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In Supplementary Appendix A, we report additional simulations, empirical analyses and robustness

checks. In Supplementary Appendix B, we provide the proofs of the theorems and related results in Sec-

tion 3.2 of our main paper, Chou and Shi (2021). In Supplementary Appendix C, we show the consequences

of classical measurement errors in the ATUS.

A Additional Simulations, Empirical Results and Robustness Checks

In this appendix, we show additional simulation results, additional empirical results and various robustness

checks that complement our main paper, Chou and Shi (2021).

A.1 Density Plots Based Only on Weekdays in the DTUS

In Figure 1 of the main paper, the ATUS-type daily hours exhibit bimodal distributions since most people

work very little hours on weekends, if at all.3 Figure A.1 shows the results of a similar experiment which

takes the common five-day work schedule into account. We only keep those individuals whose diary days are

the workdays, and then multiple their ATUS-type daily hours by 5. As is shown in Figure A.1, even though

the DTUS weekly hours and the scaled ATUS-type daily hours have similar mode, their distributions di↵er

notably, especially toward the left end. This again highlights the impossibility results in Section 3.1 of the

main paper.

A.2 Simulations Based Only on Weekdays in the DTUS

Table A.1 reports the results of simulation experiments that are very similar to those in Table 1. For

Table A.1, we only use the daily hours worked in the DTUS for the weekdays. The regressors Xi and the

IVs Zi are generated from the n⇥5 matrix with elements HDTUS
it (t = 2, . . . , 6), denoted by HDTUS,5, using
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3According to the U.S. Bureau of Labor Statistics, in 2017, 89% of full-time workers worked on an average weekday, compared

with 32.6% on an average weekend day.
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the same design described in Section 4.1. To generate fictitious ATUS-type samples, we randomly choose

only one day from Monday to Friday for each individual using equal sampling weights.

Just like in Table 1, the week estimator �̂wk is our infeasible benchmark, which has virtually no biases and

the smallest variances. The e�ciency gain of the impute estimator �̂im relative to the pool estimator �̂pool

and the day estimator �̂day becomes less pronounced. This is likely due to the fact that the first principal

component of HDTUS captures the dichotomy between weekdays and weekends, and once that is removed,

the daily variation of hours worked drops dramatically.4 Besides, the ATUS assigns equal sampling weights

to the weekdays. As we explained in Remark 7 in Chou and Shi (2021), if Hi2 = · · · = Hi6 and r2 = · · · = r6,

then ⌦pool�im = 0 and there will be no di↵erence in the asymptotic e�ciency between �̂im and �̂pool. Our

additional simulation results here verify our theoretical prediction in the main paper.

A.3 Coe�cient Estimates in the DTUS Weekly Labor Supply Regression

In Table 2 of the main paper, we report the weekly labor supply elasticity estimates using the DTUS.

Table A.2 reports the coe�cient estimates in the weekly labor supply regression equation shown in eq. (4),

and the elasticity estimates reported in Table 2 are evaluated at the sample mean hours.

A.4 Coe�cient Estimates in the ATUS Weekly Labor Supply Regression

In Table 3 of the main paper, we report the weekly labor supply elasticity estimates using the ATUS.

Table A.5 reports the coe�cient estimates in the weekly labor supply regression equation shown in eq. (22),

and the elasticity estimates reported in Table 3 are evaluated at respective sample means based on these

coe�cients and the sample mean hours.

A.5 Representativeness of the ATUS Sample

The ATUS is designed to be a random subsample of those who recently complete their participation in the

CPS. We compare the ATUS sample against the CPS sample. Sample means and sample standard deviations

of the key variables used in the empirical studies are reported in Table A.3. The ATUS sample (first column)

is the one used in the empirical studies in our main paper. The CPS sample (middle column) is the entire

CPS 2003-2017 sample after the same sample selection criterion (hourly paid workers aged between of 25

and 54, whose wage rate is positive, and spouse earnings (if married) and total usual weekly hours worked

at all jobs reported in the CPS are observed The entire CPS sample (last column) includes the respondents

4Indeed, the first principal component of HDTUS,5 assigns the weights �1 = 0.4389, �2 = 0.4560, �3 = 0.4580, �4 = 0.4531
and �5 = 0.4294 to its columns, which correspond to Monday to Friday, respectively; i.e., each weekday contributes roughly
equally to the first principal component.
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whose hourly wage or spouse weekly earnings is missing. None of the key variable summary statistics di↵er

significantly among the three samples.

The elasticity estimates in Table 3 of the main paper are based on the sample in the first column of

Table A.3. Using the sample of second column of Table A.3, we estimate the labor supply elasticities similar

to the main paper. We report such estimates in Table A.4. Comparing them with the CPS results in Table 3

in the main paper, we find no notable di↵erences.

Therefore, it is safe to conclude that the ATUS sample is a representative subsample of the CPS, which

implies that the di↵erences between the ATUS and the CPS elasticity estimates are more likely due to the

nonclassical measurement errors in the CPS than due to the composition of the ATUS sample.

Moreover, the ATUS sample does not exhibit strong seasonal fluctuations over a year, whether as a

whole or within each occupation. In Table A.6, we categorize the ATUS sample into di↵erent occupations

and months. First, the entire ATUS sample is very balanced over a year, with people surveyed in all months

having roughly equal proportions. Second, within each occupation, the ATUS also surveys approximately

same numbers of people in every month. Third, among the nine occupation categories, not a single occupation

bears overwhelming weights. So the empirical results in the main paper are not likely to be driven by anomaly

in a single occupation or a single month.

A.6 Robustness Checks of the Empirical Results in Section 5

In Section 5 of the main paper, we estimate labor supply elasticities using the ATUS daily hours and compare

the estimates with those obtained using the CPS recalled weekly hours. The ATUS estimates reported in

Table 3 of the main paper uses the “work” hours on all jobs (activity code: 050100) for all the occupations

in the ATUS.

In this section, we conduct four robustness checks. The first robustness check, reported in Table A.7,

restricts to the three occupations with the most observations; they are computer and mathematical science,

healthcare support, and o�ce and administrative support occupations. The second robustness check, re-

ported in Table A.8, uses “work” and “work-related” hours (activity codes: 050100 and 050200) for all the

occupations in the ATUS.5 The third robustness check, reported in Table A.9, estimates the elasticities

using the OLS, without correcting the potential measurement issues in own hourly wage and spouse weekly

earnings (using their respective decile as IVs). Comparing Tables A.7 to A.9 here with Table 3 of the main

paper, we see that none of the estimates change much, neither qualitatively nor quantitatively.

The fourth robustness check, reported in Table A.10, uses survey year-month group indicators as IVs.6

5Examples of work-related activities here include attending social events, attending sporting events, and eating or drinking
with bosses, co-workers or clients, etc.

6Our sample contains respondents in 15 years (2003-2017), which together with 12 months result in 180 group indicators.
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Angrist (1991) proposes the use of group classification variable that is independent from the error term as IV.

He also proves that the resulting 2SLS estimator is a generalization of the Wald estimator in the treatment

e↵ect literature that is frequently used in binary treatment and binary IV cases. The identification power of

such 2SLS estimators comes from the variation in group means, and it requires that the individual deviation

from group means to be uncorrelated with the IVs. Since we have no reason to believe that the error term

in the weekly labor supply eq. (4) is systematically correlated with survey year or survey month, the survey

year-month dummies satisfy the exclusion restriction. On the other hand, the correlation between survey

year (or survey month) and log wage (or spouse earnings) is probably weak, which may lead to inflated

standard errors and sizable finite sample bias. Compare Table A.10 with Table 3 in the main paper, the

standard errors of the elasticity estimates (Panel B) rise remarkably. Among those elasticity estimates which

remain significant – CPS own wage for all groups, CPS spouse earning and older kids for married women,

CPS and ATUS younger kids for married women – neither sign nor magnitude changes much. This shows

that our labor supply elasticity estimates are not very sensitive to the choice of IVs.

B Proofs of the Theorems in Section 3.2

Proof of Theorem 1. First we show the identification of � if Hw
i were observed, as it will be instructive for

our discussion based on the ATUS data HATUS
i . If the true weekly hours worked Hw

i were observed, then the

identification of the p-dimensional parameter vector � is just the usual argument for 2SLS (i.e., generalized

method of moments) estimators. Formally, � is identified if the following q-dimensional moment conditions

E(ZiUi) = E[Zi(H
w
i �X 0

i�)] = 0 () E(ZiH
w
i ) = E(ZiX

0
i)� (B.1)

have a unique solution of �, which is true if q � p, and the rank of the q ⇥ p matrix E(ZiX 0
i) is p (i.e.,

Assumption 3). Provided that E(ZiZ 0
i) is nonsingular (part of Assumption 3), eq. (B.1) is equivalent to

E(XiZ
0
i)[E(ZiZ

0
i)]

�1E(ZiH
w
i ) = E(XiZ

0
i)[E(ZiZ

0
i)]

�1E(ZiX
0
i)�, (B.2)

and

� =
�
E(XiZ

0
i)[E(ZiZ

0
i)]

�1E(ZiX
0
i)
��1

E(XiZ
0
i)[E(ZiZ

0
i)]

�1E(ZiH
w
i ) (B.3)

is the unique solution of eq. (B.2). �̂wk is to replace the expectations in eq. (B.3) by respective sample

means.

Next we consider the case where only HATUS
i =

P7
t=1 ditHit is observed. The identification of � is still
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based on the same moment conditions in eq. (B.1), but the only problem now is that the ATUS data are

not informative about the term E(ZiHw
i ) in eq. (B.3). Since the expression of � in eq. (B.3) is the unique

solution of eq. (B.2), the identification of � will be proved if we can find equivalent expressions of eq. (B.3)

that have sample counterparts in the ATUS data. The rest of our proof shows that. Under the potential

outcome framework, we have

� =
�
E(XiZ

0
i)[E(ZiZ

0
i)]

�1E(ZiX
0
i)
��1

E(XiZ
0
i)[E(ZiZ

0
i)]

�1
7X

t=1

E(ZiHit) (B.4)

=
�
E(XiZ

0
i)[E(ZiZ

0
i)]

�1E(ZiX
0
i)
��1

E(XiZ
0
i)

7X

t=1

[E(ZiZ
0
i|dit = 1)]�1E(ZiHit|dit = 1) (B.5)

=
�
E(XiZ

0
i)[E(ZiZ

0
i)]

�1E(ZiX
0
i)
��1

E(XiZ
0
i)[E(ZiZ

0
i)]

�1
7X

t=1

E(rntdit)E(ZiHit)

=
�
E(XiZ

0
i)[E(ZiZ

0
i)]

�1E(ZiX
0
i)
��1

E(XiZ
0
i)[E(ZiZ

0
i)]

�1
7X

t=1

E(rntditZiHit)

=
�
E(XiZ

0
i)[E(ZiZ

0
i)]

�1E(ZiX
0
i)
��1

E(XiZ
0
i)[E(ZiZ

0
i)]

�1
7X

t=1

E(rntZiHit|dit = 1) (B.6)

=
7X

t=1

�
E(XiZ

0
i|dit = 1)[E(ZiZ

0
i|dit = 1)]�1E(ZiX

0
i|dit = 1)

��1

⇥ E(XiZ
0
i|dit = 1)[E(ZiZ

0
i|dit = 1)]�1E(ZiHit|dit = 1), (B.7)

where eq. (B.4) holds by the definition of Hw
i , eqs. (B.5) to (B.7) hold by Assumption 1 and that E(rntdit) =

1. Equation (B.5) is the population counterpart of �̂im, eq. (B.6) is the population counterpart of �̂pool, and

eq. (B.7) is the population counterpart of �̂day, all of which are now estimable using the ATUS data.

Proof of Theorem 2. First, we show the consistency of �̂wk:

�̂wk � � = A�1
n X 0PzU = A�1

n BnC
�1
n (Z 0U/n)

p.�! A�1BC�1E(ZiUi) = 0.

In fact, this is a standard result for instrumental variable estimators.

Second, we show the consistency of �̂im. Consider the di↵erence (�̂im � �̂wk) using their definitions:

�̂im � �̂wk = (X 0PzX)�1X 0Pz

"
7X

t=1

Z(Z 0DtZ)�1Z 0DtHt �Hw

#

= (X 0PzX)�1X 0Pz

"
7X

t=1

Z(Z 0DtZ)�1Z 0DtHt � Pz

7X

t=1

Ht

#

=
7X

t=1

(X 0PzX)�1X 0PzZ[(Z 0DtZ)�1Z 0DtHt � (Z 0Z)�1Z 0Ht]
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=
7X

t=1

(X 0PzX)�1X 0Z[(Z 0DtZ)�1Z 0DtHt � (Z 0Z)�1Z 0Ht].

Using the linear projection eq. (10), we have

�̂im � �̂wk =
7X

t=1

A�1
n Bn

"✓
1

nt
Z 0DtZ

◆�1 1

nt
Z 0DtVt �

✓
1

n
Z 0Z

◆�1 1

n
Z 0Vt

#
. (B.8)

Define

Cnt
= Z 0DtZ/nt.

Following from the law of large numbers, A, B and C are the probability limit of An, Bn, and Cn (also Cnt
)

as n ! 1, respectively. By the definition of An, Bn, Cn and Cnt
, we have

�̂im � �̂wk =
7X

t=1

A�1
n Bn


C�1

nt

1

nt
Z 0DtVt � C�1

n
1

n
Z 0Vt

�

p.�!
7X

t=1

A�1BC�1[E(ZiditVit)� E(ZiVit)]

=
7X

t=1

A�1BC�1[E(ZiVit)E(dit)� E(ZiVit)]

= 0,

(B.9)

because E(ZiVit) = 0. Since �̂wk
p.�! � and �̂im � �̂wk

p.�! 0, we conclude that �̂im
p.�! �.

Third, we show the consistency of �̂pool. By the definition of An, Bn, Cn and Cnt
, we have

�̂pool � �̂wk =
7X

t=1

A�1
n BnC

�1
n

Z 0(rntDt � I)Ht

n

p.�! A�1BC�1
7X

t=1

Z 0(rtDt � I)Ht

n

p.�! A�1BC�1
7X

t=1

E((rtdit � 1)ZiHit)

= A�1BC�1
7X

t=1

E(rtdit � 1)E(ZiHit)

= 0,

(B.10)

where the second line holds because rnt
p.�! rt, and the last equality holds since E(rtdit� 1) = 0. Combined

with the result that �̂wk
p.�! �, this implies that �̂pool

p.�! �.

Fourth, we show the consistency of �̂day. The weekly labor supply equation in eq. (4) can be re-written
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as the sum of seven daily labor supply equations in eq. (7), with

� =
7X

t=1

�t and Ui =
7X

t=1

Uit.

We then can re-write the day estimator as

�̂day =
7X

t=1

(X 0PztX)�1X 0PztHt

=
7X

t=1

(X 0PztX)�1X 0Pzt(X�t + Ut)

=
7X

t=1

�t +
7X

t=1

(X 0PztX)�1X 0PztUt

= � +
7X

t=1

(X 0PztX)�1X 0PztUt.

(B.11)

Simply by the law of large numbers, continuous mapping theorem, and the definition of Pzt, we have

�̂day � � =
7X

t=1

(X 0PztX)�1X 0PztUt

=
7X

t=1

✓
X 0PztX

nt

◆�1X 0DtZ

nt

✓
Z 0DtZ

nt

◆�1Z 0DtUt

nt

p.�!
7X

t=1

A�1BC�1E(ZiUit)

= A�1BC�1E
h
Zi

7X

t=1

Uit

i

= A�1BC�1E(ZiUi)

= 0.

(B.12)

This completes the proof.

Proof of Theorem 3. We have

p
n(�̂wk � �) = A�1 1p

n
X 0PzU + op(1),

which is asymptotically normal with mean zero and variance

⌦wk = A�1BC�1E(U2
i ZiZ

0
i)C

�1B0A�1,
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This completes the proof of Theorem 3. Again, this is a standard result for instrumental variable estimators.

Proof of Theorem 4. To show (i), we consider the decomposition

p
n(�̂im � �) =

p
n(�̂im � �̂wk) +

p
n(�̂wk � �).

Since the asymptotic variance of
p
n(�̂wk � �) is given by Theorem 3, the key to finding the asymptotic

distribution of
p
n(�̂im��) is therefore to compute the asymptotic variance of

p
n(�̂im� �̂wk) and

p
n(�̂wk�

�), as well as their asymptotic covariance. Recall that eq. (B.8) implies

p
n(�̂im � �̂wk) =

7X

t=1

A�1
n Bn

p
n

"✓
1

nt
Z 0DtZ

◆�1 n

nt

1

n
Z 0DtVt �

✓
1

n
Z 0Z

◆�1 1

n
Z 0Vt

#

=
7X

t=1

A�1
n Bn


C�1

nt
rnt

1p
n
Z 0DtVt � C�1

n
1p
n
Z 0Vt

�
.

(B.13)

Because n�1/2Z 0DtVt = Op(1) and n�1/2Z 0Vt = Op(1), we have

p
n(�̂im � �̂wk) = A�1BC�1

7X

t=1

1p
n
Z 0(rtDt � In)Vt + op(1). (B.14)

The key is then the asymptotic distribution of

7X

t=1

1p
n
Z 0(rtDt � In)Vt =

7X

t=1

1p
n

nX

i=1

(rtdit � 1)ZiVit.

Because dit ?? (Z,Ht) and E(rtdit � 1) = 0, we have that E[(rtdit � 1)ZiVit] = 0. Moreover, we have

E[(rtdit � 1)ZiVitVi⌧Z
0
i(r⌧di⌧ � 1)] = E[(rtdit � 1)(r⌧di⌧ � 1)]E

�
ZiVitVi⌧Z

0
i

�
.

It can be shown that

E[(rtdit � 1)(r⌧di⌧ � 1)] =

8
>><

>>:

rt � 1, t = ⌧,

�1, t 6= ⌧.

(B.15)

We hence have

Var((rtdit � 1)ZiVit) = (rt � 1)E(ZiVitVitZ
0
i),

and for t 6= ⌧ ,

Cov((rtdit � 1)ZiVit, (r⌧di⌧ � 1)ZiVi⌧ ) = �E(ZiVitVi⌧Z
0
i).
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From eq. (B.14), we conclude that
p
n(�̂im� �̂wk) is asymptotically normal with mean zero and variance

⌦im�wk ⌘ A�1BC�1
h 7X

t=1

(rt � 1)E(ZiVitVitZ
0
i)� 2

X

1t<⌧7

E(ZiVitVi⌧Z
0
i)
i
C�1B0A�1;

We then proceed to compute the covariance between
p
n(�̂im � �̂wk) and

p
n(�̂wk � �). Note that we

have shown E
⇣p

n(�̂im � �̂wk)
⌘
= op(1) and E

⇣p
n(�̂wk � �)

⌘
= op(1). In addition, we have

E
⇣p

n(�̂im � �̂wk)
p
n(�̂wk � �)

⌘

= A�1BC�1E

 
7X

t=1

n�1Z 0(rtDt � In)VtU
0PzX

!
A�1 + op(1)

= A�1BC�1
7X

t=1

E
�
n�1Z 0(rtDt � In)VtU

0PzX
�
A�1 + op(1)

= A�1BC�1
7X

t=1

E
�
n�1Z 0E((rtDt � In)VtU

0PzX | Z)
�
A�1 + op(1)

= A�1BC�1
7X

t=1

E
�
n�1Z 0E(rtDt � In)E(VtU

0PzX | Z)
�
A�1 + op(1),

where the last equality holds because the diary day is completely random, i.e., dit (and hence Dt) is inde-

pendent from everything else. This, combined with

E(rtDt � In) = 0

implies

E
⇣p

n(�̂im � �̂wk)
p
n(�̂wk � �)

⌘
= op(1).

As a result,

Cov
⇣p

n(�̂im � �̂wk),
p
n(�̂wk � �)

⌘
= op(1).

We conclude that the asymptotic variance of the impute estimator equals

⌦im = ⌦wk +⌦im�wk,

This completes the proof of (i).

To show (ii), we follow similar steps as for (i). We decompose

p
n(�̂pool � �) =

p
n(�̂pool � �̂im) +

p
n(�̂im � �),
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where we only need to find the asymptotic variance of
p
n(�̂pool��̂im) and the asymptotic covariance between

the two terms. First, we have

p
n(�̂pool � �̂im) =

p
n(X 0PzX)�1X 0Z

7X

t=1

⇥
(Z 0Z)�1rntZ

0DtHt � (Z 0DtZ)�1Z 0DtHt]

= A�1
n Bn

7X

t=1

�
C�1

n � C�1
nt

)
1p
n
rntZ

0DtHt.

In light of the linear projection eq. (10) of Ht, we have

p
n(�̂pool � �̂im) = A�1

n Bn

7X

t=1

(C�1
n � C�1

nt
)
1p
n
rntZ

0Dt

�
Z↵t + Vt)

= A�1
n Bn

7X

t=1

(C�1
n � C�1

nt
)
1p
n
rntZ

0DtZ↵t + op(1)

= A�1
n Bn

7X

t=1

✓
C�1

n
1p
n
Z 0rntDtZ↵t �

p
n↵t

◆
+ op(1)

= A�1
n Bn

7X

t=1

✓
C�1

n
1p
n
Z 0rntDtZ↵t �

p
nC�1

n
Z 0Z

n
↵t

◆
+ op(1)

= A�1
n BnC

�1
n

7X

t=1

✓
1p
n
Z 0rntDtZ↵t �

1p
n
Z 0Z↵t

◆
+ op(1)

= A�1BC�1
7X

t=1

1p
n
Z 0(rtDt � In)Z↵t + op(1), (B.16)

where the second equality holds since C�1
n �C�1

nt
= op(1), n�1/2rntZ 0DtVt = Op(1), and C�1

nt
Z 0DtZ/nt = In,

and the last equality holds by the definition of Cn and Cnt
. It follows straightforward that

p
n(�̂pool � �̂im)

is asymptotically normal with some asymptotic variance ⌦pool�im. To calculate ⌦pool�im, let

�it = (rtdit � 1)Zi↵
0
tZi,

and rewrite
p
n(�̂pool � �̂im) = A�1BC�1

7X

t=1

1p
n

nX

i=1

�it + op(1).

Using eq. (B.15), we can show that

Var(�it) = (rt � 1)E(Zi↵
0
tZiZ

0
i↵tZ

0
i),

and

Cov(�it, �i⌧ ) = �E(Zi↵
0
tZiZ

0
i↵

0
⌧Z

0
i).
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As a result,

⌦pool�im = A�1BC�1
h 7X

t=1

(rt � 1)E(Zi↵
0
tZiZ

0
i↵tZ

0
i)� 2

X

1t<⌧7

E(Zi↵
0
tZiZ

0
i↵

0
⌧Z

0
i)
i
C�1B0A�1. (B.17)

Second, we consider the asymptotic covariance between
p
n(�̂pool � �̂im) and

p
n(�̂im � �). By the

definition of Vi⌧ in the linear projection eq. (10), Zi and Vi⌧ (⌧ = 1, . . . , 7) are orthogonal with each other.

This implies that for any 1  t  ⌧  7,

Cov((rtdit � 1)Zi↵
0
tZi, (r⌧di⌧ � 1)ZiVi⌧ ) = 0.

This further implies that
p
n(�̂pool� �̂im) and

p
n(�̂im� �̂wk) are asymptotically uncorrelated. Furthermore,

using the same argument as in the proof of (i), one can show that
p
n(�̂pool � �̂im) and

p
n(�̂wk � �) are

asymptotically uncorrelated. Together they imply that
p
n(�̂pool� �̂im) and

p
n(�̂im��) are asymptotically

uncorrelated.

To summarize, we have shown that the asymptotic variance of
p
n(�̂pool � �) equals to

⌦pool = ⌦pool�im +⌦im.

Note that since ⌦pool is positive definite, it implies that �̂im is asymptotically more e�cient than �̂pool. This

completes the proof of (ii).

Part (iii) follows from writing Var(
p
n(�̂im � �̂wk)) as the following sum,

Var(
p
n(�̂im � �)) + Var(

p
n(�̂wk � �))� 2Cov(

p
n(�̂im � �),

p
n(�̂wk � �)).

Because we have shown E(
p
n(�̂im � �̂wk)

p
n(�̂wk � �)) = op(1), we have that

E(
p
n(�̂im � �)

p
n(�̂wk � �)) = Var(

p
n(�̂wk � �)) + op(1).

We hence conclude that Var(
p
n(�̂im � �̂wk)) = Var(

p
n(�̂im � �)) � Var(

p
n(�̂wk � �)). The rest of part

(iii) follows immediately.

Proof of Theorem 5. To prove (i), first note that by the definition of Ui and the “H first stage”, we have

Ui ⌘ Hw
i �X 0

i� =
7X

t=1

Hit �X 0
i� =

7X

t=1

(Z 0
i↵t + Vit)�X 0

i� =
7X

t=1

Vit + Z 0
i

7X

t=1

↵t �X 0
i�. (B.18)
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Therefore, we have

E(U2
i ZiZ

0
i) =E

2

4
 

7X

t=1

Vit

!2

ZiZ
0
i

3

5+ E

2

4
 
Z 0
i

7X

t=1

↵t �X 0
i�

!2

ZiZ
0
i

3

5

+ 2E

" 
7X

t=1

Vit

! 
Z 0
i

7X

t=1

↵t �X 0
i�

!
ZiZ

0
i

#

=
7X

t=1

E(V 2
itZiZ

0
i) + 2

X

1t<⌧7

E(VitVi⌧ZiZ
0
i)

+ E

2

4
 
Z 0
i

7X

t=1

↵t �X 0
i�

!2

ZiZ
0
i

3

5+ 2E

" 
7X

t=1

Vit

! 
Z 0
i

7X

t=1

↵t �X 0
i�

!
ZiZ

0
i

#
. (B.19)

We can then replace E(U2
i ZiZ 0

i) in the middle of ⌦wk in eq. (11) by eq. (B.19). Part (i) follows by adding

⌦wk and ⌦im�wk together, which are given in eq. (11) and eq. (12), respectively. Since ⌦im�wk involves

terms like E(ZiVitVi⌧Z 0
i), it may seem at a glance that ⌦im depends on the correlations among Vit and Vi⌧

for t 6= ⌧ . But the proof here shows that these terms from ⌦wk and ⌦im�wk cancel with each other.

Part (ii) can be proven by the same argument as for part (i), i.e., by expanding the term E

⇣
Z 0
i

P7
t=1 ↵t �X 0

i�
⌘2

ZiZ 0
i

�

in ⌦im and adding it together with ⌦pool�im in eq. (13).

Proof of Theorem 6. Part (i). For every t = 1, . . . , 7, it follows from a standard result for instrumental

variable estimators that

p
nt(�̂t � �t)

d.�! N(0, A�1BC�1E(U2
itZiZ

0
i)C

�1B0A�1),

which implies that if we normalize by
p
n instead of

p
nt, we have

p
n(�̂t � �t)

d.�! N(0, rtA
�1BC�1E(U2

itZiZ
0
i)C

�1B0A�1).

Moreover, note that �̂t only uses the data on those individuals whose diary day is t. Since the individuals

are drawn independently, �̂t is independent of �̂⌧ for any t 6= ⌧ . This implies that the asymptotic variance

of the day estimator �̂day is

⌦day = A�1BC�1

"
7X

t=1

rtE(U2
itZiZ

0
i)

#
C�1B0A�1.

This proves eq. (16).

To prove part (ii), we first derive an alternative expression for ⌦day. Similar to eq. (B.18), we can

12



decompose Uit in a similar manner:

Uit ⌘ Hit �X 0
i�t = Vit + (Z 0

i↵t �X 0
i�t) ,

which implies that

E(U2
itZiZ

0
i) = E(V 2

itZiZ
0
i) + E

h
(Z 0

i↵t �X 0
i�t)

2
ZiZ

0
i

i
+ 2E [Vit (Z

0
i↵t �X 0

i�t)ZiZ
0
i] ,

which combined with eq. (16) in turn implies that

⌦day = A�1BC�1

(
7X

t=1

rtE(V 2
itZiZ

0
i) +

7X

t=1

rtE
h
(Z 0

i↵t �X 0
i�t)

2
ZiZ

0
i

i

+2
7X

t=1

rtE [Vit (Z
0
i↵t �X 0

i�t)ZiZ
0
i]

)
C�1B0A�1. (B.20)

Subtracting ⌦im in eq. (14) from ⌦day in eq. (B.20), we have

⌦day �⌦im = A�1BC�1(⌦a
day�im +⌦b

day�im)C�1B0A�1,

where

⌦a
day�im ⌘

7X

t=1

rt E[(Z
0
i↵t �X 0

i�t)
2ZiZ

0
i]� E

✓
Z 0
i

7X

t=1

↵t �X 0
i�

◆2

ZiZ
0
i

�
,

⌦b
day�im ⌘ 2

7X

t=1

rt E[Vit(Z
0
i↵t �X 0

i�t)ZiZ
0
i]� 2E

✓ 7X

t=1

Vit

◆✓
Z 0
i

7X

t=1

↵t �X 0
i�

◆
ZiZ

0
i

�
.

We will show that ⌦a
day�im is a variance-covariance matrix, ⌦b

day�im is a cross-covariance matrix, and

their sum is also a cross-covariance matrix. Whether or not ⌦a
day�im +⌦b

day�im is positive definite depends

on the covariance between (Ui1, . . . , Ui7)0 and (Vi1, . . . , Vi7)0.

The proof relies on two observations:

� =
7X

t=1

�t and Z 0
i↵t �X 0

i�t = Z 0
i↵t �Hit +Hit �X 0

i�t = Uit � Vit.

Because we will repeatedly use Uit � Vit, we denote ⌘it ⌘ Uit � Vit. Using these two observations, we first

13



can write ⌦a
day�im as follows,

⌦a
day�im =

7X

t=1

E(⌘2itZiZ
0
i) +

7X

t=1

(rt � 1)E(⌘2itZiZ
0
i)� E

⇣ 7X

t=1

⌘it
⌘2

ZiZ
0
i

�

=
7X

t=1

E(⌘2itZiZ
0
i) +

7X

t=1

(rt � 1)E(⌘2itZiZ
0
i)�

7X

t=1

E(⌘2itZiZ
0
i)� 2

X

1t<⌧7

E(⌘it⌘i⌧ZiZ
0
i)

=
7X

t=1

(rt � 1)E(⌘2itZiZ
0
i)� 2

X

1t<⌧7

E(⌘it⌘i⌧ZiZ
0
i)

= E

⇣ 7X

t=1

(rtdit � 1)⌘itZi

⌘⇣ 7X

t=1

(rtdit � 1)⌘itZ
0
i

⌘�
, (B.21)

where the last equality holds by Assumption 1 and the following equalities:

E[(rtdit � 1)2] = E(r2t d
2
it) + 1� 2E(rtdit) = E(r2t dit) + 1� 2 = rt � 1 = rt � 1 (B.22)

E[(rtdit � 1)(r⌧di⌧ � 1)] = E(rtr⌧ditdi⌧ )� E(rtdit)� E(r⌧di⌧ ) + 1 = �1. (B.23)

Similarly, we have

1

2
⌦b

day�im =
7X

t=1

E(Vit⌘itZiZ
0
i) +

7X

t=1

(rt � 1)E(Vit⌘itZiZ
0
i)� E

⇣ 7X

t=1

Vit

⌘⇣ 7X

t=1

⌘it
⌘
ZiZ

0
i

�

=
7X

t=1

E(Vit⌘itZiZ
0
i) +

7X

t=1

(rt � 1)E(Vit⌘itZiZ
0
i)�

7X

t=1

E(Vit⌘itZiZ
0
i)�

X

t 6=⌧

E


Vit⌘i⌧ZiZ

0
i

�

=
7X

t=1

(rt � 1)E(Vit⌘itZiZ
0
i)�

X

t 6=⌧

E


Vit⌘i⌧ZiZ

0
i

�

= E

⇣ 7X

t=1

(rtdit � 1)VitZi

⌘⇣ 7X

t=1

(rtdit � 1)⌘itZ
0
i

⌘�

= Cov

✓ 7X

t=1

(rtdit � 1)VitZi,
7X

t=1

(rtdit � 1)⌘itZi

◆
, (B.24)

where the fourth equality holds again by Assumption 1, eq. (B.22) and eq. (B.23); the last equality holds

since Zi are IVs which are uncorrelated with the zero mean ⌘it.

Next, we derive ⌦a
day�im + ⌦b

day�im using eq. (B.21) and eq. (B.24). Note that ⌘it = Uit � Vit, hence

⌘it + 2Vit = Uit + Vit. We have

⌦a
day�im + 2

⇣1
2
⌦b

day�im

⌘
= E

⇣ 7X

t=1

(rtdit � 1)⌘itZi

⌘⇣ 7X

t=1

(rtdit � 1)⌘itZ
0
i

⌘�

+ E

⇣ 7X

t=1

(rtdit � 1)2VitZi

⌘⇣ 7X

t=1

(rtdit � 1)⌘itZ
0
i

⌘�

14



= E

⇣ 7X

t=1

(rtdit � 1)(Uit + Vit)Zi

⌘⇣ 7X

t=1

(rtdit � 1)(Uit � Vit)Z
0
i

⌘�

= Cov

✓⇣ 7X

t=1

(rtdit � 1)(Uit + Vit)Zi

⌘
,
⇣ 7X

t=1

(rtdit � 1)(Uit � Vit)Zi

⌘◆
.

Again, by Assumption 1, eq. (B.22) and eq. (B.23), we can expand the covariance term in the last line and

conclude that

⌦day �⌦im = A�1BC�1

 7X

t=1

(rt � 1)E((Uit + Vit)(Uit � Vit)ZiZ
0
i)

�
X

t 6=⌧

E((Uit + Vit)(Ui⌧ � Vi⌧ )ZiZ
0
i)

�
C�1B0A�1.

This completes the proof of Theorem 6.

Remark 10 (Relative e�ciency of �̂day (cont’d)). To demonstrate that the sign of ⌦day�⌦im in Theorem 6

is indeterminate in general, we note that under homoskedasticity and fixed e↵ect assumptions, the di↵erence

between the asymptotic variances of �̂day and �̂im in eq. (17) can be simplified to

⌦day �⌦im =


�

7X

t=1

(rt � 1)(2�0
tE(eici) + �0

tE(eie
0
i)�t) +

X

t 6=⌧

(2�0
⌧E(eici) + �0

⌧E(eie
0
i)�t)

�
A�1, (B.25)

where ci is the fixed e↵ect defined below, and ei is the error term in the first stage regression of Xi on IVs Zi.

The term ��0
tE(eie0i)�t is non-positive; but for t 6= ⌧ , the terms �2�0

tE(eici), 2�0
⌧E(eici) and �0

⌧E(eie0i)�t

could be positive or negative and their absolute values might be larger or smaller than that of the former. So

whether or not �̂day is asymptotically more e�cient than �̂im is indeterminate and it depends on the sign

of �t (t = 1, . . . , 7) and the correlation between ei and ci. Inspired by an anonymous referee, we conducted

simple simulation experiments to demonstrate both ⌦day �⌦im > 0 case and the opposite case. These results

are not reported but available upon request.

In the rest of this remark, we will prove eq. (B.25). First, assume homoskedasticity so that we can move

ZiZ 0
i out and rewrite E((Uit + Vit)(Ui⌧ � Vi⌧ )ZiZ 0

i) = E((Uit + Vit)(Ui⌧ � Vi⌧ ))E(ZiZ 0
i) (t = ⌧ or t 6= ⌧).

Recall the daily regression models (t = 1, . . . , 7)

Hit = X 0
i�t + Uit,

15



as well as the reduced form equations for Xi and Hit

Xi = ⇡0Zi + ei,

Hit = (⇡0Zi + ei)
0�t + Uit = Z 0

i ⇡�t|{z}
↵t

+ e0i�t + Uit| {z }
Vit

,

where we know that E(Ziei) = 0, E(ZiUit) = 0 so E(ZiVit) = 0, but E(eiUit) 6= 0. In order to capture

dependence among daily hours worked determined by unobserved factors, we postulate a common fixed e↵ect

structure

Uit = ci + ⇠it,

which in turn implies that Vit = e0i�t + ci + ⇠it. So for any t, ⌧ = 1, . . . , 7, we have

E((Uit + Vit)(Ui⌧ � Vi⌧ )) = �E(�0
⌧ei(2Uit + e0i�t))

= �2E(�0
⌧eici)� 2E(�0

⌧ei⇠it)� E(�0
⌧eie

0
i�t)

= �2�0
⌧E(eici)� �0

⌧E(eie
0
i)�t,

where the last equality holds because E(eici) 6= 0 and E(ei⇠it) = 0 since the fixed e↵ect might be correlated with

the endogenous regressors Xi but is uncorrelated with the idiosyncratic errors ⇠it. Plugging the last expression

into the formula of ⌦day �⌦im in Theorem 6, we immediately get eq. (B.25) under homoskedasticity.

Proof of Theorem 7. The result holds by the consistency of the estimators (Theorem 2), the law of large

numbers and the continuous mapping theorem. The proof is standard and therefore is omitted here.

Proof of Remark 11. Now we prove that �̃day, the variation of the day estimator described in Remark 11, is

asymptotically equivalent to the impute estimator under Assumptions 1 to 5.

Formally,

�̃day ⌘
7X

t=1

(X 0PzDtPzX)�1X 0PzDtHt. (B.26)

Our proof proceeds in three steps: first, we obtain the expression of
p
n(�̃day � �); second, we derive an

asymptotically equivalent expression of
p
n(�̃day � �) by replacing some sample averages in the first step

with their probability limits; third, we derive an asymptotically equivalent expression of
p
n(�̂im � �) under

Assumption 5 and show that it is the same as that in the second step.

First, recall that Ht = X�t + Ut and Pz = Z(Z 0Z)�1Z 0, and note the decomposition

X = PzX + (I � Pz)X, (B.27)
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so based on eq. (B.26), we get

�̃day =
7X

t=1

(X 0PzDtPzX)�1X 0PzDtPzX�t +
7X

t=1

(X 0PzDtPzX)�1X 0PzDt[(I � Pz)X�t + Ut]

=
7X

t=1

�t +
7X

t=1

(X 0PzDtPzX)�1X 0PzDt[(I � Pz)X�t + Ut]

=)
p
n(�̃day � �) =

p
n

7X

t=1

(X 0PzDtPzX)�1X 0PzDt[(I � Pz)X�t + Ut]

=
p
n

7X

t=1

(X 0PzDtPzX)�1X 0Z(Z 0Z)�1Z 0Dt[(I � Pz)X�t + Ut]

=
7X

t=1

✓
X 0PzDtPzX

nt

◆�1 X 0Z

n

✓
Z 0Z

n

◆�1r n

nt

1
p
nt

Z 0Dt[(I � Pz)X�t + Ut], (B.28)

since � =
P7

t=1 �t.

Second, note that 1
nt

Z 0Dt(I �Pz)X�t
p.�! 0 because (I �Pz)X is the vector of “X” first stage residuals

(by regressing X on Z) and by construction is uncorrelated with Z for each diary day, since the diary day is

completely random; in addition, 1
nt

Z 0DtUt
p.�! 0 if Assumption 5 holds (i.e., E(ZiUit) = 0). Based on these,

a proper central limit theorem implies that 1p
nt

Z 0Dt[(I�Pz)X�t+Ut]
d.�! N (0,⌃) with some positive definite

matrix ⌃. This further implies that in eq. (B.28), if we replace the terms in front of 1p
nt

Z 0Dt[(I�Pz)X�t+Ut]

with their respective probability limits, the asymptotic distribution of
p
n(�̃day � �) won’t be altered. As a

result, we get

p
n(�̃day � �) = A�1BC�1

7X

t=1

p
rt

1
p
nt

Z 0Dt[(I � Pz)X�t + Ut] + op(1). (B.29)

Third, recall that Ht = X�t + Ut and Pz = Z(Z 0Z)�1Z 0, and use the decomposition in eq. (B.27), we

can rewrite �̂im as follows:

�̂im = (X 0PzX)�1X 0Pz

7X

t=1

Z(Z 0DtZ)�1Z 0DtHt

= (X 0PzX)�1X 0Pz

7X

t=1

Z(Z 0DtZ)�1Z 0DtPzX�t

+ (X 0PzX)�1X 0Pz

7X

t=1

Z(Z 0DtZ)�1Z 0Dt[(I � Pz)X�t + Ut]

= � + (X 0PzX)�1X 0Pz

7X

t=1

Z(Z 0DtZ)�1Z 0Dt[(I � Pz)X�t + Ut]

=)
p
n(�̂im � �) =

✓
X 0PzX

n

◆�1 X 0Z

n

7X

t=1

✓
Z 0DtZ

nt

◆�1 p
rnt

1
p
nt

Z 0Dt[(I � Pz)X�t + Ut]. (B.30)
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When Assumption 5 hold, we can again replace the terms in front of 1p
nt

Z 0Dt[(I�Pz)X�t+Ut] in eq. (B.30)

with their respective probability limits, without altering the asymptotic distribution of
p
n(�̂im � �). As a

result, we get
p
n(�̂im � �) = A�1BC�1

7X

t=1

p
rt

1
p
nt

Z 0Dt[(I � Pz)X�t + Ut] + op(1),

which is the same as eq. (B.29). This completes the proof of the asymptotic equivalence of �̃day and �̂im.

C When the ATUS Hours Have Classical Measurement Error

In this appendix, we provide detailed discussion about the consequence when the ATUS hours contain classi-

cal measurement error eATUS
it . To summarize: (i) the weekly labor supply elasticities � are still identified; (ii)

the estimators are still consistent and asymptotically normal; (iii) the asymptotic variance of the infeasible

�̂wk remains unchanged since it does not use the ATUS hours; (iv) the asymptotic variances of the feasible

estimators all increase by
P7

t=1 rt Var(e
ATUS
it )A�1. As a result, the asymptotic e�ciency ranking among the

estimators remains unchanged.

Let HATUS
it denote the recorded hours worked on day t by respondent i, and let Hit denote the true

hours worked on that day. On top of the assumptions in our main paper, the following assumption about

the measurement error eATUS
it = HATUS

it �Hit is maintained throughout this section.

Assumption C1 (Classical measurement error in the ATUS). For all t = 1, . . . , 7, we assume that E(eATUS
it ) =

0 and eATUS
it ?? (di1, . . . , di7, Z 0

i, Ui)0.

With Assumption C1, we can rewrite eq. (7) (main model) and eq. (10) (first stage) as follows,

HATUS
it = Hit + eATUS

it = X 0
i�t + Uit + eATUS

it

⌘ Ũit

,

HATUS
it = Z 0

i↵t + Vit + eATUS
it

⌘ Ṽit

.

For our purpose, Ũit di↵ers from Uit only by bringing larger variance (so does Ṽit from Vit). So the

statistical properties of the estimators in our main paper remain. We elaborate this point in what follows.

C.1 Identification

The measurement error eATUS
it does not enter the true weekly hours worked Hw, so the identification of �

still results from eq. (B.3) if the ATUS contains measurement errors.
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For the feasible estimators based on the ATUS data, the identification of � follows the same argument as

in the proof of Theorem 1; that is, we only need to find the counterparts of eq. (B.5), eq. (B.6) and eq. (B.7)

in the presence of classical measurement errors in the ATUS hours. By Assumption 1 and Assumption C1,

we have

E(ZiH
AUTS
it |dit = 1) = E(ZiHit|dit = 1) + E(Zie

AUTS
it |dit = 1)

= E(ZiHit|dit = 1) + E(Zie
AUTS
it )

= E(ZiHit|dit = 1) + E(Zi)E(eAUTS
it )

= E(ZiHit|dit = 1), (C.1)

E(rntZiH
AUTS
it |dit = 1) = E(rntZiHit|dit = 1) + E(rntZie

AUTS
it |dit = 1)

= E(rntZiHit|dit = 1) + E(rntZie
AUTS
it )

= E(rntZiHit|dit = 1) + E(rntZi)E(eAUTS
it )

= E(rntZiHit|dit = 1). (C.2)

Plugging eq. (C.1) into eq. (B.5) and eq. (B.7) and plugging eq. (C.2) into eq. (B.6), we see that the

identification of � still holds when the ATUS contains classical measurement errors.

C.2 Consistency

First, the infeasible estimator �̂wk is not a↵ected by the measurement error in the ATUS, and is still

consistent. To see the consistency of other estimators when the ATUS contains classical measurement error,

we only need to slightly modify eqs. (B.9) to (B.11), which were the key steps in establishing the consistency

without measurement error. With measurement error, eq. (B.9) becomes

�̂im � �̂wk =
7X

t=1

A�1
n Bn


C�1

nt

1

nt
Z 0DtṼt � C�1

n
1

n
Z 0Vt

�

p.�!
7X

t=1

A�1BC�1[E(ZiditṼit)� E(ZiVit)]

=
7X

t=1

A�1BC�1[E(ZiVit)E(dit)� E(ZiVit)]

= 0,
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where the second equality holds by E(ZiṼit) = E(ZiVit) and dit ?? (Zi, Vit, eATUS
it ). Since �̂wk is consistent,

so is �̂im. Let eATUS
t = (eATUS

1t , . . . , eATUS
nt )0, then eq. (B.10) becomes

�̂pool � �̂wk =
7X

t=1

A�1
n BnC

�1
n

Z 0(rntDt � I)Ht

n
+

7X

t=1

A�1
n BnC

�1
n

Z 0rntDteATUS
t

n

p.�! 0 +A�1BC�1
7X

t=1

Z 0rtDteATUS
t

n
(by eq. (B.10))

p.�! 0 +A�1BC�1
7X

t=1

E(rtditZie
ATUS
it )

= 0,

where the last equality holds by Assumption C1. With measurement error, eq. (B.12) becomes

�̂day � � =
7X

t=1

(X 0PztX)�1X 0PztŨt

p.�!
7X

t=1

A�1BC�1[E(ZiUit) + E(Zie
ATUS
it )] (by eq. (B.12))

=
7X

t=1

A�1BC�1E(ZiUit)

= 0,

where the second equality holds also by Assumption C1.

C.3 Asymptotic Variances and E�ciency

First, the asymptotic variance of �̂wk is not a↵ected by the measurement error in the ATUS. To derive

the asymptotic variance of the feasible estimators when the ATUS contains classical measurement error, we

modify eq. (B.13), eq. (B.16) and eq. (16), which were the key steps in deriving the asymptotic variance

without measurement error.

For the asymptotic variance of �̂im, eq. (B.13) becomes,

p
n(�̂im � �̂wk) =

7X

t=1

A�1
n Bn


C�1

nt
rnt

1p
n
Z 0DtṼt � C�1

n
1p
n
Z 0Vt

�

=
7X

t=1

A�1
n Bn


C�1

nt
rnt

1p
n
Z 0Dt(Vt + eATUS

t )� C�1
n

1p
n
Z 0Vt

�
.
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By Assumption C1 and n�1/2Z 0DteATUS
t = Op(1), we see that

p
n(�̂im � �̂wk) = A�1BC�1

7X

t=1

1p
n
Z 0(rtDt � In)Vt

⌘ part 1

+A�1BC�1
7X

t=1

1p
n
Z 0rtDte

ATUS
t

⌘ part 2

+op(1).

By Assumption C1, we get: (i) the asymptotic variance of part 2 is
P7

t=1 rt Var(e
ATUS
it )A�1; (ii) part 1 and

part 2 are asymptotically independent; and (iii) part 1 is the same as the leading term in eq. (B.14). Taking

account of these, we get

e⌦im�wk ⌘ Var
⇣p

n(�̂im � �̂wk)
⌘
= ⌦im�wk +

7X

t=1

rt Var(e
ATUS
it )A�1,

where ⌦im�wk is defined in eq. (12). By Assumption C1, we have eATUS
it ?? Ui, so we still have

Cov
⇣p

n(�̂im � �̂wk),
p
n(�̂wk � �)

⌘
= op(1).

Therefore, the asymptotic variance of �̂im, when the ATUS contains classical measurement error, is e⌦im ⌘

⌦wk + e⌦im�wk = ⌦im +
P7

t=1 rt Var(e
ATUS
it )A�1, where ⌦wk is defined in eq. (11) and ⌦im is defined in

eq. (14). The new term
P7

t=1 rt Var(e
ATUS
it )A�1 arises due to the measurement error.

For the asymptotic variance of �̂pool, eq. (B.16) remains valid even when we substitute Vt with Ṽt,

because n�1/2rntZ 0DteATUS
t = Op(1). So the asymptotic e�ciency gap ⌦pool�im between �̂pool and �̂im

remains unchanged even with classical measurement error in the ATUS hours. This further implies that the

asymptotic variance of �̂pool becomes e⌦pool ⌘ ⌦pool +
P7

t=1 rt Var(e
ATUS
it )A�1, where ⌦pool is defined in

eq. (15).

For the asymptotic variance of �̂day, we replace Uit with Ũit in eq. (16). By Assumption C1 and the

same argument as for �̂im, the asymptotic variance of �̂day, when the ATUS contains classical measurement

error, is e⌦day ⌘ ⌦day +
P7

t=1 rt Var(e
ATUS
it )A�1, where ⌦day is defined in eq. (16).
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Figure A.1: DTUS Weekly Hours vs. Randomly Drawn Weekday Daily Hours ⇥5

Note: The DTUS sample used here is pooled across the years 1985, 1990, 1995, 2000, and 2005. The sample includes only full-time
workers aged between 25 and 54 at the time of interview. We used the default sample weight of the DTUS, which makes the weighted
frequencies of the diaries within each age and sex group are evenly distributed in a week.
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Table A.1: Simulations Based Only on Weekdays in the Dutch Time Use Survey (DTUS)

Corr(X̃i, Ui)

/

Corr(X̃i, Z̃i)

Panel A: n = 250 Panel B: n = 500

�̂wk �̂im �̂pool �̂day �̂wk �̂im �̂pool �̂day

0 / 1
MSE 0.002 0.019 0.019 0.019 0.001 0.009 0.009 0.009
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.002 0.019 0.019 0.019 0.001 0.009 0.009 0.009

0.25 / 0.95
MSE 0.000 0.017 0.017 0.017 0.000 0.008 0.008 0.008
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.000 0.017 0.017 0.017 0.000 0.008 0.008 0.008

0.5 / 0.80
MSE 0.002 0.019 0.019 0.020 0.001 0.009 0.009 0.009
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.002 0.019 0.019 0.020 0.001 0.009 0.009 0.009

0.75/ 0.43
MSE 0.047 0.064 0.064 124.978 0.022 0.031 0.031 0.043
Bias2 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.004
Var 0.047 0.064 0.064 124.970 0.022 0.031 0.031 0.039

Corr(X̃i, Ui)

/

Corr(X̃i, Z̃i)

Panel C: n = 1000 Panel D: n = 2500

�̂wk �̂im �̂pool �̂day �̂wk �̂im �̂pool �̂day

0 / 1
MSE 0.001 0.004 0.005 0.004 0.000 0.002 0.002 0.002
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.001 0.004 0.005 0.004 0.000 0.002 0.002 0.002

0.25 / 0.95
MSE 0.000 0.004 0.004 0.004 0.000 0.002 0.002 0.002
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.000 0.004 0.004 0.004 0.000 0.002 0.002 0.002

0.5 / 0.80
MSE 0.001 0.004 0.005 0.005 0.000 0.002 0.002 0.002
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.001 0.004 0.005 0.005 0.000 0.002 0.002 0.002

0.75/ 0.43
MSE 0.011 0.015 0.015 0.017 0.004 0.006 0.006 0.006
Bias2 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
Var 0.011 0.015 0.015 0.016 0.004 0.006 0.006 0.006

1
This table compares finite sample performance of various estimators using the DTUS data. 10, 000 random samples of different sizes are

drawn from the original DTUS sample of 6, 567 individual-year records.

2
The two numbers in the first column represent: (i) correlation coefficient between regressor X̃i and error term Ui (degree of endogeneity);

(ii) correlation coefficient between regressor X̃i and IV Z̃i (strength of IV). Both are adjusted by changing the parameter ⇢ in the

simulation setup.

3
�̂
wk

is the 2SLS estimator given in eq. (5), which uses the accurate hours worked from Mondays to Fridays in the DTUS and serves as

an infeasible benchmark for the three estimators based on the ATUS. �̂
wk

has virtually no bias and the smallest variance.

4
For each individual in the DTUS, we randomly draw one from the five weekdays using the (equal) diary day sampling probabilities

of the ATUS, thus obtained samples that imitate the ATUS, and we apply �̂im, �̂
pool

and �̂
day

to them in order to evaluate their

performance.

5
�̂im has virtually no bias and the smallest variance among the three, followed closely by �̂

pool
.

6
�̂
day

is numerically equivalent to �̂im when X̃i is exogenous. When X̃i is endogenous, however, �̂
day

could display notable bias and

considerable variance, especially when the sample size is smaller (and hence each day subsample is even smaller).

7
�̃
day

introduced in Remark 11 performs almost identically to �̂im, but we do not report it here to avoid repetition.

Table A.2: Weekly Labor Supply Regression Coe�cient Estimates: the DTUS

Married Men Married Women

�̂re �̂wk �̂im �̂re �̂wk �̂im

n of kids aged < 18 0.42 0.16 0.09 0.01 �4.17 �5.24
(0.18) (0.24) (0.48) (0.36) (0.43) (0.83)

Educ: completed 2ndry 0.95 �0.48 �3.10 �0.96 2.95 2.44
(0.50) (0.66) (1.25) (0.94) (1.11) (2.19)

Educ: above 2ndry 1.84 �0.85 �2.33 �0.39 5.63 5.37
(0.53) (0.70) (1.34) (1.12) (1.32) (2.62)

P value of joint Hausman test 0.00 0.11 0.00 0.53
n of Obs. 1746 1746 1746 835 835 835
R squared5 0.06 0.03 0.07 0.18 0.39 0.26
1

The other control variables are age, age-squared, a dummy of working in private sector (with public

sector as base group), an urban area dummy (with rural being base group), and year dummies.

2
�̂re uses the recalled weekly hours; �̂

wk
uses the true diary weekly hours; �̂im uses the fictitious sample

where only one day is randomly chosen for each individual using the ATUS diary day sampling weights.

3
Standard errors are in parentheses.

4
We conduct the joint Hausman tests (i.e., the coefficients associated with the three regressors in the

table) regarding whether there are significant differences between �̂re and �̂im, and between �̂
wk

and

�̂im, respectively.

5
The R squared for impute estimator is the average R squared of the seven linear regression of daily hours

worked Hit = X
0
i
�t + Uit for t = 1, . . . , 7.
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Table A.3: Comparison between the Respondents in the ATUS and the CPS

ATUS CPS (in ATUS or not, Table A.4) Entire CPS

Male 40.5% 48.3% 48.6%
College graduates 21.3% 18.1% 18.5%
Age 39.4 39.3 39.3
s.d. (8.4) (8.6) (8.7)
Hours usually worked per week 36.1 38 38
s.d. (9.0) (8.5) (8.5)
Hourly wage (2017 US dollars) 18.7 18.4 18.4
s.d. (9.0) (8.8) (8.8)
Num. of children aged < 5 0.23 0.21 0.20
s.d. (0.52) (0.50) (0.50)
Num. of children aged 5–18 0.79 0.92 0.90
s.d. (1.00) (1.11) (1.11)
Num. of obs. 19,038 73,429 991,116
1

“ATUS” column refers to the sample that was used in our empirical studies. “CPS (in ATUS or not, Table A.4)”

column refers to the CPS 2003-2017 sample after the same sample selection criterion (hourly paid workers aged

between of 25 and 54, whose wage rate is positive, and spouse earnings and total usual weekly hours worked

at all jobs reported in the CPS are observed) is applied, whether they participate in the ATUS or not. “Entire

CPS” differs from “CPS (in ATUS or not, Table A.4)” only in that “Entire CPS” keeps the respondents whose

hourly wage or spouse weekly earnings is missing.

Table A.4: Weekly Labor Supply Elasticity Estimates: the CPS (in the ATUS or not)

Panel A: Mean and std dev of hours and wage

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 41.02 39.21 34.90 36.65
s.d. (7.01) (7.99) (9.16) (8.29)
Hourly Wage (2017 US dollars) 21.22 17.92 17.79 16.23

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage 7.66 11.15 10.02 12.41
(0.36) (0.48) (0.55) (0.58)

Spouse weekly earnings �0.29 �2.52
(0.12) (0.24)

Num. of kids age < 5 0.34 �6.10
(0.21) (0.42)

Num. of kids ages 5–18 0.30 �2.18
(0.11) (0.17)

R squared 0.16 0.18 0.18 0.17
n of obs. 20,307 15,134 21,165 16,823
1

The sample here contains the CPS 2003-2017 sample after the same sample selection criterion (hourly paid

workers aged between of 25 and 54, whose wage rate is positive, and spouse earnings and total usual weekly

hours worked at all jobs reported in the CPS are observed) is applied, whether they participate in the

ATUS or not.
2

The elasticities are evaluated at the respective mean hours worked in each data source.

3
The other control variables are including age, age-squared, two education dummies, eight Census division

dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and industry

dummies.
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Table A.5: Weekly Labor Supply Regression Coe�cient Estimates: the CPS and the
ATUS

Panel A: Mean and std dev of hours and wage

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 39.625 38.421 32.499 35.524
s.d. (6.130) (7.260) (10.430) (8.630)
ATUS Hours Worked on Diary Day 4.698 4.741 3.557 4.182
s.d. (4.550) (4.440) (4.000) (4.210)
ATUS Imputed Weekly Hours Worked 41.270 40.380 31.960 36.180
s.d. (lower bound)1 (9.569) (9.792) (9.255) (9.677)
Hourly Wage (2017 US dollars) 21.877 18.649 18.699 16.564

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage (CPS) 2.136 4.371 5.163 4.165
(0.353) (0.406) (0.410) (0.380)

Wage (ATUS) 0.607 1.902 3.349 2.945
(1.387) (1.315) (1.061) (1.194)

Spouse weekly earnings ($100) (CPS) �0.000 �0.003
(0) (0)

Spouse weekly earnings ($100) (ATUS) �0.002 �0.002
(0.001) (0.001)

Num. of kids age < 5 (CPS) �0.316 �2.788
(0.192) (0.266)

Num. of kids age < 5 (ATUS) �0.445 �2.868
(0.792) (0.673)

Num. of kids ages 5–18 (CPS) �0.002 �0.932
(0.101) (0.138)

Num. of kids ages 5–18 (ATUS) �0.183 �0.383
(0.464) (0.379)

R squared (CPS) 0.083 0.149 0.219 0.147
R squared (ATUS) 0.155 0.242 0.174 0.169
p value of joint Hausman test 0.254 0.048 0.064 0.281
n of obs. 3889 3816 5602 5731
1

See footnote 47 in the paper for more details.

2
The estimates based on the CPS recalled weekly hours are �̂re; the estimates based on the ATUS diary

day hours are �̂im.

3
The standard errors are in parentheses.

4
The R squared for impute estimator is the average R squared of the seven linear regression of daily hours

worked Hit = X
0
i
�t + Uit for t = 1, . . . , 7.

5
For each sample group, we conduct joint Hausman tests regarding whether there are significant differences

between �̂re and �̂im.

6
The other control variables are including age, age-squared, two education dummies, eight Census division

dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and industry

dummies.
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Table A.7: Weekly Labor Supply Elasticity Estimates: the CPS and the ATUS
(Computer & Mathematical, Healthcare, O�ce & Administrative Occupations)

Panel A: Mean and std dev of hours and wage1

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 38.87 37.22 31.97 35.20
s.d. (7.12) (8.13) (10.68) (8.90)
ATUS Hours Worked on Interview Day 4.64 4.76 3.47 4.18
s.d. (4.57) (4.46) (4.01) (4.21)
ATUS Imputed Weekly Hours Worked 40.69 37.85 30.72 35.89
s.d. (lower bound)2 (10.37) (10.63) (9.41) (9.67)
Hourly Wage (2017 US dollars) 21.91 17.79 19.39 17.01

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage (CPS) 6.61 13.78 13.65 9.22
(1.93) (1.88) (1.51) (1.32)

Wage (ATUS) 10.82 8.65 6.71 3.81
(6.39) (6.13) (4.02) (3.84)

Spouse weekly earnings (CPS) �1.67 �10.58
(0.97) (0.94)

Spouse weekly earnings (ATUS) �5.01 �7.20
(3.19) (2.62)

Num. of kids age < 5 (CPS) 0.77 �8.95
(1.10) (0.97)

Num. of kids age < 5 (ATUS) 5.15 �9.67
(3.54) (2.64)

Num. of kids ages 5–18 (CPS) 0.08 �3.26
(0.59) (0.51)

Num. of kids ages 5–18 (ATUS) �1.84 �2.77
(2.08) (1.43)

R squared (CPS) 0.13 0.19 0.22 0.12
R squared (ATUS) 0.42 0.40 0.18 0.18
p value of joint Hausman test 0.46 0.40 0.04 0.15
n of obs. 1227 1483 4224 4087
1

This table only contains the three occupations with the most observations in the ATUS (see Table A.6).

2
See footnote 47 in the paper for more details.

3
The estimates based on the CPS recalled weekly hours are �̂re; the estimates based on the ATUS diary

day hours are �̂im.

4
The standard errors are in parentheses.

5
The elasticities are evaluated at the respective mean hours worked in each data source.

6
The R squared for impute estimator is the average R squared of the seven linear regression of daily hours

worked Hit = X
0
i
�t + Uit for t = 1, . . . , 7.

7
For each sample group, we conduct joint Hausman tests regarding whether there are significant differences

between �̂re and �̂im.

8
The other control variables are including age, age-squared, two education dummies, eight Census division

dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and industry

dummies.
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Table A.8: Weekly Labor Supply Elasticity Estimates: the CPS and the ATUS
(Work-related Hours)

Panel A: Mean and std dev of hours and wage1

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 39.63 38.42 32.50 35.52
s.d. (6.13) (7.27) (10.44) (8.63)
ATUS Hours Worked on Diary Day 4.70 4.75 3.56 4.19
s.d. (4.55) (4.44) (4.01) (4.21)
ATUS Imputed Weekly Hours Worked 41.38 40.45 31.99 36.19
s.d. (lower bound)2 (9.57) (9.80) (9.26) (9.69)
Hourly Wage (2017 US dollars) 21.88 18.65 18.70 16.56

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage (CPS) 5.39 11.38 15.89 11.72
(0.89) (1.06) (1.26) (1.07)

Wage (ATUS) 1.55 4.76 10.44 8.15
(3.35) (3.25) (3.32) (3.31)

Spouse weekly earnings (CPS) �0.19 �9.43
(0.41) (0.77)

Spouse weekly earnings (ATUS) �3.47 �5.80
(1.62) (2.12)

Num. of kids age < 5 (CPS) �0.80 �8.58
(0.48) (0.82)

Num. of kids age < 5 (ATUS) �1.03 �8.95
(1.90) (2.10)

Num. of kids ages 5–18 (CPS) �0.00 �2.87
(0.26) (0.42)

Num. of kids ages 5–18 (ATUS) �0.47 �1.19
(1.12) (1.18)

R squared (CPS) 0.08 0.15 0.22 0.15
R squared (ATUS) 0.16 0.24 0.17 0.17
p value of joint Hausman test 0.26 0.05 0.06 0.28
n of obs. 3889 3816 5602 5731
1

The ATUS hours worked in this table include all work-related hours.
2

See footnote 47 in the paper for more details.

3
The estimates based on the CPS recalled weekly hours are �̂re; the estimates based on the ATUS diary

day hours are �̂im.

4
The standard errors are in parentheses.

5
The elasticities are evaluated at the respective mean hours worked in each data source.

6
The R squared for impute estimator is the average R squared of the seven linear regression of daily hours

worked Hit = X
0
i
�t + Uit for t = 1, . . . , 7.

7
For each sample group, we conduct joint Hausman tests regarding whether there are significant differences

between �̂re and �̂im.

8
The other control variables are including age, age-squared, two education dummies, eight Census division

dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and industry

dummies.
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Table A.9: Weekly Labor Supply Elasticity Estimates: the CPS and the ATUS (OLS)

Panel A: Mean and std dev of hours and wage

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 39.63 38.42 32.50 35.52
s.d. (6.13) (7.26) (10.43) (8.63)
ATUS Hours Worked on Diary Day 4.70 4.74 3.56 4.18
s.d. (4.55) (4.44) (4.00) (4.21)
ATUS Imputed Weekly Hours Worked 41.39 40.30 31.95 36.18
s.d. (lower bound)1 (9.57) (9.79) (9.26) (9.68)
Hourly Wage (2017 US dollars) 21.88 18.65 18.70 16.56

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage (CPS) 5.24 10.99 15.31 11.47
(0.89) (1.06) (1.25) (1.07)

Wage (ATUS) 2.18 5.78 11.19 8.56
(3.21) (3.14) (3.21) (3.17)

Spouse weekly earnings (CPS) �0.26 �9.53
(0.40) (0.75)

Spouse weekly earnings (ATUS) �2.94 �6.75
(1.56) (2.02)

Num. of kids age < 5 (CPS) �0.80 �8.56
(0.49) (0.82)

Num. of kids age < 5 (ATUS) �1.07 �8.19
(1.92) (2.08)

Num. of kids ages 5–18 (CPS) �0.01 �2.87
(0.26) (0.42)

Num. of kids ages 5–18 (ATUS) �1.03 �1.26
(1.11) (1.17)

R squared (CPS) 0.08 0.15 0.22 0.15
R squared (ATUS) 0.16 0.24 0.17 0.17
p value of Hausman test 0.36 0.11 0.14 0.37
n of obs. 3889 3816 5602 5731
1

See footnote 47 in the paper for more details.

2
The estimates based on the CPS recalled weekly hours are �̂re; the estimates based on the ATUS diary

day hours are �̂im.

3
The standard errors are in parentheses.

4
The elasticities are evaluated at the respective mean hours worked in each data source.

5
The R squared for impute estimator is the average R squared of the seven linear regression of daily hours

worked Hit = X
0
i
�t + Uit for t = 1, . . . , 7.

6
For each sample group, we conduct joint Hausman tests regarding whether there are significant differences

between �̂re and �̂im.

7
The other control variables are including age, age-squared, two education dummies, eight Census division

dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and industry

dummies.
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Table A.10: Weekly Labor Supply Elasticity Estimates: the CPS and the ATUS (Year-
Month Grouped IV)

Panel A: Mean and std dev of hours and wage

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 39.63 38.42 32.50 35.52
s.d. (6.13) (7.26) (10.43) (8.63)
ATUS Hours Worked on Diary Day 4.70 4.74 3.56 4.18
s.d. (4.55) (4.44) (4.00) (4.21)
ATUS Imputed Weekly Hours Worked 41.56 40.51 31.85 35.79
s.d. (lower bound)1 (9.57) (9.79) (9.26) (9.68)
Hourly Pay (2017 US dollars) 21.88 18.65 18.70 16.56

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage (CPS) 6.04 10.15 21.78 18.81
(2.68) (2.93) (3.97) (3.51)

Wage (ATUS) 0.00 1.59 �2.10 1.72
(11.17) (9.80) (12.23) (10.47)

Spouse weekly earnings (CPS) �0.18 �11.45
(1.27) (2.59)

Spouse weekly earnings (ATUS) 0.00 0.49
(5.84) (7.77)

Num. of kids age < 5 (CPS) �0.91 �8.86
(0.49) (0.82)

Num. of kids age < 5 (ATUS) �0.16 �8.52
(1.98) (2.11)

Num. of kids ages 5–18 (CPS) 0.02 �2.77
(0.26) (0.43)

Num. of kids ages 5–18 (ATUS) �0.87 �1.87
(1.14) (1.19)

R squared (CPS) 0.08 0.14 0.21 0.13
R squared (ATUS) 0.12 0.20 0.15 0.14
p value of Hausman test 0.60 0.39 0.04 0.09
n of obs. 3889 3816 5602 5731
1

See footnote 47 in the paper for more details.

2
The estimates based on the CPS recalled weekly hours are �̂re; the estimates based on the ATUS diary

day hours are �̂im.

3
The standard errors are in parentheses.

4
The elasticities are evaluated at the respective mean hours worked in each data source.

5
The R squared for impute estimator is the average R squared of the seven linear regression of daily hours

worked Hit = X
0
i
�t + Uit for t = 1, . . . , 7.

6
For each sample group, we conduct joint Hausman tests regarding whether there are significant differences

between �̂re and �̂im.

7
The other control variables are including age, age-squared, two education dummies, eight Census division

dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and industry

dummies.
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Table A.11: Pearson’s Chi-squared Test for
Independence Between Diary Day and Other
Variables

Variables P-Values1

Wage decile 0.63
Spouse wage decile 0.87
CPS usual weekly hours worked2 0.58
Education 0.91
Num. of kids age < 5 0.61
Num. of kids ages 5–18 0.07
Age 0.46
Marriage status 0.68
Occupation 0.69
Industry 0.82
Metropolitan area dummy 0.83
Region 0.35
Year 0.55
Race 0.013

1
The null hypothesis is that the diary day is

independent of the corresponding variable.

2
The CPS recalled hours in our sample have only 76

different values, which is likely due to “bagging”

issue in recalled hours. We treat the recalled hours

as discrete variable in implementing the chi-squared

test.
3

Though the P-value associated with race is small,

Table A.12 below shows that there is in fact no sub-

stantial variation of racial composition across the

seven days of a week.

Table A.12: Proportion of Races Across Seven Days

Day White Non-Hispanic Black Non-Hispanic Other Race Non-Hispanic Hispanic

1 0.64 0.15 0.05 0.16
2 0.63 0.17 0.05 0.15
3 0.63 0.15 0.05 0.18
4 0.67 0.15 0.05 0.13
5 0.61 0.17 0.05 0.17
6 0.64 0.15 0.05 0.17
7 0.64 0.15 0.04 0.17
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