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Proof of Counterexample 2.

For the proof we need the following lemma.

Lemma 1. Let h : R* — R be an analytic function of the normal random vector y with mean vector m and
covariance matrix S such that Eh(y) exists, then

Eh(y) =h(D)-1,
where D is the derivative operator D =m + S(39 /9 m).
Proof. See Ullah (2004), Section 2.2. O

First of all, the setup of Counterexample 2 is very general in the case prices are log-normal and 1(1)
after the log transform. Indeed, the definition of order-1 integration we give is one of the least restrictive,
and, for all n,

Pna,t
= exp(vn)exp (nn,a,t - nn,b,t) ~ SSM:
pn,b,t
with ) )
pn,a,t Tn,a + Tn,b
E =exp(v,)exp| ————— T, |
pn,b,t 2

where 7, o, := Cov (0,4, Nnp,) does not depend on t because of the (joint) SSM assumption.
Notice that the strong version of the LOP holds when v, = 7, ;, — (Ti .t Ti »)/2, which makes the
mean of price ratios equal to 1.

The two-goods real exchange rate
In this proof, we show that the log of the following real exchange rate, used in most empirical validation
of the PPB is nonstationary:

N
zn=1 n exp( Vn + :un,a,t + nn,a,t)
N
Zrz:l ﬁn eXp(:un,b,t + nn,b,t)

with >, a, = >, B, = 1. In particular, we consider only the case with two goods (N = 2), since if
stationarity does not hold in this case, then, in general, it does not hold for N > 2. Thus, consider

RER. = ayexp(vy + Uy + M1 q.) T azexp(vy+ Uy +Mo4,)
‘ B eXP(Ml,f + nl,b,t) + B2 exP(Mz,f + T]Z,b,t)
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By multiplying and dividing the numerator by a; exp(v; +u; . +1,,,.) and the denominator by 3, exp(u; .+
Nn.p,c) We obtain

1+ 2 exp(v + Ue + Mg,

a
RER, = exp(v; + Niar— nl,b,t) B
P 1+ g exp(pe +15,)

where we set v := Va2 — V15 6:= 62 - 517 na,t = nZ,a,t - nl,a,tr nb,t = nz,b,t - nl,b,t: & 1= 82,t - 81,[7 and

t
Y = :uz,t _Ml,t =6t+ Z &>
s=1
which, under the assumption of joint normality of (&, ,¢,,), is a Gaussian I(1) process with SSM incre-
ments. The first two moments of u, are Eu, = 6t and

t
0= Var (i) = ty,(0) +2 Y _(t k). (k),
k=1
where y,(+) is the autocovariance function of ¢,.
By taking the log of RER,, we obtain

rer, = [108(0‘1//51) + (V1 T Nar — nl,b,t)]
+ log[l + Aaexp(u, + na’t)]
—log[ 1+ xaexp(u, +np,)],

where we set A := exp(v), a := a,/a, and k := (f,a,)/(B1ay). The first addend in square brackets is a
SSM process, while the second and the third addends are nonstationary. Since the latter two addends have
opposite signs and share the same nonstationary component ., one has to check if there are choices of the
model parameters which make the process stationary.

Now, since a necessary condition for a process (with finite expectation) to be stationary is that its first
moment is constant, we relay on Lemma 1 to see if the expectation of {rer,} can be time-invariant. First of
all, it is clear that the sufficient and necessary condition for the time invariance of

E log [1 + Aaexp(u, + na,t)] —E log[l +xaexp(u, + nb,t)]

when Var (7, ,) = Var(n, ) = 0 (i.e. proportional prices of the same good in the two countries) and Uf #0
(i.e. elementary price indexes are not constant and/or not identical for all goods) is A = k, which expanded
and solved for f3,, becomes (coherently with Counterexample 1)

exp(67)a, B, = exp(6,)ay
2 exp(67)aq +exp(8y)a,

R PR P

Thus, let us set @ := Aa = ka and expoit the analyticity of the function log[1 + c exp(x)] and Lemma 1

to write
oo

E log[l + aexp(u, + m,[)] = ZcﬂDi -1, le{a,b}

i=0
where the values of ¢; and D' - 1 for i = 1,...,4 can be derived from Table 1.
In particular, if we set w; := Var(n; ) + Cov(n;,, &), we know that

nu’t+7’l,t~N(5t’o-?+wl)) lE{a,b},

and the difference of the expectations of the two addends equals

[e/e]

E log[l + aexp(u, + na’t)] —E log[l + aexp(u, + nb’t)] = Zci(]]])z —D})-1,
i=0



Table 1: First five coefficients of the expansion of E log (1 +aexp( y)) with y normal random variable with
mean m and variance s2.

i ¢ D'-1

0 log(l+a) 1

1 m

2 Z(Ii# m+s?

3 6(?110;))3 m? + ms? + 52

4 —(0‘2;?10‘3;3) m® + m?s® 4 3ms? + s*

Table 2: Coefficients and terms of the expansion of the expectations

i ¢ D, -1 (D, —Dy)-1

0 log(l+a) 1 0

1 lera ot 0

2 W St+02 4w Wy — Wy

3 Goar 82>+ (6t +1)(0? + wy) (5t +1)(w, — wp)

4 %jgj 5352+(52t2+35t)(0f+wl)+(af+ (6262436 t+20%)(w,—wp)+ w2—w?
Wi

where the terms for i = 0,...,4 are in Table 2. From the fourth column of that table, it is evident that the
terms of the expansion of order 3 and 4 are time dependent unless w, = wy,.

So, we proved that, unless w, = wy, the expectation of {rer,} is time dependent. Showing that even
under this (unrealistic) condition, w, = wy, the second moment of {rer,} is time dependent using the same
technique (Lemma 1) is extremely cumbersome, so we will just give a heuristic argument for this particular
case.

Let us fix the variances of the processes ¢, and 7;, such that, for moderate values of t, the random
variables a exp(u,)exp(n;,), [ = {a, b}, take small values compared to 1. In this case, since for small x it
holds log(1 + x) ~ x, we have

log[1+ aexp(u; + ng,)] —log[1+ aexp(u, +ny )]~ aexp(u,)exp(ng,) —exp(ns )],

that is a zero-mean random process with standard deviation proportional to exp(u,), which is a nonsta-
tionary process. If we assume without loss of generality that u, has a positive drift (i.e., 6 = 0), for large
values of t the behaviour of log[1 + @ exp(u, + 1;,,)] is similar to that of log[ & exp(u, + ;)] and so

log[1+ aexp(u, +ng )] —1log[1+ aexp(u, +Mp )]~ Ngr —Npe»

whose variance does not depend anymore on time. Thus, we can conclude that for finite t the variance of
{rer.} depends on time, but as t diverges the variance of {rer,} approaches the asymptotic value Var (1, ,—
nb,t)-

Non-stationarity of the first difference of {rer,}

It is only left to prove that also {Vrer,} is nonstationary, where V is the first-difference operator. We
have E(Vrer,) = E(rer,) —E(rer,_;), whose Lemma 1 expansion under the condition A = k can be
obtained by taking the first difference of each term in the expansion of E (rer,). Thus, the generic term of
this expansion is V(D, —ID;) - 1 and can be obtained by taking the first difference of the fourth column of
Table 2: now the terms i = {0, 1,2, 3} are constant, but the term i = 4 is still time-dependent.
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