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Abstract

This Online Appendix contains the proofs to Theorem 1 in the text, along with three Lemmas

required in the proof. Additionally, there are some extra Monte Carlo and empirical results,

which were mentioned but not reported in the main text for the sake of brevity.

1 Appendix A: Proofs of Main Results

Theorem 1. Let Assumptions 1-5 hold and let the factors and factor loadings be estimated by

Principal Components. For two models i and j, if model i corresponds to the true model such that

the probability limit of
(
F̂ i, ûi

)
is
(
H0F 0

t , u
0
t

)
for all t, and for model j one or both of F̂ j

t and ûjt
has different probability limit, then:

lim
N,T→∞

Pr
(
IC
(
F̂ j , ûj

)
< IC

(
F̂ i, ûi

))
= 0

as long as (i) g (N,T )→ 0 and (ii) min
{√

T ,N
}
g (N,T )→∞ as N,T →∞.

The proof of Theorem 1 makes use of the following three Lemmas on estimation error in the

idiosyncratic components. As mentioned in the text, the number of factors, r, in the first-stage

factor model for Xt is assumed to be fixed and known for these proofs.

Lemma 1. Let Assumptions 1-5 hold and let the factors and idiosyncratic errors be estimated by

Principal Components. Then for each i = 1, ..., N , and as N,T →∞:

1

T

T∑
t=1

Ft (ûit − uit) = Op

(
max

{
1

N
,

1√
T

})
(1)

Lemma 2. Let Assumptions 1-5 hold and let the factors and idiosyncratic errors be estimated by

Principal Components. Then for each i = 1, ..., N , and as N,T →∞:
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1

T

T∑
t=1

(ûit − uit) εt+h = Op

(
max

{
1

N
,

1

T

})
(2)

Lemma 3. Let Assumptions 1-5 hold and let the factors and idiosyncratic errors be estimated by

Principal Components. Then for each i = 1, ..., N , and as N,T →∞:

1

T

T∑
t=1

uit (ûit − uit) = Op

(
max

{
1

N
,

1

T

})
(3)

Each of these Lemmas makes use of the following identity:

ûit − uit =
(
Xit − λ̂′iF̂t

)
−
(
Xit − λ′iFt

)
= λ′iH

−1HFt − λ̂′iF̂t

= λ′iH
−1
(
HFt − F̂t

)
+
(
H ′−1λi − λ̂i

)′
F̂t

= λ′iH
−1
(
HFt − F̂t

)
+
(
H ′−1λi − λ̂i

)′
HFt (4)

−
(
H ′−1λi − λ̂i

)′ (
HFt − F̂t

)

where H is the rotation matrix described in Bai (2003) and Bai and Ng (2006).

Proof of Lemma 1. We can use Equation (4) to write for any i = 1, ..., N :

1

T

T∑
t=1

Ft (ûit − uit) =
1

T

T∑
t=1

Ftλ
′
iH
−1
(
HFt − F̂t

)
+

1

T

T∑
t=1

Ft

(
H ′−1λi − λ̂i

)′
HFt

− 1

T

T∑
t=1

Ft

(
H ′−1λi − λ̂i

)′ (
HFt − F̂t

)
=

(
1

T

T∑
t=1

Ft

(
HFt − F̂t

)′)
H ′−1λi +

(
1

T

T∑
t=1

FtF
′
t

)
H ′
(
H ′−1λi − λ̂i

)
−

(
1

T

T∑
t=1

Ft

(
HFt − F̂t

)′)(
H ′−1λi − λ̂i

)
By Assumptions 1-5, the first term is Op

(
max

{
1
N ,

1
T

})
using Lemma A.1 of Bai and Ng (2006)

and as H ′−1λi is Op (1). We also know that the final term is of smaller order since
(
λ̂i −H ′−1λi

)
is op (1) by Bai (2003) Theorem 2. However, for the middle term:(

1

T

T∑
t=1

FtF
′
t

)
H ′
(
H ′−1λi − λ̂i

)
= Op (1)×

(
H ′−1λi − λ̂i

)
= Op

(
1√
T

)
+Op

(
max

{
1

N
,

1

T

})
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Since Bai (2003) Theorem 2 shows that for the Principal Components estimator of λ̂i we have:

λ̂i −H ′−1λi = H
1

T

T∑
t=1

Ftuit +Op

(
max

{
1

N
,

1

T

})

Now since we do not place any restriction on the relative rate of increase of T and N , Op

(
1√
T

)
+

Op

(
max

{
1
N ,

1
T

})
= Op

(
max

{
1
N ,

1√
T

})
and therefore:

1

T

T∑
t=1

Ft (ûit − uit) = Op

(
max

{
1

N
,

1√
T

})

as required. �

Proof of Lemma 2. We can use Equation (4) to write for any i = 1, ..., N that:

1

T

T∑
t=1

(ûit − uit) εt+h =
1

T

T∑
t=1

εt+hλ
′
iH
−1
(
HFt − F̂t

)
+

1

T

T∑
t=1

εt+h

(
H ′−1λi − λ̂i

)′
HFt

− 1

T

T∑
t=1

εt+h

(
H ′−1λi − λ̂i

)′ (
HFt − F̂t

)
= λ′iH

−1

(
1

T

T∑
t=1

(
HFt − F̂t

)
εt+h

)
+
(
H ′−1λi − λ̂i

)′
H

(
1

T

T∑
t=1

Ftεt+h

)

−
(
H ′−1λi − λ̂i

)′( 1

T

T∑
t=1

(
HFt − F̂t

)
εt+h

)

By Assumptions 1-5, the first part is Op

(
max

{
1
N ,

1
T

})
by Lemma A.1 of Bai and Ng (2006) and

as λ′iH
−1 = Op (1). The last part is of smaller order because λ̂i −H ′−1λi = op (1) by Bai (2003)

Theorem 2. For the middle part,

(
H ′−1λi − λ̂i

)′
H

(
1

T

T∑
t=1

Ftεt+h

)
=

[
Op

(
1√
T

)
+Op

(
max

{
1

N
,

1

T

})]
×Op

(
1√
T

)

since E[Ftεt+h] = 0 implies that
(

1
T

∑T
t=1 Ftεt+h

)
= Op

(
1√
T

)
and as

(
λ̂i −H ′−1λi

)
= Op

(
1√
T

)
+

Op

(
max

{
1
N ,

1
T

})
by Bai (2003) Theorem 2. This part is therefore Op

(
max

{
1√
TN

, 1
T

})
. Combin-

ing these three results shows that

1

T

T∑
t=1

(ûit − uit) εt+h = Op

(
max

{
1

N
,

1

T

})

as required. �
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Proof of Lemma 3. In a similar way to Lemmas 1 and 2, we can write for any i = 1, ..., N :

1

T

T∑
t=1

uit (ûit − uit) =
1

T

T∑
t=1

uitλ
′
iH
−1
(
HFt − F̂t

)
+

1

T

T∑
t=1

uit

(
H ′−1λi − λ̂i

)′
HFt

− 1

T

T∑
t=1

uit

(
H ′−1λi − λ̂i

)′ (
HFt − F̂t

)
=

(
1

T

T∑
t=1

uit

(
HFt − F̂t

)′)
H ′−1λi +

(
1

T

T∑
t=1

F ′tuit

)
H ′
(
H ′−1λi − λ̂i

)
−

(
1

T

T∑
t=1

uit

(
HFt − F̂t

)′)(
H ′−1λi − λ̂i

)
Now in this case, the first term is Op

(
max

{
1
N ,

1
T

})
by Assumptions 1-5 and Bai (2003) Lemma

B.1, the final part is of smaller order as λ̂i −H ′−1λi is op (1) and for the middle part we have:(
1

T

T∑
t=1

F ′tuit

)
H ′
(
H ′−1λi − λ̂i

)
= Op

(
1√
T

)
×
[
Op

(
1√
T

)
+Op

(
max

{
1

N
,

1

T

})]

since E[F ′tuit] = 0 implies that
(

1
T

∑T
t=1 F

′
tuit

)
= Op

(
1√
T

)
and

(
λ̂i −H ′−1λi

)
= Op

(
1√
T

)
+

Op

(
max

{
1
N ,

1
T

})
from Bai (2003) Theorem 2. This term is therefore Op

(
max

{
1√
TN

, 1
T

})
. Com-

bining the three results gives:

1

T

T∑
t=1

uit (ûit − uit) = Op

(
max

{
1

N
,

1

T

})

as required. �

Proof of Theorem 1. We have two regression specifications i and j:

yt+h = βi′F̂ i
t + αi′ûit + ε̂it+h

with F̂ i
t and βi of dimension ri × 1 and αi and ûit of dimension mi × 1; and:

yt+h = βj′F̂ j
t + αj′ûjt + ε̂jt+h

with F̂ j
t and βj of dimension rj×1 and αj and ûjt of dimension mj×1. For simplicity we will write

these compactly as:

yt+h = θi′Ẑi
t + ε̂it+h

and

yt+h = θj′Ẑj
t + ε̂jt+h
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Where Ẑi
t =

[
F̂ i′
t , û

i′
t

]′
and Ẑj

t =
[
F̂ j′
t , û

j′
t

]′
. Now in what follows we will relate the generated

regressors F̂ i
t and ûit to their probability limits H iF i

t and uit where H i is the relevant submatrix of

H described in Bai and Ng (2006) and uit is not rotated as the common component is identified

without rotation. This gives the probability limit vectors Zi
t =

[
F i′
t H

i′, ui′t
]′

and Zj
t =

[
F j′
t H

j′, uj′t

]′
.

Now we can rewrite the sum of square error functions V (.) both for the estimated factor and

idiosyncratic components, and for their probability limits as:

V
(
F̂ i, ûi

)
= V

(
Ẑi
)

=
1

T
y′M̂ iy

V
(
F̂ j , ûj

)
= V

(
Ẑj
)

=
1

T
y′M̂ jy

V
(
F iH i′, ui

)
= V

(
Zi
)

=
1

T
y′M iy

V
(
F jHj′, uj

)
= V

(
Zj
)

=
1

T
y′M jy

where M̂ i = I − Ẑi
(
Ẑi′Ẑi

)−1
Ẑi′, M i = I − Zi

(
Zi′Zi

)−1
Zi′ and similarly for M̂ j and M j .

Therefore we can rewrite the statement in Theorem 1 as:

lim
N,T→∞

Pr

(
ln

[
1
T y
′M̂ jy

1
T y
′M̂ iy

]
< (ri +mi − rj −mj) g (N,T )

)
= 0

which we can manipulate in order to relate the estimated regressors back to the true (rotated)

factors and idiosyncratic errors as follows:

lim
N,T→∞

Pr

(
ln

[
1
T y
′M jy

1
T y
′M iy

]
+ ln

[
1
T y
′M̂ jy

1
T y
′M jy

]
− ln

[
1
T y
′M̂ iy

1
T y
′M iy

]
< (ri +mi − rj −mj) g (N,T )

)
= 0

(5)

The second and third terms on the left of this expression are both estimation error terms involving

the estimated factors and idiosyncratic components. We first show the convergence rate of these

two terms as T and N grow large, using Lemmas 1-3. This proof deviates from those in Bai and Ng

(2006) and Groen and Kapetanios (2013) as the matrices M̂ i and M̂ j do not just contain estimated

factors, they additionally contain estimation error due to the idiosyncratic errors.

Consider the third term of Equation (5) for the model specification i. (That for j will follow

the same argument).

1

T
y′M̂ iy − 1

T
y′M iy =

1

T
y′
(
M̂ i −M i

)
y

=
1

T
y′
(
P i − P̂ i

)
y

where P̂ i and P i are projection matrices P̂ i = Ẑi
(
Ẑi′Ẑi

)−1
Ẑi′ and P i = Zi

(
Zi′Zi

)−1
Zi′. Now

5



make the following expansion:

1

T
y′
(
P i − P̂ i

)
y =

1

T
y′
(
Zi
(
Zi′Zi

)−1
Zi′ − Ẑi

(
Ẑi′Ẑi

)−1
Ẑi′
)
y

=
1

T
y′
(
Zi
(
Zi′Zi

)−1
Zi′

−
(
Ẑi − Zi + Zi

)(
Ẑi′Ẑi

)−1 (
Ẑi − Zi + Zi

)′)
y

=
1

T
y′Zi

[(
Zi′Zi

)−1 − (Ẑi′Ẑi
)−1]

Zi′y

− 1

T
y′
(
Ẑi − Zi

)(
Ẑi′Ẑi

)−1
Zi′y

− 1

T
y′Zi

(
Ẑi′Ẑi

)−1 (
Ẑi − Zi

)′
y

− 1

T
y′
(
Ẑi − Zi

)(
Ẑi′Ẑi

)−1 (
Ẑi − Zi

)′
y

= I + II + III + IV

Consider part II:

II =
1

T
y′
(
Ẑi − Zi

)(
Ẑi′Ẑi

)−1
Zi′y

=
1

T
y′
(
Ẑi − Zi

)( 1

T
Ẑi′Ẑi

)−1 1

T
Zi′y

The product of the second and last part of this expression
(

1
T Ẑ

i′Ẑi
)−1

1
T Z

i′y gives a column vector

of dimension (ri +mi)×1 which is Op (1). The first part is a 1×(ri +mi) row vector. Now re-write

this part in terms of the estimates F̂ i
t and ûit using Ẑi

t =
[
F̂ i′
t , û

i′
t

]′
, or in matrix form Ẑi =

[
F̂ i, ûi

]
,

and substituting in the true model for y we have:

1

T
y′
(
Ẑi − Zi

)
=

1

T
y′
[(
F̂ i − F iH i′

)
,
(
ûi − ui

)]
=

1

T

(
F 0β0 + u0α0 + ε

)′ [(
F̂ i − F iH i′

)
,
(
ûi − ui

)]
(6)

Now the first ri elements of this row vector corresponding to factor estimation error are results

which have already been shown in the literature, namely:

β0′
1

T
F 0′

(
F̂ i − F iH i

)
= β0′

1

T

T∑
t=1

F 0
t

(
F̂ i
t −H iF i

t

)′
= Op

(
max

{
1

N
,

1

T

})
(7)
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and

1

T
ε′
(
F̂ i − F iH i

)
=

1

T

T∑
t=1

εt+h

(
F̂ i
t −H iF i

t

)′
= Op

(
max

{
1

N
,

1

T

})
(8)

both by Bai and Ng (2006) Lemmas A.1 (ii) and A.1 (vi), and

α0′ 1

T
u0′
(
F̂ i − F iH i

)
= α0′ 1

T

T∑
t=1

u0t

(
F̂ i
t −H iF i

t

)′
= Op

(
max

{
1

N
,

1

T

})
(9)

by Bai (2003) Lemma B.1 since the dimension of u0t is m0 which is finite. However, the remaining

three terms are new to this paper and are analysed in the Lemmas above, namely:

β0′
1

T
F 0′ (ûi − ui) = β0′

1

T

T∑
t=1

F 0
t

(
ûit − uit

)′
= Op

(
max

{
1

N
,

1√
T

})
(10)

and

1

T
ε′
(
ûi − ui

)
=

1

T

T∑
t=1

εt+h

(
ûit − uit

)′
= Op

(
max

{
1

N
,

1

T

})
(11)

and finally:

α0′ 1

T
u0′
(
ûi − ui

)
= α0′ 1

T

T∑
t=1

u0t
(
ûit − uit

)′
= Op

(
max

{
1

N
,

1

T

})
(12)

The same results are used in showing the other parts I, III and IV and as such we do not

repeat them here. Combining all of these results yields:

1

T
y′M̂ iy − 1

T
y′M iy = Op

(
max

{
1

N
,

1√
T

})
This differs to that of Groen and Kapetanios (2013), due to the consistency rate in Lemma 1. This

7



result implies:
1
T y
′M̂ iy

1
T y
′M iy

= 1 +Op

(
max

{
1

N
,

1√
T

})
which in turn implies:

ln

[
1
T y
′M̂ iy

1
T y
′M iy

]
= Op

(
max

{
1

N
,

1√
T

})
And the same result holds for model j. Therefore we can rewrite the expression in Equation (5) to

be:

lim
N,T→∞

Pr

(
ln

[
1
T y
′M jy

1
T y
′M iy

]
+Op

(
max

{
1

N
,

1√
T

})
< (ri +mi − rj −mj) g (N,T )

)
= 0 (13)

To show Theorem 1, we assume that model i is correct and that the probability limits of F̂ i
t and ûit

are H0F 0
t and u0t for all t, which because we impose orthogonality on the factors, means that model

i contains the true number of variables with ri = r0 and mi = m0. This means that M iF 0 = 0 and

M iu0 = 0 so as in Groen and Kapetanios (2013), the denominator of the first part in (13) becomes:

1

T
y′M iy =

1

T
ε′M iε

= σ2ε +Op

(
1

T

)
The last line assumes homoskedasticity of εt, as in Cheng and Hansen (2015) for the Mallows

criterion, and Groen and Kapetanios (2013) for the related information criteria. To assess statement

(13) we now take two exhaustive cases in which the candidate model j is incorrectly specified:

Case 1: The probability limits of F̂ j
t and ûjt are such that: (i) M jF 0 = 0 but M ju0 6= 0 (Model j has

correct factor specification but not all relevant idiosyncratic errors are included), (ii) M jF 0 6= 0 but

M ju0 = 0 (not all relevant factors are included, but all relevant idiosyncratic errors are included)

or (iii) M jF 0 6= 0 and M ju0 6= 0 (model missing relevant factors and relevant idiosyncratic errors).

In any of these three cases (i)-(iii), the numerator of the first term in Equation (13) is:

1

T
y′M jy =

1

T
ε′M jε+

1

T

(
F 0β0 + u0α0

)′
M j

(
F 0β0 + u0α0

)
= σ2ε + τ1 +Op

(
1

T

)
where τ1 > 0 and the form of τ1 depends on whether we are in Case 1 (i), (ii) or (iii). Therefore:

1

T
y′M jy − 1

T
y′M iy = τ1 +Op

(
1

T

)

8



which implies that

ln

[
1
T y
′M jy

1
T y
′M iy

]
≥ τ2 > 0

for some known τ2. Therefore using Equation (13), the statement in Theorem 1 will hold in Case

1 as long as we can show that:

lim
N,T→∞

Pr

(
τ2 +Op

(
max

{
1

N
,

1√
T

})
< (ri +mi − rj −mj) g (N,T )

)
= 0 (14)

and since (ri +mi − rj −mj) is finite, this statement is true when g (N,T ) → 0. Since this is

stated in Condition (i) of Theorem 1, this proves what was required in Case 1. Turning to Case 2:

Case 2: The probability limits of F̂ j
t and ûjt are such that both M jF 0 = 0 and M ju0 = 0, but

more than the relevant variables are included with either (i) rj = r0 but mj > m0 (correct factor

specification but too many idiosyncratic errors included), (ii) rj > r0 but mj = m0 (too many

factors specified, but correct idiosyncratic error specification) or (iii) rj > r0 and mj > m0 (too

many factors and idiosyncratic errors included).

In this case, the numerator of the first term in (13) is:

1

T
y′M jy =

1

T
ε′M jε+

1

T

(
F 0β0 + u0α0

)′
M j

(
F 0β0 + u0α0

)
= σ2ε +Op

(
1

T

)
Therefore:

1

T
y′M jy − 1

T
y′M iy = Op

(
1

T

)
which implies that:

ln

[
1
T y
′M jy

1
T y
′M iy

]
= Op

(
1

T

)
Therefore using (13), the statement in Theorem 1 will hold in Case 2 as long as we can show that:

lim
N,T→∞

Pr

(
Op

(
max

{
1

N
,

1√
T

})
< (ri +mi − rj −mj) g (N,T )

)
= 0 (15)

Now since model i is the correct model with ri = r0 and mi = m0, each of Case 2 (i), (ii) and (iii)

imply that (ri +mi − rj −mj) < 0. Therefore this statement holds when g (N,T ) min
{√

T ,N
}
→

∞ and the right hand side diverges to −∞ at a quicker rate than the estimation error. Since this

corresponds to Condition (ii) stated in Theorem 1, this shows what was required in Case 2. �

Finally, we also offer a short proof of the statement in Remark 1, which follows immediately as

a special case of the proof of Theorem 1.

Proof of Remark 1. For the case where β0 = 0, it is immediate to see that the expression in

9



Equation (6) simplifies to:

1

T
y′
(
Ẑi − Zi

)
=

1

T
y′
[(
F̂ i − F iH i′

)
,
(
ûi − ui

)]
=

1

T

(
u0α0 + ε

)′ [(
F̂ i − F iH i′

)
,
(
ûi − ui

)]
This, in turn, implies that the terms analysed in Equations (7) and (10) of the proof of Theorem

1 disappear, leaving only the terms in Equations (8), (9), (11) and (12). Now, since all of these

terms have the rate Op

(
max

{
1
N ,

1
T

})
, it follows that we can replace the Op

(
max

{
1
N ,

1√
T

})
rate

in Equations (13), (14) and (15), which leads directly to Condition (ii’) displayed in Remark 1. �
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2 Appendix B: Additional Monte Carlo Results

2.1 MSD Results for Specifications r = 1, m0 = 1, 2 in the Text

Figure A1: MSDu for different information criteria over 1,000 Monte Carlo replications when
the true r = 1 and m0 = 1
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Figure A2: MSDu for different information criteria over 1,000 Monte Carlo replications when
the true r = 1 and m0 = 2
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Figure A3: MSDr for different information criteria over 1,000 Monte Carlo replications when the
true r = 1 and m0 = 1
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Figure A4: MSDr for different information criteria over 1,000 Monte Carlo replications when the
true r = 1 and m0 = 2
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2.2 Additional Results for r = 1, m0 = 0
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Figure A5: Average number of selected idiosyncratic components (m̂0) for different information
criteria over 1,000 Monte Carlo replications when the true r = 1 and m0 = 0
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Notes: The horizontal dashed line represents the true number of idiosyncratic components m0 = 0.

Figure A6: Average number of selected factors (r̂) for different information criteria over 1,000
Monte Carlo replications when the true r = 1 and m0 = 0
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Notes: The horizontal dashed line represents the true number of factors r = 1.
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Figure A7: MSDu for different information criteria over 1,000 Monte Carlo replications when
the true r = 1 and m0 = 0
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Figure A8: MSDr for different information criteria over 1,000 Monte Carlo replications when the
true r = 1 and m0 = 0
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3 Appendix C: Additional Empirical Results

3.1 In-Sample Results with Other Selection Criteria

Tables A1 and A2, below, correspond to Tables 3 and 4 in the text, but where model selection has

taken place using the HQICM Criterion of Groen and Kapetanios (2013):

Table A1: In-Sample Model Selection Results: 1988-1998 pre-Euro era.

Selection Criterion: HQICM

h = 1 h = 12

Countries (m̂) Countries (m̂)

AUS - (0) CHE (1)
AUT - (0) - (0)
BEL - (0) DNK (1)
CAN - (0) FIN, ESP, BEL (3)
DNK - (0) BEL (1)
FIN - (0) - (0)
FRA - (0) - (0)
DEU - (0) - (0)
ITA - (0) FIN, CAN (2)
JPN - (0) ITA, BEL (2)
KOR - (0) DNK, ESP, CHE (3)
NLD - (0) - (0)
NOR - (0) - (0)
ESP - (0) FIN (1)
SWE - (0) FIN (1)
CHE - (0) - (0)
GBR - (0) FIN (1)

Notes: For each country, the column “Countries (m̂)” displays the identity of selected spillover countries,

and the number of these selected countries in parentheses. Model selection is performed using the HQICM

criterion of Groen and Kapetanios (2013). The results are displayed only for the horizons h = 1 and h = 12,

with other results available upon request.
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Table A2: In-Sample Model Selection Results: 1999-2015 post-Euro era.

Selection Criterion: HQICM

h = 1 h = 12

Countries (m̂) Countries (m̂)

AUS - (0) - (0)
CAN - (0) - (0)
DNK - (0) - (0)
EUR - (0) - (0)
JPN - (0) - (0)
KOR - (0) - (0)
NOR - (0) - (0)
SWE - (0) - (0)
CHE - (0) CAN (1)
GBR - (0) - (0)

Notes: For each country, the column “Countries (m̂)” displays the identity of selected spillover countries,

and the number of these selected countries in parentheses. Model selection is performed using the HQICM

criterion of Groen and Kapetanios (2013). The results are displayed only for the horizons h = 1 and h = 12,

with other results available upon request.

3.2 Results for Specification Including the Global Recession

Tables A3 and A4 correspond to Tables 3 and 4 in the main text, but where model selection takes

place in the specification involving interactions of the idiosyncratic components with the global

recession dummy:

si,t+h − sit = µ1 + µ2Dt + α1iûit + α2iûitDt +
∑
j 6=i

α1j ûjt +
∑
j 6=i

α2j ûjtDt + εi,t+h

The spillover effects, ûjt, have the same 3-letter country label as above, but the interaction

terms ûjtDt are labelled “AUS-R”, “CAN-R” and so on.
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Table A3: In-Sample Model Selection Results: 1988-1998 pre-Euro era.

Selection Criterion: HQ3

h = 1 h = 12

Countries (m̂) Countries (m̂)

AUS - (0) ITA, FIN, BEL (3)
AUT - (0) NOR (1)
BEL - (0) DNK (1)
CAN - (0) FIN, ITA, ESP (3)
DNK - (0) BEL (1)
FIN - (0) - (0)
FRA - (0) NOR (1)
DEU - (0) NOR (1)
ITA - (0) FIN, ESP (2)
JPN - (0) ITA, BEL (2)
KOR - (0) DNK, ESP, CHE (3)
NLD - (0) NOR (1)
NOR - (0) FIN (1)
ESP - (0) FIN (1)
SWE - (0) FIN, ITA (2)
CHE - (0) - (0)
GBR - (0) FIN (1)

Selection Criterion: BIC

h = 1 h = 12

Countries (m̂) Countries (m̂)

AUS CHE (1) CHE, ITA, FIN, BEL, ESP (5)
AUT CAN, BEL, DNK (3) NOR, DNK, BEL (3)
BEL DNK, CAN (2) DNK, NOR, CHE-R, SWE (4)
CAN ESP, CHE (2) AUS, FIN, SWE-R, ITA, ESP (5)
DNK JPN (1) NOR, SWE, SWE-R, BEL (4)
FIN ITA (1) KOR, NOR, SWE (3)
FRA DNK, JPN, BEL (3) NOR, CHE-R, DNK, BEL, SWE (5)
DEU FIN, BEL, ITA (3) NOR, DNK, NLD, BEL (4)
ITA FIN (1) FIN, ESP, CHE-R, SWE, CHE (5)
JPN AUS-R, ITA (2) ITA, BEL (2)
KOR ITA, FIN (2) DNK, ESP, CHE, SWE (4)
NLD CAN, BEL, DNK (3) NOR, DNK, BEL (3)
NOR DNK (1) DNK, CHE-R, FIN, ESP (4)
ESP FIN (1) FIN, DEU, ITA, GBR (4)
SWE CHE (1) FIN, ITA, CAN (3)
CHE DNK, BEL, CAN (3) NOR, DNK, SWE (3)
GBR KOR-R (1) FIN, CHE-R, FRA, SWE (4)

Notes: For each country, the column “Countries (m̂)” displays the identity of selected spillover countries,

and the number of these selected countries in parentheses. Model selection is performed using the HQ3

criterion (upper panel) and BIC criterion (lower panel). The results are displayed only for the horizons

h = 1 and h = 12, with other results available upon request.
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Table A4: In-Sample Model Selection Results: 1999-2015 post-Euro era.

Selection Criterion: HQ3

h = 1 h = 12

Countries (m̂) Countries (m̂)

AUS - (0) - (0)
CAN - (0) SWE (1)
DNK - (0) SWE (1)
EUR - (0) SWE (1)
JPN - (0) - (0)
KOR - (0) - (0)
NOR - (0) SWE (1)
SWE - (0) - (0)
CHE - (0) CAN (1)
GBR - (0) - (0)

Selection Criterion: BIC

h = 1 h = 12

Countries (m̂) Countries (m̂)

AUS JPN-R, EUR, DNK (3) SWE, CHE (2)
CAN JPN-R (1) SWE, GBR-R (2)
DNK CAN (1) SWE, JPN, AUS-R (3)
EUR CAN (1) SWE, JPN, AUS-R (3)
JPN CAN, AUS-R (2) SWE, AUS, GBR (3)
KOR JPN-R (1) CHE, AUS (2)
NOR - (0) SWE, KOR, AUS-R (3)
SWE NOR (1) NOR, AUS, AUS-R, CHE (4)
CHE CAN (1) JPN, SWE (2)
GBR - (0) SWE, CHE (2)

Notes: For each country, the column “Countries (m̂)” displays the identity of selected spillover countries,

and the number of these selected countries in parentheses. Model selection is performed using the HQ3

criterion (upper panel) and BIC criterion (lower panel). The results are displayed only for the horizons

h = 1 and h = 12, with other results available upon request.
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