consistently found to be significant across all estimated
quantiles of the house price distribution. Interestingly, no other house attribute has a significant
impact on property values in the 0.95th quantile. Houses in this top quantile include older (historic)
houses in Delaware City as well as recently built McMansion-style houses. More generally, we find
that the number of bedrooms and bathrooms in the house, the presence of an attic and the garage
being attached to the main house are largely statistically insignificant across all quantiles which

20We have also experimented with lattices of larger sizes where spatial units are allocated on squares randomly as
well as with simpler one-dimensional “circular” spatial structures. The results change little.
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Table C.1. Semiparametric Estimates of Constant Parameters on House Attributes
in the Conditional Quantile Regression of Property Value across Quantiles

Quantiles of Property Value
0.25th 0.50th 0.75th 0.95th

Log Sq. Footage 0.59100 0.58160 0.59024 0.58871
(0.53217; 0.64599) (0.53713; 0.62548) (0.54446; 0.63067) (0.49993; 0.74361)

Log Acreage 0.04253 0.06913 0.08138 0.09038
(0.01883; 0.06745) (0.04775; 0.08817) (0.06252; 0.09893) (0.02675; 0.11778)

Story Height –0.05092 –0.09042 –0.09235 –0.13096
(–0.09016; –0.00927) (–0.11479; –0.06307) (–0.11880; –0.06453) (–0.18673; –0.05093)

# Bedrooms –0.00629 –0.01029 –0.02846 –0.14829
(–0.14271; 0.10882) (–0.11146; 0.08000) (–0.11103; 0.06366) (–0.35613; 0.20943)

# Bedrooms2 –0.00420 –0.00227 0.00006 0.01576
(–0.02006; 0.01373) (–0.01471; 0.01206) (–0.01374; 0.01176) (–0.03296; 0.04323)

# Bathrooms 0.06181 0.06611 0.00290 –0.03061
(–0.00550; 0.12941) (0.01357; 0.11258) (–0.05774; 0.05336) (–0.14870; 0.09881)

# Bathrooms2 –0.00041 0.00180 0.01322 0.02173
(–0.00877; 0.00853) (–0.00366; 0.00784) (0.00655; 0.02102) (0.00243; 0.03575)

Full Basement 0.17764 0.11541 0.10999 0.07606
(0.12002; 0.23109) (0.07540; 0.15296) (0.08254; 0.14185) (–0.01222; 0.22164)

Partial Basement 0.14850 0.07297 0.06104 0.01918
(0.09096; 0.20614) (0.03693; 0.11070) (0.03572; 0.09072) (–0.06952; 0.15137)

Attic 0.02001 0.00833 0.02287 0.01788
(–0.00580; 0.04998) (–0.01016; 0.02775) (0.00395; 0.04785) (–0.03912; 0.08237)

Attached Garage 0.02530 0.01621 –0.03072 –0.11543
(–0.03024; 0.07103) (–0.01856; 0.04644) (–0.07117; 0.00431) (–0.23245; 0.04623)

Garage Capacity 0.02446 0.02412 0.02613 0.03682
(0.00620; 0.04629) (0.01226; 0.03812) (0.01350; 0.04132) (–0.02873; 0.07669)

# Fireplaces 0.05920 0.05461 0.03577 0.02552
(0.03759; 0.08208) (0.03640; 0.07530) (0.01886; 0.05363) (–0.02504; 0.08159)

Central A/C 0.13311 0.11955 0.08045 0.01313
(0.06906; 0.19630) (0.05463; 0.17715) (0.03524; 0.13024) (–0.09633; 0.11826)

Age –0.00603 –0.00464 –0.00258 –0.00108
(–0.00793; –0.00372) (–0.00611; –0.00313) (–0.00400; –0.00120) (–0.00490; 0.00250)

Age2 0.00001 0.00001 0.00001 0.00001
(0.00000; 0.00003) (0.00000; 0.00003) (0.00000; 0.00002) (–0.00002; 0.00003)

Reported are the estimates from a semiparametric PLSQAR model. The 95% bootstrap (percentile) confidence
bounds in parentheses. Statistically significant estimates are in bold.

likely is due to property heterogeneity inherent with rapid urbanization. Among the statistically
significant house attributes, the square footage has by far the largest marginal effect on the property
value with its magnitude declining as the house price rises. We document a similar declining
marginal effects (across quantiles) for the basement variables, the number of fireplaces and the
presence of central air-conditioning system in the house. From Table C.2, it appears that garage
capacity is equally valued by all home buyers regardless of the property value, whereas the lot
size exhibits increasing importance for buyers of higher priced houses. The estimates of the total
marginal effects of story height are negative across all quantiles with larger (absolute) magnitudes
estimated at the higher house price quantiles. This likely is an artifact of changing consumer
preferences as well as building trends in the area given that single-story houses have become more
common in recent years.
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Table C.2. Semiparametric Estimates of Median ME of Selected House Attributes
on Conditional Quantiles of Property Value across Quantiles

Quantiles of Property Value
0.25th 0.50th 0.75th 0.95th

Log Sq. Footage
TME 0.8961 0.8467 0.7950 0.7882
Median DME 0.6048 0.5928 0.5976 0.5958
Median IME 0.2914 0.2540 0.1974 0.1925

Log Acreage
TME 0.0645 0.1007 0.1096 0.1210
Median DME 0.0435 0.0705 0.0824 0.0915
Median IME 0.0210 0.0302 0.0272 0.0295

Story Height
TME –0.0772 –0.1316 –0.1244 –0.1753
Median DME –0.0521 –0.0922 –0.0935 –0.1325
Median IME –0.0251 –0.0395 –0.0309 –0.0428

Full Basement
TME 0.2694 0.1680 0.1481 0.1018
Median DME 0.1818 0.1176 0.1114 0.0770
Median IME 0.0876 0.0504 0.0368 0.0249

Partial Basement
TME 0.2252 0.1062 0.0822 0.0257
Median DME 0.1520 0.0744 0.0618 0.0194
Median IME 0.0732 0.0319 0.0204 0.0063

Garage Capacity
TME 0.0371 0.0351 0.0352 0.0493
Median DME 0.0250 0.0246 0.0265 0.0373
Median IME 0.0121 0.0105 0.0087 0.0120

# Fireplaces
TME 0.0898 0.0795 0.0482 0.0342
Median DME 0.0606 0.0557 0.0362 0.0258
Median IME 0.0292 0.0238 0.0120 0.0083

Central A/C
TME 0.2018 0.1741 0.1084 0.0176
Median DME 0.1362 0.1219 0.0814 0.0133
Median IME 0.0656 0.0522 0.0269 0.0043

Reported are the medians of point estimates of MEs from the
PLSQAR model estimated for a given conditional quantile of prop-
erty value.
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