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A Additional Examples

A.1 Random Effects versus Fixed Effects Example

In this section we consider a simple example in which the GFIC is used to choose between
and average over alternative assumptions about individual heterogeneity: Random Effects
versus Fixed Effects. For simplicity we consider the homoskedastic case and assume that
any strictly exogenous regressors, including a constant term, have been “projected out” so
we may treat all random variables as mean zero. To avoid triple subscripts in the notation,
we further suppress the dependence of random variables on the cross-section dimension n
except within statements of theorems. Suppose that

yit = βxit + vit (A.1)

vit = αi + εit (A.2)

for i = 1, . . . , n, t = 1, . . . , T where εit is iid across i, t with V ar(εit) = σ2
ε and αi is iid across

i with V ar (αi) = σ2
α. Stacking observations for a given individual over time in the usual

way, let yi = (yi1, . . . , yiT )
� and define xi,vi and εi analogously. Our goal in this example

is to estimate β, the effect of x on y. Although xit is uncorrelated with the time-varying
portion of the error term, Cov(xit, εit) = 0, we are unsure whether or not it is correlated
with the individual effect αi. If we knew for certain that Cov(xit,αi) = 0, we would prefer
to report the “random effects” generalized least squares (GLS) estimator given by

�βGLS =

�
n�

i=1

x�
i
�Ω−1xi

�−1 � n�

i=1

x�
i
�Ω−1yi

�
(A.3)

where �Ω−1 is a preliminary consistent estimator of

Ω−1 = [V ar(vi)]
−1 =

1

σ2
�

�
IT − σ2

α

(Tσ2
α + σ2

� )
ιT ι

�
T

�
(A.4)

and IT denotes the T × 1 identity matrix and ιT a T -vector of ones. This estimator makes
efficient use of the variation between and within individuals, resulting in an estimator with
a lower variance. When Cov(xit,αi) �= 0, however, the random effects estimator is biased.
Although its variance is higher than that of the GLS estimator, the “fixed effects” estimator
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given by

�βFE =

�
n�

i=1

x�
iQxi

�−1� n�

i=1

x�
iQyi

�
, (A.5)

where Q = IT − ιT ι
�
T/T , remains unbiased even when xit is correlated with αi.

The conventional wisdom holds that one should use the fixed effects estimator whenever
Cov(xit,αi) �= 0. If the correlation between the regressor of interest and the individual effect
is sufficiently small, however, the lower variance of the random effects estimator could more
than compensate for its bias in a mean-squared error sense. This is precisely the possibility
that we consider here using the GFIC. In this example, the local mis-specification assumption
takes the form

T�

t=1

E [xitαi] =
τ√
n

(A.6)

where τ is fixed, unknown constant. In the limit the random effects assumption that
Cov(xit,αi) = 0 holds, since τ/

√
n → 0. Unless τ = 0, however, this assumption fails to

hold for any finite sample size. An asymptotically unbiased estimator of τ for this example
is given by

�τ = (T�σ2
α + �σ2

� )

�
1√
n

n�

i=1

x�
i
�Ω−1(yi − xi

�βFE)

�
(A.7)

leading to the following result, from which we will construct the GFIC for this example.

Theorem A.1 (Fixed versus Random Effects Limit Distributions). Let (xni,αni, εni) be an
iid triangular array of random variables such that V ar(εi|xni,αni) → σ2

εIT , E[x�
niQεni] = 0,

and E [αiι
�
Txni] = τ/

√
n for all n. Then, under standard regularity conditions,




√
n(�βRE − β)√
n(�βFE − β)

�τ


 d→






cτ
0
τ


 ,




η2 η2 0
η2 c2σ2 + η2 −cσ2

0 −cσ2 σ2






where η2 = E[x�
iΩ

−1xi], c = E[x�
iQxi]/(Tσ

2
α + σ2

ε), and

σ2 =
(Tσ2

α + σ2
ε)

2

E [x�
iΩ

−1xi]

�
σ2
ε

E [xiΩ−1xi]E [xiQxi]
− 1

�
.

Proof of Theorem A.1. This proof is standard so we provide only a sketch. First, let
An = (n−1

�n
i=1 x

�
i
�Ω−1xi), Bn = (n−1

�n
i=1 x

�
iQxi), and Cn = T�σ2

α + �σ2
ε . Now, expanding

�βFE, βRE, and �τ and re-arranging




√
n(�βRE − β)√
n(�βFE − β)

�τ


 =




A−1
n 0
0 B−1

n

Cn −CnAnB
−1
n



�
n−1/2

�n
i=1 x

�
i
�Ω−1vi

n−1/2
�n

i=1 x
�
iQvi

�
.

The result follows by applying a law of large numbers to An, Bn, Cn, and �Ω and the Lindeberg-
Feller CLT jointly to n−1/2

�n
i=1 x

�
iQvi and n−1/2

�n
i=1 x

�
iΩ

−1vi.
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We see from Theorem A.1 that AMSE(�βRE) = c2τ 2 + η2, AMSE(�βFE) = c2σ2 + η2,
and �τ 2−σ2 provides an asymptotically unbiased estimator of τ 2. Thus, substituting �τ 2−σ2

for τ and rearranging the preceding AMSE expressions, the GFIC tells us that we should
select the random effects estimator whenever |�τ | ≤

√
2σ. To implement this rule in practice,

we construct a consistent estimator of σ2, for which we require estimators of σ2
α, σ

2
ε and

σ2
v = V ar(αi + εit). We estimate these from the residuals

��it = (yit − ȳi)− (xit − x̄i)�βFE; �vit = yit − xit
�βOLS

where �βOLS denotes the pooled OLS estimator of β, leading to the variance estimators

�σ2
α = �σ2

v − �σ2
� ; �σ2

� =
1

n(T − 1)− 1

n�

i=1

T�

t=1

��2it; �σ2
v =

1

nT − 1

n�

i=1

T�

t=1

�v2it

Selection, of course, is a somewhat crude procedure: it is essentially an average that uses
all-or-nothing weights. As a consequence, relatively small changes to the data could produce
discontinuous changes in the weights, leading to a procedure with a high variance. Rather
than selecting between the random effects and fixed effects estimators based on estimated
AMSE, an alternative idea is to consider a more general weighted average of the form

�β(ω) = ω�βFE + (1− ω)�βRE

and for ω ∈ [0, 1] optimize the choice of ω to minimize AMSE. From Theorem A.1 we see that
the AMSE-minimizing value of ω is ω∗ = (1 + τ 2/σ2)−1. Substituting our asymptotically
unbiased estimator of τ 2 and our consistent estimator �σ2 of σ2, we propose the following
plug-in estimator of ω∗

ω∗ =

�
1 +

max {�τ 2 − �σ2, 0}
�σ2

�−1

where we take the maximum over �τ 2 − �σ2 and zero so that �ω∗ is between zero and one.
This proposal is related to the Frequentist Model Average estimators of Hjort and Claeskens
(2003) as well as Hansen (2016), and DiTraglia (2016).

A.2 Slope Heterogeneity Example

Suppose we wish to estimate the average effect β of a regressor x in a panel setting where
this effect may vary by individual: say βi ∼ iid over i. One idea is to simply ignore the
heterogeneity and fit a pooled model. A pooled estimator will generally be quite precise,
but depending on the nature and extent of heterogeneity could show a serious bias. Another
idea is to apply the mean group estimator by running separate time-series regressions for
each individual and averaging the result over the cross-section (Pesaran et al., 1999; Pesaran
and Smith, 1995; Swamy, 1970). This approach is robust to heterogeneity but may yield
an imprecise estimator, particularly in panels with a short time dimension. To see how the
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GFIC navigates this tradeoff, consider the following DGP:

yit = βixit + �it (A.8)

βi = β + ηi, ηi ∼ iid(0, σ2
η) (A.9)

where xit is uncorrelated with εit but is not assumed to be independent of ηi. As in the
preceding examples i = 1, . . . , n indexes individuals, t = 1, . . . , T indexes time periods,
and we assume without loss of generality that all random variables are mean zero and any
exogenous controls have been projected out. For the purposes of this example, assume further
that �it is iid over both i and t with variance σ2

� and that both error terms are homoskedastic:
E[�2it|xit] = σ2

� and E[η2i |xit] = σ2
η, and E[ηi�it|xit] = 0. Neither homoskedasticity nor time-

independent errors are required to apply the GFIC to this example, but these assumptions
simplify the exposition. We place no assumptions on the joint distribution of xit and ηi.

Stacking observations, let yi = (yi1, . . . , yiT )
� and define xi analogously. We consider two

estimators: the pooled OLS estimator �βOLS and the mean-group estimator �βMG

�βOLS =

�
n�

i=1

x�
ixi

�−1 � n�

i=1

x�
iyi

�
(A.10)

�βMG =
1

n

n�

i=1

�βi =
1

n

n�

i=1

(x�
ixi)

−1
(x�

iyi) (A.11)

where �βi denotes the OLS estimator calculated using observations for individual i only. If
we knew with certainty that there was no slope heterogeneity, we could clearly prefer �βOLS

as it is both unbiased and has the lower variance. In the presence of heterogeneity, however,
the situation is more complicated. If E[x�

ixiηi] �= 0 then �βOLS will show a bias whereas
�βMG will not. To encode this idea within the local mis-specification framework, we take
E[x�

ixiηi] = τ/
√
n so that, for any fixed n the OLS estimator is biased unless τ = 0 but this

bias disappears in the limit. Turning our attention from bias to variance, we might expect
that �βOLS would remain the more precise estimator in the presence of heterogeneity. In fact,
however, this need not be the case: as we show below, �βMG will have a lower variance than
�βOLS if σ2

η is sufficiently large. To construct the GFIC for this example, we estimate the bias
parameter τ by substituting the mean group estimator into the OLS moment condition:

�τ =
1√
n

n�

i=1

x�
i(yi − xi

�βMG). (A.12)

The key result needed to apply the GFIC in this this example gives the joint limiting distri-
bution of �τ , the mean-group estimator, and the OLS estimator.

Theorem A.2 (Limit Distribution of OLS and Mean-Group Estimators). Let (xni, ηni, εni)
be an iid triangular array of random variables such that E[x�

niεni] = 0, V ar(εni|xni) → σ2
εIT ,

V ar(ηni|xni) → σ2
η, E[ηniεni|xni] → 0, and E[x�

nixniηni] = τ/
√
n. Then, under standard
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regularity conditions,




√
n(�βOLS − β)√
n(�βMG − β)

�τ


 d→ N







τ/κ
0
τ


 ,




�
λ2 + κ2

κ2

�
σ2
η +

σ2
ε

κ
σ2
η +

σ2
ε

κ

�
λ2

κ

�
σ2
η

σ2
η + ζσ2

ε σ2
ε(1− κζ)

λ2σ2
η + κ(κζ − 1)σ2

ε







where κ = E[x�
ixi], λ

2 = V ar (x�
ixi), and ζ = E

�
(x�

ixi)
−1�.

Proof of Theorem A.2. Expanding the definitions of the OLS and mean-group estima-
tors,

√
n(�βOLS − β) =

�
(n−1

�n
i=1 x

�
ixi)

−1
(n−1

�n
i=1 x

�
ixi)

−1 � � n−1/2
�n

i=1 x
�
ixiηi

n−1/2
�n

i=1 x
�
iεi

�

√
n(�βMG − β) = n−1/2

n�

i=1

�
ηi + (x�

ixi)
−1x�

iεi
�

and proceeding similarly for �τ ,

�τ =
�
1 1 −n−1

�n
i=1 x

�
ixi

�



n−1/2
�n

i=1 x
�
ixiηi

n−1/2
�n

i=1 x
�
iεi

n−1/2
�n

i=1 {ηi + (x�
ixi)

−1x�
iεi}


 .

The result follows, after some algebra, by a LLN and the Lindeberg-Feller CLT.

As mentioned above, the OLS estimator need not have a lower variance than the mean-
group estimator if σ2

η is sufficiently large. This fact follows as a corollary of Theorem A.2.

Corollary A.1. Under the conditions of Theorem A.2, the asymptotic variance of the OLS
estimator is lower than that of the mean-group estimator if and only if λ2σ2

η < σ2
ε(κ

2ζ − κ),

where κ = E[x�
ixi], λ

2 = V ar (x�
ixi), and ζ = E

�
(x�

ixi)
−1�.

Note, as a special case of the preceding, that the OLS estimator is guaranteed to have the
lower asymptotic variance when σ2

η = 0 since E[x�
ix]

−1 < E[(x�
ixi)

−1] by Jensen’s inequality.
When σ2

η �= 0, the situation is in general much more complicated. A simple normal example,
however, provides some helpful intuition. Suppose that for a given individual the observations
xit are iid standard normal over t. Then x�

ixi ∼ χ2
T , so that κ = T , λ2 = 2T and ζ = 1/(T−2),

provided of course that T > 2. Substituting these into Corollary A.1, the OLS estimator
will have the lower asymptotic variance whenever (T − 2)σ2

η < σ2
ε . All else equal, the shorter

the panel, the more likely that OLS will have the lower variance. But if σ2
η is large enough,

the length of the panel becomes irrelevant: with enough slope heterogeneity, the mean-group
estimator has the advantage both in bias and variance.

To apply the GFIC in practice, we first need to determine whether the OLS estimator
has the smaller asymptotic variance. This requires us to estimate the quantities λ2,κ, and ζ
from Theorem A.2 along with σ2

η and σ2
ε . The following estimators are consistent under the
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assumptions of Theorem A.2:

�κ =
1

n

n�

i=1

x�
ixi

�ζ =
1

n

n�

i=1

(x�
ixi)

−1

�λ2 =
1

n− 1

n�

i=1

(x�
ixi − �κ)2 �σ2

� =
1

nT − 1

n�

i=1

T�

t=1

(yit − xit
�βOLS)

2

�σ2
η =

Sb

n− 1
− 1

n

n�

i=1

�σ2
� (x

�
ixi)

−1 Sb =
n�

i=1

�β2
i − n

�
1

n

n�

i=1

�βi

�2

If the estimated asymptotic variance of the mean-group estimator is lower than that of the
OLS estimator, then there is no need to estimate AMSE: we should simply use the mean-
group estimator. If this is not the case, then we construct the GFIC using the asymptotically
unbiased estimator �τ 2 − �σ2

τ of τ 2, where �σ2
τ = �λ2�σ2

η + �κ(�κ�ζ − 1)�σ2
ε is a consistent estimator of

the asymptotic variance of �τ .

B Supplementary Simulation Results

B.1 Fixed vs. Random Effects Example

We employ a simulation design similar to that used by Guggenberger (2010), namely

yit = 0.5xit + αi + εit

where 


xi1

xi2
...

xiT

αi



iid∼ N







0
0
...
0
0



,




1 ρ . . . ρ γ
ρ 1 . . . ρ γ
...

...
. . .

...
...

ρ ρ . . . 1 γ
γ γ . . . γ 1







independently of (εi1, . . . , εiT )
� ∼ iid N(0, σ2

εIT ). In this design, γ controls the correlation
between xit and the individual effects αi, while ρ controls the persistence of xit over time.
Larger values of γ correspond to larger violations of the assumption underlying the random
effects estimator, increasing its bias. Larger values of ρ, on the other hand, decrease the
amount of variation within individuals, thus increasing the variance of the fixed effects
estimator. Figures B.1 presents RMSE values for the random effects GLS estimator and
fixed effects estimator along with those for the post-GFIC and averaging estimators described
above in Section A.1 over a grid of values for γ, ρ and n with T = 2. Results for T = 5 appear
in Figure B.2 of Appendix B. All calculations are based on 10,000 simulation replications.
In the interest of space, we present only results for σ2

ε = 2.5 and a coarse parameter grid for
ρ here. Additional results are available upon request.

We see from Figure B.1 that, regardless of the configuration of the other parameter
values, there is always a range of values for γ for which the random effects estimator has a
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Figure B.1: RMSE values for the Random vs. Fixed effects simulation example from Section B.1
with T = 2 and σ2

ε = 2.5. Results are based on 10,000 simulation replications.
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smaller RMSE than the fixed effects estimator. The width of this range increases as either
the number of individuals N or the number of time periods T decrease. It also increases
as the persistence ρ of xit increases. Indeed, when N and T are relatively small and ρ is
relatively large, the individual effects αi can be strongly correlated with xit and still result
in a random effects estimator with a lower RMSE than the fixed effects estimator. The
post-GFIC estimator essentially “splits the difference” between the random and fixed effects
estimators. While it cannot provide a uniform improvement over the fixed effects estimator,
the post-GFIC estimator performs well. When γ is not too large it can yield a substantially
lower RMSE than the fixed effects estimator. The gains are particularly substantial when
xit is relatively persistent and T relatively small, as is common in micro-panel datasets. The
averaging estimator performs even better, providing a nearly uniform improvement over the
post-GFIC estimator. Only at very large values of γ does it yield a higher RMSE, and these
are points in the parameter space where the fixed effects, post-GFIC and averaging estimators
are for all intents and purposes identical in RMSE. Results for T = 5 are qualitatively similar.
See Figure B.2 of Appendix B for details. Note that in when T = 5, setting ρ = 0.3 violates
positive definiteness so we take ρ = 0.4 as our smallest value in this case.

The results we have discussed here focus on the comparison of the GFIC to the fixed
effects, random effects, and averaging estimators. One might also wonder how the GFIC
compares to a Durbin-Hausman-Wu (DHW) pre-test estimator that reports the random

effects estimator unless the difference between �βFE and �βRE is sufficiently large. By an
argument similar to that of DiTraglia (2016) Section 3.2, the GFIC in this particular example
is essentially equivalent to a DHW pre-test estimator based on a particular significance
level dictated by our desire to minimize an asymptotically unbiased estimator of AMSE. As
such, a comparison of the GFIC to a DHW pre-test estimator based on the more standard
significance levels 0.1 and 0.05 will be qualitatively similar to DiTraglia (2016) Figure 2.
In particular, there is no choice of significance level for which one DHW-based pre-test
estimator, including in this case the GFIC, uniformly dominates any other.
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Figure B.2: RMSE for Random vs. Fixed effects example from Section B.1: T = 5,σ2
ε = 2.5

B.2 Figures for Dynamic Panel Simulation

In this section we present figures to complement Table 2 from Section 6.2. Figure B.3
colors each region of the parameter space according to which of the estimators of θ – LP,
LS, P or S – yields the lowest finite-sample RMSE. The saturation of a color indicates the
relative difference in RMSE of the lowest RMSE estimator at that point measured against
the second lowest RMSE estimator. Darker indicates a larger advantage for the first-best
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estimator while lighter values indicate a smaller advantage. Figure B.4 depicts the relative
different between the RMSE of the GFIC and that of the true specification, LP, expressed in
percentage points. Red indicates that the GFIC has the lower RMSE, blue that LP has the
lower RMSE, and white that the RMSE values are the same. Darker colors indicate a larger
difference. Figure B.5 compares the RMSE of the GFIC to that of the oracle procedure that
uses whichever fixed specification – LP, LS, P, or S – yields the lowest finite sample MSE
at a give point in the parameter space. As in Figure B.4, the comparison is one of relative
RMSE in percentage points. But, as the GFIC can by definition can never have a lower
finite-sample MSE than the oracle estimator, the color scale used in this figure is different.
The remaining figures in this section compare the RMSE of the GFIC to that of the other
selection procedures: GMM-AIC, GMM-BIC, etc.
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Figure B.3: Minimum RMSE specification at each combination of parameter values for the simu-
lation experiment from Section 6.2. Color saturation at a given grid point indicates RMSE relative
to second best specification.
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Figure B.4: RMSE of the post-GFIC estimator relative to that of the true specification (LP) in
the dynamic panel simulation experiment from Section 6.2.

T = 4 T = 5

N
 = 250

N
 = 500

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

ρxv

γ

0

10

20

30

40

Figure B.5: RMSE of GFIC relative to Oracle Estimator in the Simulation from Section 6.2
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Figure B.6: RMSE of GFIC relative to GMM-AIC in the Simulation from Section 6.2
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Figure B.7: RMSE of GFIC relative to GMM-BIC in the Simulation from Section 6.2
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Figure B.8: RMSE of GFIC relative to 5% Downward J-test in the Simulation from Section 6.2
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Figure B.9: RMSE of GFIC relative to 10% Downward J-test in the Simulation from Section 6.2
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Figure B.10: RMSE of GFIC relative to GMM-HQ in the Simulation from Section 6.2

C Supplementary Results for the Empirical Example

Table C.1 presents additional empirical results to supplement those discussed in Section 7:
C.1c is based on data for the 1963-1974 sub-sample (T = 12) while C.1d is based on data
for the full 1963–1992 sample (T = 30). The results in C.1a and C.1b are the same as those
in Table 3 and are included here for ease of comparison. Although there is some variation
in the magnitudes of coefficient estimates across sub-samples, the basic pattern of results
is similar. In each of the longer samples (T = 11, 12 or 30), the GFIC ranks specification
LP as the best and specification P as the second best. With enough time periods available
for estimation, the reduction in variance from using specifications LS, P, and S becomes
negligible and is hence outweighed by any bias that they may induce.
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(a) 1975–1980 (T = 6)

LP LS P S
�θ -0.68 -0.32 -0.28 -0.37
Var. 0.16 0.02 0.07 0.01
Bias2 — -4.20 0.01 -3.56
GFIC 0.16 -4.18 0.08 -3.54
GFIC+ 0.16 0.02 0.08 0.01

(b) 1975–1985 (T = 11)

LP LS P S
�θ -0.30 -0.26 -0.38 -0.28
Var. 0.06 0.01 0.05 0.01
Bias2 — 2.21 0.03 1.29
GFIC 0.06 2.22 0.08 1.30
GFIC+ 0.06 2.22 0.08 1.30

(c) 1963–1974 (T = 12)

LP LS P S
�θ -0.31 -0.52 -0.16 -0.51
Var. 0.03 0.00 0.04 0.00
Bias2 — 1.15 0.61 1.28
GFIC 0.03 1.15 0.66 1.28
GFIC+ 0.03 1.15 0.66 1.28

(d) 1963–1992 (T = 30)

LP LS P S
�θ -0.15 -0.38 -0.07 -0.38
Var. 0.01 0.00 0.01 0.00
Bias2 — 2.36 0.35 2.18
GFIC 0.01 2.36 0.36 2.18
GFIC+ 0.01 2.36 0.36 2.18

Table C.1: Estimates and GFIC values for the price elasticity of demand for cigarettes example
from Section 7 under four alternative specifications. GFIC+ gives an alternative version of the
GFIC in which a negative squared bias estimate is set equal to zero.
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