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A GNR Estimation Procedure

This section serves as an overview of the basic steps and assumptions needed to apply the non-
parametric identification procedure of GNR when estimating equation (6) under a parametric
specification of the production technology

(
f j(·)

)
and firm fixed effects (φi). For a detailed and

complete description refer to GNR. For simplicity and without loss of generality, we disregard
the industry dimension j. The estimation discussed below is directly extended by allowing the
functional form of the production technology f (·) to also vary by industry j. Therefore, under
the presence of φi, the production function in (5) can be expressed as:1

yit = f (kit , lit ,mit ;α)+ωit +φi + εit (A.1)

This case considers the classic environment of perfect competition in both input and output
markets. Capital and labour are assumed to be predetermined inputs and therefore chosen one
year prior to the realisation of productivity, ωit , i.e. at t− 1. The only flexible input in the
specification is material, which is assumed to freely adjust in each period (variable) and have no
dynamic implications (static).

Conditional on the state variables and other firm characteristics, a firm’s static profit maximi-
sation problem yields the first order condition with respect to the flexible input, material:

PM
t = Pt

∂

∂Mt
F(Kit ,Lit ,Mit ;α)eω

it E (A.2)

where PM
t and Pt is the price of material and output, respectively. Under perfect competition in

input and output markets, they are constant across firms within the same country-industry but
can vary across time. By the time firms make their annual decisions, ex-post shocks εit are not
in their information set, and thus firms create expectations over them such that: E = E (eεit ).

Combining the log of (A.2) with (A.1) and re-arranging terms, we retrieve a share equation:

sit = ln
(

f̃ (kit , lit ,mit ; α̃)
)
+ lnE − εit (A.3)

where sit is the log of the nominal share of material and f̃ (kit , lit ,mit ; α̃) = ∂

∂mit
f (kit , lit ,mit ;α)

is the output elasticity of the flexible input, material. Note that the share equation is net of the
log additive TFP term ωit , inducing the transmission bias, and the firm fixed effects φi.

A.1 Step One

A Non Linear Least Squares estimation of the share equation (A.3) is applied using the Gauss-
Newton algorithm to minimise the sum of squared errors. Under a Cobb-Douglas production

1Given the data structure, we consider a large number of firms (N) and a small number of time series observations
per firm (T ). Thus, we rely on typical panel data asymptotic properties as N→ ∞ for fixed T .
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technology f̃ (kit , lit ,mit ; α̃)E = αmE ≡ α̃m, where αm is now a constant representing the output
elasticity of the flexible input material. This step identifies εit (hence E ≡∑it

εit
NT ) and α̃m, which

in turn allows us to compute αm ≡ α̃m/E .

A.2 Step Two

By integrating up the output elasticity of the flexible input:∫
f̃ (kit , lit ,mit ; α̃)dmit = f (kit , lit ,mit ;α)+F

(
kit , lit ; ˜̃α) (A.4)

we retrieve the production technology f (·) to the part that remains to be identified F
(

kit , lit ; ˜̃α).
By differencing it with the production function (A.1) we get the following expression for TFP:

ωit = Yit +F
(

kit , lit ; ˜̃α)−φi (A.5)

where Yit is the log of the expected output net of the term (A.4) computed in Step One. Under a
Cobb-Douglass production technology, Yit = yit− ε̂it− α̂mmit and F

(
kit , lit ; ˜̃α)= ˜̃αkkit + ˜̃α llit ,

where ˜̃αk ≡−αk and ˜̃α l ≡−αl .
To proceed, we combine the assumption over the law of motion of TFP used in baseline

specification (6) with (A.5) to generate the following estimating equation:

Yit =−F
(

kit , lit ; ˜̃α)+ρωωit−1 +ρp proxies jct−1 +ρxX jct−1 +ρ f ed f e,t +(1−ρω)φi +ξit

=−F
(

kit , lit ; ˜̃α)+ρω

(
Yit−1 +F

(
kit−1, lit−1; ˜̃α))

+ρp proxies jct−1 +ρxX jct−1 +ρ f ed f e,t +(1−ρω)φi +ξit

(A.6)

where d f e,t is a full set of dummies with their corresponding parameters ρ f e representing the
relevant time-varying fixed effects φ f e,t in (6). In the absence of φi, one can readily estimate
(A.6) using a Generalised Method of Moments (GMM) estimator (see GNR for more details).
However, in the presence of firm fixed effects, further transformations and assumptions are
necessary. We turn to this next.

A.2.1 First Difference GMM (DIF)

Following the dynamic panel literature, GNR augment their baseline estimator to account for
firm fixed effects by first-differencing (A.6) such that:

∆Yit =−∆F
(

kit , lit ; ˜̃α)+ρω∆ωit−1+ρp∆proxies jct−1+ρx∆X jct−1+ρ f e∆d f e,t +∆ξit (A.7)
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where ∆ is the first difference operator.2 However, the above equation suffers from endogeneity
induced by the correlation between ∆ωit−1 and ∆ξit . To solve for this, one could instrument
with deeper lags in levels à la Arellano and Bond (1991). However, as discussed in section 3.3,
such estimators are known to perform poorly due to weak instruments. Therefore, in the next
section, we further augment the GNR estimator in the presence of firm fixed effects.

A.2.2 System GMM (SYS)

Following Blundell and Bond (1998), the SYS approach augments the DIF from the previous
section by simultaneously estimating the equation in differences and levels:3

(
∆Yit

Yit

)
=−

∆F
(

kit , lit ; ˜̃α)
F
(

kit , lit ; ˜̃α)
+ρω

(
∆ωit−1

ωit−1

)
+ρp

(
∆proxiesc jt−1

proxiesc jt−1

)

+ρx

(
∆Xit−1

Xit−1

)
+ρ f e

(
∆d f e,t

d f e,t

)
+

(
∆ξit

ξit

) (A.8)

where the same linear relationship with the same coefficients applies. This results in a stacked
dataset with twice the number of firms and the same set of parameters used in levels.4 By
distinctly instrumenting each of the stacked equations, we form the L≡

(
LD +LL) x 1 vector of

stacked moment conditions:

E [mi(θo)] = E
[
Z ′

i ξ̃i

]
= E

[(
Z D

i 0
0 Z L

i

)′(
∆ξi

ξi

)]
= 0 (A.9)

as a function of the K x 1 vector of unknown parameters θo =
(˜̃α,ρω ,ρp,ρx,ρ f e

)
with L > K,

where ∆ξi = (∆ξi2, . . . ,∆ξi,T )
′, ξi = (ξi1, . . . ,∆ξi,T )

′, Z D
i is a T −1 x LD instrument matrix used

to distinctly instrument the equation in first-differences, and Z L
i is a T x LL instrument matrix

used to distinctly instrument the equation in levels.
The choice of the instruments is based on the timing assumptions of the variables and thus

how they correlate with the error term, i.e. predetermined, endogenous, or exogenous. On the
one hand, capital and labour are assumed to be predetermined inputs chosen at time t−1 and
are thus uncorrelated to any current or future innovations of productivity. On the other hand, the
proxies and additional controls which are treated as endogenous—correlated with contemporary
but not future productivity innovations—are instrumented with (deeper) lags. While we rely

2Standard to dynamic panel methods, linearity in the law of motion of TFP is a necessary condition for
eliminating φi under first-differences.

3This approach requires additional stationarity restrictions on the initial conditions process (Arellano and Bover
1995).

4In the first-differenced equation, the industry (φ jt) and country (φct) specific linear time trends included in
φ f e,t from the levels equation now enter in ∆d f e,t as a set of industry (φ j) and country fixed effects (φc), respectively.
In addition, the vector ∆d f e,t is extended with zeros to annihilate any time-invariant terms such as the constant and,
in the case of industry- j specific production technology f j(·), industry- j dummies.
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on the first lag only for the firm-level controls, we exploit all available lag information for
the country-industry-year-level proxies to maintain maximal identifying variation. Therefore,
similar to the persistence term, for the equation in first differences, Z D

i contains (deeper lag)
values in levels (à la Arellano and Bond 1991). For the equation in levels, Z L

i contains (lag)
values in first-differences (à la Blundell and Bond 1998; Arellano and Bover 1995). Note that
we exclude redundant instruments by choosing the first available lag in Z D

i and all available
lags in Z L

i (see Appendix C from Kiviet et al. 2017, for a complete description on redundant
instruments).

We abstain from using additional lag lengths for the firm-level controls to avoid potential
biases generated by instrument proliferation (Roodman 2009). In the same spirit, we further
limit the instrument count by using a collapsed version of the instrument matrix, as suggested
by Roodman (2009) among others. Kiviet et al. (2017) and Kiviet (2020) demonstrate how the
combination of these two instrument reduction methods, i.e. removing long lags and collapsing,
can improve estimation precision.

Finally, the time-varying fixed effects d f e,t are assumed to be exogenous and thus orthogonal
to the productivity shocks. To extract redundant instruments, we consider d f e,t only in Z L

i . It
is important to mention here that d f e,t includes a constant which is by default exogenous and
identifies the global mean.5 Specifically, under a Cobb-Douglas production technology:

Z D
i =



ki1 li1 0 0 0
ki2 li2 Yi1 proxiesc j1 Xi1

ki3 li3 Yi2 proxiesc j2 Xi2
...

...
...

...
...

ki,T−1 li,T−1 Yi,T−2 proxiesc j,T−2 Xi,T−2


and

Z L
i =



∆ki1 ∆li1 0 0 · · · 0 0 d f e,1

∆ki2 ∆li2 ∆Yi1 ∆proxiesc j1 0 ∆Xi1 d f e,2

∆ki3 ∆li3 ∆Yi2 ∆proxiesc j2 0 ∆Xi2 d f e,3
...

...
...

... . . . O
...

...
∆kiT ∆liT ∆Yi,T−1 ∆proxiesc j,T−1 · · · ∆proxiesc j1 ∆XiT−1 d f e,T


This step proceeds with a GMM estimation which uses the sample analog of the population

moment conditions (A.9) to construct an estimator for θ (Hansen 1982). The GMM estimator θ̂

5In our case of industry specific production technology f j(·), we replace the constant with a full set of industry- j
dummies which are assumed to be exogenous.
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minimises the quadratic form:

J (θ) =

(
1
N

N

∑
i=1

mi(θ)

)′
W

(
1
N

N

∑
i=1

mi(θ)

)
(A.10)

with respect to θ where W is an L x L positive semi-definite weighting matrix. Given that
the GMM objective function is of quadratic form, we solve for the minimum using the Gauss-
Newton non-linear algorithm which involves iteration to convergence for a given W (one-step).
Note that for inference we rely on bootstrapping and that for the SYS moment conditions there
is no simple one-step efficient W . Therefore, as a choice of a suboptimal weighting matrix to
yield a consistent one-step GMM estimator, we follow Blundell and Bond (2000) in setting

W =

(
1
N

N
∑

i=1
Zi
′HiZi

)−1

. This contains a block diagonal matrix Hi = diag(DiD′i, IT−1), where

Di is a T −1 x T matrix with -1s in the diagonal, 1s in the first upper sub-diagonal, and zeros
elsewhere, and IT−1 is an identity matrix of size T −1.6

By minimising the sample analogue of the GMM criterion function, we retrieve estimates

for the remaining parameters of the production technology
(̂̃̃

α

)
as well as the Markov process

parameters and the time varying fixed effects
(
ρ̂ω , ρ̂p, ρ̂x, ρ̂ f e

)
. For a Cobb-Douglas production

technology the estimated production function is:

yit = α̂kkit + α̂llit + α̂mmit +ωit +φi + ε̃it (A.11)

Using the estimated parameters from this two-step procedure, i.e. ̂̃α from step one and ̂̃̃α from
step two, we can now compute productivity ω̂it +φi and other relevant functionals, e.g. returns
to scale RT S = α̂k + α̂l + α̂m.

On a technical matter, it is important to mention that, within the GMM algorithm we ‘net out’
the exogenous fixed effects d f e,t using a partitioned regression (Frisch and Waugh 1933; Lovell
1963; Giles 1984). This approach reduces the parameter space that the GMM algorithm needs
to search over, which has two empirical advantages. First, it exponentially reduces estimation
time given both the iterative nature of the GMM algorithm and the bootstrapping procedure
used to obtain standard errors. Second, we find empirically that it helps to avoid possible
non-convergence issues of the estimator related to the presence of local-minima and flat regions
in the criterion function.

Implementation of the partitioning is straightforward. Within each iteration of the GMM
algorithm, we use the moment conditions related to the fixed effects to retrieve Ordinary Least

6Alternatively, for the consistent estimation of this one-step GMM estimator, one could use the suggestion from
Windmeijer (2000), where the lower-left and upper-right zero quadrants of matrix Hi are replaced by matrix D′i
and Di, respectively. Or, more simply, one could follow Arellano and Bover (1995) and Blundell and Bond (1998)

in setting W =

(
1
N

N
∑

i=1
Zi
′Zi

)−1

. For a detailed overview on this topic, see Kiviet et al. (2017) and the Online

Appendix of Kripfganz and Schwarz (2019).

5



Squares (OLS) estimates for ρ f e. Specifically, in each iteration, for a given a set of starting
values for the parameters θ other than ρ f e,7 we regress the left hand side variable minus the
right-hand side part of equation (A.8)—excluding the part related to the fixed effects—on the
set of fixed effects. In turn, the ρ f e ‘OLS estimates’ are used in (A.8) to complete the GMM
iteration under the full set of instruments Zi. We repeat this approach within each iteration
of the GMM algorithm until convergence is achieved. As such, we can now calculate the
time-consuming cross-products and inversions of large matrices needed for the OLS outside of
the iterative procedure. Also, the GMM parameter space is reduced drastically. For example,
in our baseline model, from a total of 140 parameters we now need to estimate through the
computationally intensive GMM only 49 parameters since the additional 91 parameters related
to the fixed effects are partitioned and obtained from a computationally fast OLS regression.

7We use OLS estimates of equation (A.8).
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B Over- and Underidentification Test Statistics

In this section we describe the construction of the relevant statistics to test the model for
overidentification and underidentification. The construction of the bootstrap p-values for the test
statistics is discussed next in the Online Appendix C.3.

Overidentification.—We test the validity of overidentifying moment conditions using the
Hansen-J test (Hansen 1982). For the construction of the Hansen-J statistic we use J = NJ(θ̂),
which is computed using the consistent one-step GMM estimates θ̂ and the weight matrix
specified as before.

Underidentification.—We test for weak identification using the underidentification test
established by Windmeijer (2021) for models with complex data structures, i.e. clustered and
potentially heteroskedastic dynamic panel data models estimated by GMM. This test builds
upon the simple test for weak instruments by Sanderson and Windmeijer (2016). Windmeijer
(2021) highlights that the underidentification test is equivalent to an overidentification test when
regressing any endogenous variable on the remaining regressors of the original model using the
same set of instruments. For the case of the kth proxy (proxiesk

c jt−1), the auxiliary model is:

(
∆proxiesk

c jt−1

proxiesk
c jt−1

)
=−

∆F
(

kit , lit ; ˜̃α)
F
(

kit , lit ; ˜̃α)
+ρω

(
∆ωit−1

ωit−1

)
+ρ

s
p

(
∆proxies−k

c jt−1

proxies−k
c jt−1

)

+ρx

(
∆Xit−1

Xit−1

)
+ρ f e

(
∆d f e,t

d f e,t

)
+

(
∆ξit

ξit

) (B.1)

where the dependent variable from the original model is replaced with proxiesk
c jt−1. In turn,

this is excluded from the set of regressors (proxies−k
c jt−1). The same estimation as the original

model is thus performed while keeping the instrument matrix Zi unchanged. Overall, for
each endogenous explanatory variable, the overidentification Hansen-J test for the relevant
auxiliary model serves as an underidentification test under the null hypothesis that the model is
underidentified. The test relies on the choice of the left-hand side variable, and thus can only
inform whether the particular endogenous variable is poorly predicted by the instruments. The
Hansen-J test statistic is computed in the same way as above.
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C Bootstrap

In this section we discuss how to operationalise the cluster bootstrap procedure for our
dynamic panel data model estimated from an overidentified GMM. In turn, we show how to
compute cluster bootstrap standard errors and p-values for two model specification tests, i.e.
overidentification and underidentification tests.

C.1 Implementation and Calculation of Standard Errors

We implement a cluster bootstrap where we first define clusters G at the industry-country
level, i.e. firm-year observations can be arbitrarily correlated within but independent across
clusters.8 We form clusters at the industry-country and not at the industry-country-year level
of our regressors of interest in order to ensure that—given the dynamic representation of our
model—the full time-series of each firm is retained when creating the bootstrap samples below
(Horowitz 2001). If anything, this choice allows for a more flexible error structure, whereby
errors within the cluster can also be arbitrarily correlated over time. We then randomly draw
with replacement G times over entire clusters, i.e. blocks of firms, from the original sample to
generate the bth bootstrap sample, where b = 1 . . .B.9 We repeat this exercise for B = 99 times
and for each parameter estimate from the original sample θ̂ , θ̂b is the estimate from the bth

bootstrap replication and θ̄ is the mean of all the θ̂bs. As such, the bootstrap standard error can
be written as:

se(θ̂) =

(
1

B−1

B

∑
b=1

(
θ̂b− θ̄

)2
)1/2

(C.1)

Calculated as such, the computed standard errors can be used for statistical inference similar to
any other asymptotically valid standard errors.

C.2 Recentering

For reliable bootstrap inference and testing of the over-identified GMM estimation described
in Online Appendix A.2.2, we follow Hall and Horowitz (1996) to recenter the bootstrap moment
conditions.10 Specifically, for each bth bootstrap sample, the GMM estimator θ̂b minimises the
following criterion function:

J̃ (θ) =

(
1
N

N

∑
ib=1

(
mib(θ)−

1
N

N

∑
i=1

mi(θ̂)

))′
Wb

(
1
N

N

∑
ib=1

(
mib(θ)−

1
N

N

∑
i=1

mi(θ̂)

))
(C.2)

8We form a total of 360 clusters for this application. This comes from the fact that we have 19 industries in each
of the 19 countries, and exclude CPA classification 10 in Norway (due to a lack of data).

9Note that we use a pairs bootstrap, i.e. draw pairs of Y (left-hand side variable), X (right-hand side variables).
10See Bond and Windmeijer (2005) for such an application when comparing the finite sample performance of

various test procedures for a range of dynamic panel data models using GMM. Alternatively, one could follow
Brown and Newey (2002) by drawing bootstrap samples under a specific weighting of the original data ensuring
that the moment conditions hold.
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where the bootstrap moment conditions are recentered relative to the original sample moment
conditions under the consistent one-step GMM estimates from the original sample θ̂ . Wb is
constructed similarly to the weighting matrix used in (A.10) under the bootstrap sample. As
such, the bootstrap version of the Hansen-J statistic is now based on Jb = NJ̃(θ̂b).

C.3 p-values for Over- and Underidentification Tests

For each bootstrap sample b we calculate the relevant test statistic Jb and create its bootstrap
empirical distribution. Recall that the underidentification test is equivalent to the overiden-
tification test where Jb is the bootstrap Hansen-J statistic from the auxiliary model outlined
in Online Appendix B. The percentile in the bootstrap distribution of Jb is then given by

pJ =
1
B

B
∑

b=1
1(Jb > J), where the indicator function is equal to one each time the bootstrap sam-

ple statistic Jb is strictly larger than the original sample statistic J, and 0 otherwise. If pJ < α ,
the test rejects the null hypothesis—at size α .
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D Additional Figures and Tables

Figure D.1: Inter-industry importing and exporting by year
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Source: Authors’ calculations based on WIOT.
Notes: Let x represent the variable of interest. The upper, middle and lower hinge of the box
represents the 25th (x[25]), 50th (x[50]) and 75th (x[75]) percentile, respectively. Define x(i) as the
ith ordered value of x. The upper adjacent line has a value x(i) such that x(i) ≤U and x(i+1) >U ,
where U = x[75]+1.5(x[75]− x[25]). The lower adjacent line has a value x(i) such that x(i) ≥ L and
x(i+1) < L, where L = x[25]−1.5(x[75]− x[25]).

10



Figure D.2: Inter-industry importing and exporting by country
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Source: Authors’ calculations based on WIOT.
Notes: Let x represent the variable of interest. The upper, middle and lower hinge of the box
represents the 25th (x[25]), 50th (x[50]) and 75th (x[75]) percentile, respectively. Define x(i) as the
ith ordered value of x. The upper adjacent line has a value x(i) such that x(i) ≤U and x(i+1) >U ,
where U = x[75]+1.5(x[75]− x[25]). The lower adjacent line has a value x(i) such that x(i) ≥ L and
x(i+1) < L, where L = x[25]−1.5(x[75]− x[25]).
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Figure D.3: Markup by year
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Source: Authors’ calculations based BvDEP data and the estimated extension of the baseline
model (6) assuming monopolistic competition in the output market and CES preferences.

Figure D.4: Distributions of bootstraped values for different clustering levels
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Notes: For each proxy variable of interest, the plotted distributions represent the kernel densities of
the point estimates from the 99 replications of the cluster bootstrap for different types of clustering,
i.e. industry-country ( jc), industry ( j), country (c), and firm (i). The vertical (red) line represents the
point estimate of each variable from the original sample.
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Table D.1: Summary Statistics for sample selection criteria

(1) (2) (3) (4)
Sample Selection Criteria Observations # Firms Sales # Employees

1. Active Legal Status 99.74 99.98 99.94 99.86
2. Consolidated Accounts 95.82 96.48 88.23 82.47
3. No Missing Data 61.85 71.82 70.46 75.14
4. >20 Employees 30.66 23.70 92.43 89.29
5.i. BACON 30th percentile 93.84 94.85 78.44 88.71
5.ii. >2 consecutive observations 94.24 76.97 93.29 95.37
6.i. BACON 15th percentile 97.82 98.25 94.37 97.12
6.ii. >2 consecutive observations 94.42 77.48 89.33 95.14

Notes: This table reports the remaining percentage coverage of the firm-level sample across
four different categories (columns 1-4), after applying each sample selection criterion (in each
row). Each selection criterion is applied sequentially and thus the table reads from top to
bottom rows. For the first two criteria, results are reported relative to the original sample. For
criterion 5.i and 6.i, results are relative to the sample after the first four criteria are applied, and
for criteria 5.ii and 6.ii results are relative to the sample after the application up to criterion 5.i
and 6.i, respectively.
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Table D.2: Output elasticities of inputs and returns to scale

CPA Baseline Imperfect Competition

Industry αk αl αm RT S αk αl αm RT S

5 0.162 0.119 0.519 0.800 0.133 0.108 0.555 0.796
6 0.199 0.229 0.339 0.767 0.206 0.241 0.362 0.809
7 0.192 0.174 0.487 0.853 0.167 0.171 0.521 0.858
8 0.134 0.142 0.478 0.753 0.125 0.141 0.510 0.776
9 0.141 0.204 0.325 0.671 0.150 0.218 0.347 0.714
10 0.189 0.127 0.537 0.853 0.076 0.053 0.573 0.702
11 0.152 0.130 0.476 0.758 0.154 0.137 0.508 0.799
12 0.113 0.189 0.351 0.653 0.118 0.205 0.375 0.698
13 0.184 0.187 0.461 0.831 0.182 0.191 0.492 0.865
14 0.188 0.250 0.390 0.828 0.194 0.265 0.417 0.875
15 0.166 0.190 0.476 0.832 0.174 0.199 0.508 0.881
16 0.177 0.246 0.354 0.776 0.214 0.275 0.378 0.867
17 0.146 0.215 0.385 0.746 0.182 0.245 0.411 0.838
18 0.173 0.159 0.445 0.777 0.195 0.178 0.475 0.849
19 0.164 0.212 0.410 0.786 0.202 0.244 0.438 0.884
20 0.168 0.218 0.493 0.879 0.194 0.242 0.526 0.962
21 0.201 0.244 0.373 0.818 0.219 0.258 0.398 0.875
22 0.163 0.228 0.415 0.806 0.157 0.235 0.444 0.835
23 0.203 0.218 0.293 0.714 0.227 0.250 0.313 0.790

All-mean 0.172 0.200 0.416 0.788 0.182 0.213 0.445 0.839
All-median 0.173 0.212 0.410 0.786 0.194 0.241 0.438 0.849
All-st.dev. 0.018 0.044 0.066 0.041 0.030 0.056 0.070 0.048

Notes: αk, αl , αm are point estimates of the output elasticities of capital, labour and
material, respectively, under the baseline model (Baseline) and an extension accounting
for monopolistic competition in output and CES preferences (Imperfect Competition).
RT S = αk +αl +αm is the returns to scale of production. The last three rows report the
mean, median and standard deviation of the point estimates across all industries.
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Table D.6: TFP effects from inter-industry importing
and exporting under baseline specification and robust-
ness to alternative assumptions

(1) (2) (3)
D=1 if Low-tech

Baseline CEEC WEC

downIM jct−1 -0.136 0.134 -0.083
(0.091) (0.161) (0.099)

upEX jct−1 0.432∗∗∗ 0.124 -0.265
(0.166) (0.200) (0.172)

upIM jct−1 -0.228 0.043 1.021∗∗∗

(0.207) (0.275) (0.332)

downEX jct−1 0.267∗∗ -0.012 0.393∗∗∗

(0.134) (0.164) (0.134)

D∗downIM jct−1 -0.346 -0.249
(0.227) (0.160)

D∗upEX jct−1 0.875∗∗ 0.610
(0.386) (0.437)

D∗upIM jct−1 -0.933 -0.024
(0.587) (0.486)

D∗downEX jct−1 0.511 -0.238
(0.361) (0.243)

Observations 1,018,643 277,003 741,640

Notes: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. All regres-
sions include: the persistence term; intra-industry importing
and exporting; dummies for domestic and foreign ownership
links; year, industry and country fixed effects; and indus-
try and country linear time trends. D is a dummy variable
equal to one when firms are in Low-tech industries and zero
otherwise. D is not reported since it is time invariant and
thus not separately identified from the fixed effects. Column
2 regression also includes the interactions of intra-industry
importing and exporting with D. CEEC refers to Cenrtal
Eastern European Countries while WEC refers to Western
European Countries. Standard errors are computed using a
cluster (at the industry-country) bootstrap with 99 replica-
tions and are reported in parentheses below point estimates.
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Table D.7: Upstreamness measure

(1) (2)
Production Line Position CPA Mean EU Mean

1 12 1.42 1.29
2 22 1.47 1.35
3 21 1.48 1.38
4 17 1.52 1.24
5 20 1.55 1.21
6 6 1.56 1.29
7 5 1.59 1.48
8 19 1.60 1.31
9 18 1.87 1.34
10 10 1.98 2.42
11 23 2.03 2.02
12 11 2.17 1.50
13 13 2.31 1.70
14 16 2.32 1.86
15 7 2.38 1.87
16 14 2.38 1.98
17 8 2.45 1.70
18 15 2.64 1.60
19 9 2.84 2.55

Notes: The upstreamness measures are computed as in Fally
(2012) and Antràs et al. (2012) using WIOT. In column 1, we
consider EU as one economy and, thus, for each industry-year
we use the sum of WIOT tables across all 19 EU countries
to construct the measures. In column 2, we use all avail-
able granular information to compute the measures, i.e. each
industry-country-year WIOT tables separately. Mean EU is
the per industry mean of the computed EU wide upstreamness
measure across time. Mean is the per industry mean of the up-
streamness measure across all EU countries and time. Larger
values represent more upstream industries.
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