Internet Appendix to Estimation of Sample Selection Models with Spatial Dependence

Alfonso Flores-Lagunes and Kurt E. Schnier

This version: September 2009

Contents

Tables A1 through A4 present the simulation results not shown in the paper.

The Theoretical Appendix presents the proofs to the propositions presented in the paper.

Appendix Tables

				BIAS				RMSE								
(δ,γ,ρ)		OLS	KP-SAE	Heckit	Spheck-E	Spheck-O	OLS	KP-SAE	Heckit	Spheck-E	Spheck-O					
	β_0	0.303	0.304	-0.024	-0.064	-0.069	0.326	0.327	0.258	0.377	0.305					
(0 0 0 5)*	β_1	0.013	0.012	-0.007	-0.007	-0.012	0.161	0.163	0.160	0.162	0.180					
(0,0,0.5)	ρ_2	-0.210	-0.211	0.018	0.050	-0.003	0.255	0.255	0.212	0.350	0.245					
	γ		-0.044	0.000	-0.045	-0.039		0.186	0.07.1	0.191	0.196					
	β_0	0.308	0.314	-0.022	-0.053	-0.066	0.332	0.343	0.266	0.364	0.322					
(0.25,0.25,	β_1	0.011	0.007	-0.008	-0.010	-0.016	0.164	0.186	0.164	0.162	0.181					
0.5)	p_2	-0.212	-0.219	0.016	0.035	0.034	0.256	0.273	0.215	0.339	0.251					
	γ		0.026	0.040	0.000	0.038		0.156	0.004	0.158	0.165					
	β_0	0.321	0.357	-0.025	-0.077	-0.069	0.353	0.440	0.293	0.426	0.347					
(0.5,0.5,	β_1	0.016	0.004	-0.003	-0.006	-0.013	0.172	0.341	0.171	0.164	0.183					
0.5)	β_2	-0.218	-0.267	0.014	0.052	0.036	0.270	0.423	0.234	0.352	0.262					
	γ		0 104	0.000	0.073	0.033		0 155	0.410	0.302	0.361					
	β_0	0.371	0.678	0.006	-0.419	-0.163	0.425	1.300	0.376	1.067	0.715					
(0 75 0 75	β_1	0.013	-0.241	-0.006	-0.005	-0.014	0.187	1.647	0.188	0.162	0.181					
0.5)	β_2	-0.233	-0.541	-0.013	0.206	0.092	0.302	1.506	0.263	0.709	0.445					
	ρ_{γ}		0 132	0.059	0.296	-0.057 0.149		0 144	0.482	0 159	0.603					
	β_0	0.332	0.578	0.036	-0.306	-0.094	0.397	1.304	0.322	0.100	0.544					
(0 0 75	β_1	0.016	-0.167	-0.002	-0.002	-0.003	0.181	1.841	0.181	0.156	0.168					
0.5)	β_2	-0.234	-0.498	-0.026	0.143	0.054	0.302	1.634	0.254	0.610	0.370					
/	ρ_{γ}		0.150	-0.017	0.137	-0.154		0.165	0.379	0.888	0.466					
	β_0	0 341	0.159	0.018	-0.293	-0.066	0 403	1 332	0.317	0.178	0.162					
(0.05.0.75	β_1	0.008	-0.280	-0.012	-0.007	-0.015	0.186	1.854	0.186	0.157	0.174					
(0.25,0.75,	β_2	-0.235	-0.503	-0.013	0.146	0.039	0.300	1.616	0.242	0.635	0.333					
0.0)	ρ_{χ}		0.455	0.025	0.148	-0.167		0.400	0.386	0.876	0.393					
	<i>r</i> <i>B</i>	0.307	0.155	0.025	0.167	0.171	0 331	0.162	0.310	0.174	0.180					
<i></i>	β_1	0.012	0.009	-0.025	-0.039	-0.075	0.331	0.337	0.166	0.373	0.400					
(0.75,0.25,	₿ ₂	-0.188	-0.191	0.013	0.022	0.033	0.242	0.252	0.232	0.319	0.280					
0.3)	ρ			0.017	0.039	-0.009			0.455	0.547	0.479					
	γ 	0.450	-0.031	0.020	-0.025	-0.018	0 470	0.159	0.056	0.160	0.166					
	β_0 β_1	0.459	0.460	-0.030	-0.055	-0.143	0.473	0.474	0.256	0.306	0.333					
(0,0,0.75)*	β_2	-0.321	-0.323	0.020	0.035	0.064	0.348	0.350	0.211	0.314	0.247					
	ρ			0.051	0.089	0.047			0.366	0.438	0.373					
	<u> </u>	0.405	-0.047	0.000	-0.047	-0.039	0.470	0.183	0.000	0.186	0.191					
	ρ_0 B	0.465	0.473	-0.032	-0.058	-0.152	0.479	0.489	0.263	0.334	0.344					
(0.25,0.25,	β_2	-0.322	-0.331	0.022	0.037	0.065	0.349	0.363	0.214	0.331	0.252					
0.75)	ρ			0.060	0.097	0.066			0.376	0.480	0.410					
	<u>γ</u>		-0.005		-0.002	0.007		0.155		0.156	0.161					
	β_0	0.485	0.530	-0.039	-0.095	-0.177	0.503	0.569	0.286	0.429	0.428					
(0.5,0.5,	β_1	-0.327	-0.384	0.024	0.066	0.078	0.358	0.205	0.225	0.345	0.283					
0.75)	ρ			0.095	0.107	0.065			0.412	0.568	0.483					
	γ		0.058		0.067	0.071		0.132		0.139	0.143					
	β_0	0.573	0.914	0.005	-0.500	-0.275	0.600	1.232	0.355	1.035	0.743					
(0.75,0.75,	β_1 β_2	-0.352	-0.752	-0.008	-0.007	0.129	0.109	1.318	0.169	0.145	0.103					
0.75)	ρ			0.126	0.372	-0.032			0.472	1.064	0.624					
	Ϋ́		0.102		0.129	0.127		0.123		0.148	0.148					
	β_0	0.496	0.812	0.051	-0.416	-0.185	0.538	1.360	0.319	0.945	0.567					
(0,0.75,	ρ ₁ β.	-0.351	-0.237	-0.003	-0.002	-0.006	0.170	1.717	0.169	0.144	0.152					
0.75)	P1 0	0.001	0.000	-0.028	0.131	-0.214	0.000	1.000	0.366	0.893	0.509					
	ïγ		0.159		0.181	0.182		0.165		0.188	0.189					
	β_0	0.497	0.802	0.022	-0.490	-0.219	0.535	1.295	0.312	0.996	0.609					
(0.25,0.75,	β ₁ β	0.035	-0.175	0.005	0.004	0.000	0.174	1.614	0.171	0.143	0.155					
0.75)	P2 0	-0.555	-0.000	0.020	0.245	-0.181	0.400	1.349	0.230	0.990	0.374					
	Y		0.151		0.173	0.175		0.157	2.000	0.181	0.183					
	β_0	0.463	0.465	-0.038	-0.054	-0.165	0.477	0.479	0.313	0.355	0.423					
(0.75,0.25,	β_1	0.020	0.019	-0.005	-0.006	-0.015	0.154	0.158	0.152	0.151	0.170					
0.75)	P ₂	-0.283	-0.285	0.021	0.033	0.066	0.317	0.319	0.230	0.303	0.281					
	γ γ		-0.164	0.023	-0.161	-0.154		0.232	0.771	0.232	0.231					

Table A1. Simulation Results for N=625, 25% Sample Selection

Note: Simulation results are based on 500 replications. * In these models with no spatial dependence Heckit is theoretically consistent.

				BIAS			RMSE								
(δ,γ,ρ)		OLS	KP-SAE	Heckit	Spheck-E	Spheck-O	OLS	KP-SAE	Heckit	Spheck-E	Spheck-O				
	β_0	0.443	0.443	-0.018	-0.026	-0.072	0.464	0.464	0.327	0.366	0.408				
(0 0 0 5)*	β_1	0.016	0.017	-0.010	-0.010	-0.015	0.182	0.184	0.181	0.184	0.209				
(0,0,0.3)	ρ_2	-0.200	-0.200	0.010	0.013	-0.007	0.311	0.312	0.240	0.268	0.254				
	γ		-0.050		-0.049	-0.045		0.190		0.194	0.201				
	β_0	0.447	0.453	-0.019	-0.025	-0.074	0.469	0.478	0.339	0.361	0.412				
(0.25,0.25,	β_1	0.019	0.015	-0.007	-0.006	-0.013	0.189	0.206	0.188	0.186	0.209				
 (δ, γ, ρ) (0,0,0.5)* (0.25,0.25, 0.5) (0.5,0.5, 0.5) (0.75,0.75, 0.5) (0.25,0.75, 0.5) (0.25,0.25, 0.5) (0.25,0.25, 0.75) (0.25,0.25, 0.75) (0.25,0.75, 0.75) 	p_2	-0.272	-0.278	0.007	0.012	-0.020	0.316	0.330	0.247	0.264	0.260				
	γ		-0.043	0.020	-0.036	-0.031		0.167	0.002	0.167	0.174				
	β_0	0.467	0.500	-0.023	-0.083	-0.102	0.493	0.553	0.370	0.550	0.497				
(0.5,0.5,	β_1	0.012	-0.001	-0.014	-0.010	-0.019	0.193	0.310	0.193	0.183	0.202				
 (δ,γ,ρ) (0,0,0.5)* (0.25,0.25, 0.5) (0.5,0.5, 0.5) (0.75,0.75, 0.5) (0,0,0,75), 0.5) (0,25,0.75, 0.5) (0,25,0.25, 0.75) (0,25,0.25, 0.75) (0,25,0.75, 0.75) (0,0,0,75)* (0,0,0,75), 0.75) 	p_2	-0.275	-0.316	0.011	0.048	0.040	0.327	0.431	0.262	0.377	0.330				
	ρ γ		0.001	0.004	0.013	0.019		0.129	0.007	0.132	0.138				
	β_0	0.530	0.753	0.009	-0.312	-0.124	0.573	1.147	0.468	0.985	0.724				
(0 75 0 75	β_1	0.011	-0.124	-0.015	-0.010	-0.014	0.206	1.237	0.208	0.181	0.197				
0.5)	β_2	-0.284	-0.540	-0.007	0.132	0.055	0.355	1.241	0.306	0.580	0.393				
 (δ,γ,ρ) (0,0,0,5)* (0,25,0,25, 0,5) (0,5,0,5, 0,5) (0,75,0,75, 0,5) (0,25,0,75, 0,5) (0,25,0,25, 0,5) (0,25,0,25, 0,75) (0,25,0,25, 0,75) (0,25,0,25, 0,75) (0,25,0,25, 0,75) (0,25,0,25, 0,75) (0,25,0,75, 0,75) 	ρ_{γ}		0.069	0.095	0.188	-0.060		0 107	0.494	0.643	0.509				
	β_0	0.493	0.683	-0.002	-0.334	-0.108	0.545	1.200	0.417	0.999	0.574				
(0 0 75	β_{1}	0.022	-0.037	-0.007	-0.004	-0.005	0.216	1.419	0.217	0.182	0.196				
0.5)	β_2	-0.300	-0.558	0.000	0.183	0.056	0.368	1.395	0.305	0.650	0.373				
,	ρ_{γ}		0 100	0.060	0.113	-0.124		0 1 2 0	0.398	0.745	0.379				
	$\frac{\gamma}{\beta_0}$	0 499	0.100	-0.014	-0.370	-0.122	0 549	1 199	0 418	1.030	0.144				
(0.05.0.75	β_1	0.018	-0.036	-0.011	-0.007	-0.014	0.222	1.376	0.223	0.185	0.204				
(0.25,0.75,	β_2	-0.303	-0.582	0.005	0.212	0.064	0.369	1.401	0.293	0.655	0.367				
0.3)	ρ			0.080	0.156	-0.106			0.417	0.782	0.376				
	γ 	0.400	0.092	0.007	0.109	0.115	0.440	0.117	0.400	0.132	0.140				
	ρ_0 B.	0.426	0.427	-0.007	-0.015	-0.076	0.448	0.452	0.400	0.417	0.472				
(0.75,0.25,	β_2	-0.229	-0.229	0.002	0.002	0.020	0.288	0.294	0.264	0.295	0.295				
0.5)	ρ			-0.004	0.002	-0.018			0.431	0.439	0.430				
	<u>γ</u>		-0.077		-0.068	-0.063		0.184		0.182	0.191				
	ρ_0	0.666	0.000	-0.033	-0.034	-0.176	0.677	0.678	0.320	0.323	0.419				
(0,0,0.75)*	β_1 β_2	-0.405	-0.405	0.007	0.015	0.053	0.100	0.100	0.234	0.100	0.180				
	ρ			0.038	0.037	0.053			0.325	0.332	0.349				
	γ		-0.053		-0.052	-0.046		0.196		0.200	0.203				
	β_0	0.671	0.679	-0.036	-0.043	-0.194	0.683	0.692	0.331	0.346	0.443				
(0.25,0.25,	β_1 β_2	-0 406	-0.414	-0.000	-0.005	0.014	0.171	0.181	0.100	0.105	0.184				
0.75)	ρ	01100		0.047	0.046	0.069	01.02	01112	0.341	0.352	0.371				
(0,0,0.5)* (0.25,0.25, 0.5) (0.5,0.5, 0.5) (0.75,0.75, 0.5) (0.25,0.75, 0.5) (0.25,0.25, 0.75) (0.25,0.25, 0.75) (0.75,0.75, 0.75) (0.75,0.75, 0.75) (0.25,0.75, 0.75) (0.25,0.75, 0.75)	Ŷ		-0.076		-0.069	-0.064		0.185		0.184	0.186				
	β_0	0.700	0.742	-0.038	-0.067	-0.198	0.714	0.766	0.355	0.400	0.456				
(0.5,0.5,	β ₁ β	0.030 -0.414	-0.464	-0.009	-0.006	-0.015	0.178	0.249	0.174	0.165	0.183				
0.75)	ρ	0.414	0.404	0.083	0.069	0.081	0.440	0.010	0.376	0.422	0.402				
	Ϋ́		-0.051		-0.038	-0.036		0.145		0.143	0.145				
	β_0	0.793	1.039	-0.013	-0.369	-0.259	0.816	1.211	0.453	0.973	0.773				
(0.75,0.75,	β_1	0.025	-0.104	-0.015	-0.011	-0.014	0.186	0.874	0.185	0.162	0.177				
0.75)	ρ_2	-0.422	-0.714	0.003	0.173	-0.014	0.404	1.001	0.290	0.802	0.560				
	γ		0.024		0.056	0.056		0.094		0.112	0.115				
	β_0	0.728	0.972	0.000	-0.353	-0.205	0.759	1.357	0.395	0.860	0.541				
(0,0.75,	β_1	0.041	-0.026	-0.002	-0.003	-0.003	0.201	1.424	0.198	0.162	0.173				
0.75)	<i>p</i> ₂ 0	-0.445	-0.776	-0.003	0.102	-0.210	0.460	1.445	0.282	0.510	0.324				
	Y		0.114		0.142	0.145		0.129		0.156	0.161				
	β_0	0.744	1.017	-0.022	-0.421	-0.229	0.774	1.352	0.400	0.984	0.623				
(0.25,0.75,	β_1	0.039	-0.056	-0.005	-0.005	-0.010	0.206	1.323	0.203	0.165	0.181				
0.75)	p ₂	-0.448	-0.804	0.013	0.219	0.096 -0.164	0.486	1.411	0.285	0.635	0.372				
	y Y		0.096	0.110	0.125	0.130		0.119	0.400	0.146	0.151				
	β_0	0.635	0.635	-0.025	-0.031	-0.183	0.647	0.648	0.386	0.395	0.500				
(0.75.0.25	β_1	0.021	0.020	-0.010	-0.012	-0.018	0.162	0.164	0.160	0.161	0.179				
0.75)	₿ ₂	-0.343	-0.343	0.009	0.007	0.050	0.379	0.380	0.254	0.265	0.287				
•	ρ γ		-0,192	0.005	-0.180	-0.174		0,260	0.411	0.426	0.441				

Table A2. Simulation Results for N=625, 40% Sample Selection

Note: Simulation results are based on 500 replications. * In these models with no spatial dependence Heckit is theoretically consistent.

		N=324							N=625							N=900						
(δ,γ,ρ)			BIAS			RMSE			BIAS			RMSE			BIAS			RMSE				
		Heckit	Spheck- I	Spheck- O	Heckit	Spheck I	- Spheck- O	Heckit	Spheck- I	Spheck- O	Heckit	Spheck- I	Spheck- O	Heckit	Spheck I	Spheck- O	Heckit	Spheck- I	Spheck- O			
	α,	-0.008	-0.021	-0.240	0.195	0.355	0.329	0.005	0.003	-0.212	0.138	0.241	0.263	-0.002	-0.006	-0.216	0.120	0.170	0.252			
(0.0.0.5)*	α_1	0.016	0.055	0.069	0.279	0.651	0.350	-0.004	0.011	0.029	0.195	0.455	0.228	0.003	0.017	0.031	0.171	0.315	0.191			
(α,	0.022	0.052	0.076	0.281	0.410	0.335	0.004	0.009	0.036	0.201	0.262	0.220	0.003	0.004	0.031	0.152	0.184	0.176			
	<u></u>	0.000	-0.057	-0.055	0.400	0.313	0.301	0.000	-0.049	-0.055	0.4.4.4	0.199	0.201	0.000	-0.016	-0.016	0.400	0.153	0.150			
(0.25.0.25	<i>a</i> ₀	-0.009	-0.030	-0.256	0.199	0.351	0.349	0.006	0.012	-0.223	0.144	0.266	0.279	-0.002	0.000	-0.224	0.122	0.176	0.263			
(0.25,0.25,	<i>a</i> ₁	0.007	0.083	0.098	0.275	0.650	0.397	-0.014	0.012	0.046	0.196	0.466	0.262	-0.006	0.028	0.044	0.172	0.330	0.224			
0.5)	<i>u</i> ₂	0.019	-0.073	-0.073	0.201	0.437	0.300	0.000	0.020	-0.062	0.200	0.271	0.252	0.000	0.006	0.051	0.152	0.200	0.199			
	<u> </u>	0.005	0.041	-0.073	0.206	0.322	0.330	0.019	0.020	-0.000	0 160	0.215	0.213	0.010	0.040	-0.233	0 128	0.107	0.100			
(0505	<i>a</i> .	-0.033	0.003	0.118	0.200	0.663	0.370	-0.052	0.030	0.051	0.100	0.275	0.302	-0.043	0.042	0.233	0.120	0.202	0.201			
(0.5,0.5,	<i>a</i> ₁	-0.000	0.104	0.110	0.273	0.000	0.415	-0.032	0.020	0.054	0.203	0.288	0.257	-0.038	-0.014	0.041	0.170	0.324	0.240			
0.0)	\$	0.021	-0.089	-0 198	0.211	0.405	0.495	0.040	0.000	-0.057	0.201	0.284	0.286	0.000	0.083	-0.012	0.140	0.193	0.208			
	α,	0.012	0.117	-0.224	0.252	0.487	0.403	0.043	0.166	-0.169	0.192	0.394	0.294	0.026	0.177	-0.175	0.164	0.380	0.274			
(0.75.0.75.	α,	-0.160	-0.110	-0.030	0.305	0.719	0.444	-0.157	-0.153	-0.080	0.252	0.519	0.320	-0.143	-0.190	-0.097	0.226	0.459	0.266			
0.5)	α,	-0.127	-0.235	-0.079	0.293	0.562	0.450	-0.159	-0.303	-0.144	0.244	0.497	0.330	-0.143	-0.306	-0.133	0.205	0.463	0.261			
,	8		-0.402	-0.588		0.612	0.838		-0.418	-0.635		0.586	0.837		-0.386	-0.572		0.510	0.745			
	a ₀	-0.019	0.055	-0.250	0.199	0.460	0.363	-0.014	0.114	-0.216	0.143	0.376	0.283	-0.015	0.122	-0.211	0.120	0.326	0.261			
(0,0.75,	α_1	0.006	0.073	0.126	0.284	0.737	0.430	0.006	-0.025	0.063	0.200	0.507	0.264	0.011	-0.041	0.051	0.172	0.387	0.214			
0.5)	α2	0.034	-0.045	0.091	0.277	0.545	0.413	0.021	-0.125	0.031	0.195	0.443	0.271	0.016	-0.147	0.025	0.159	0.398	0.220			
	δ		0.314	0.106		0.517	0.591		0.313	0.094		0.457	0.512		0.336	0.178		0.425	0.445			
	α,	-0.026	0.077	-0.252	0.199	0.454	0.370	-0.009	0.118	-0.218	0.138	0.361	0.280	-0.013	0.122	-0.213	0.120	0.319	0.257			
(0.25,0.75,	α_1	0.007	0.052	0.122	0.277	0.712	0.436	-0.006	-0.047	0.056	0.189	0.498	0.261	-0.003	-0.039	0.040	0.172	0.396	0.220			
0.5)	<i>a</i> ₂	0.026	-0.088	0.069	0.274	0.557	0.436	0.008	-0.120	0.035	0.192	0.431	0.274	0.014	-0.156	0.024	0.156	0.399	0.202			
	δ		0.077	-0.141		0.418	0.590		0.070	-0.162		0.343	0.554		0.099	-0.083		0.275	0.435			
	α_0	0.050	0.032	-0.190	0.256	0.389	0.340	0.064	0.053	-0.161	0.206	0.270	0.268	0.045	0.052	-0.171	0.170	0.199	0.244			
(0.75,0.25,	α_1	-0.153	-0.079	-0.072	0.297	0.636	0.374	-0.160	-0.133	-0.117	0.255	0.419	0.268	-0.154	-0.149	-0.124	0.229	0.313	0.229			
0.5)	<i>a</i> ₂	-0.136	-0.098	-0.068	0.302	0.379	0.338	-0.168	-0.139	-0.123	0.257	0.284	0.252	-0.147	-0.145	-0.113	0.209	0.222	0.208			
	δ		-0.586	-0.601		0.670	0.686		-0.540	-0.551		0.578	0.585		-0.506	-0.523		0.530	0.544			
	α_0	-0.008	-0.018	-0.218	0.194	0.334	0.312	0.006	0.006	-0.186	0.140	0.250	0.245	-0.003	-0.007	-0.191	0.119	0.172	0.230			
(0.0.0.75)*	α_1	0.017	0.054	0.058	0.277	0.605	0.357	-0.005	0.003	0.004	0.194	0.454	0.227	0.003	0.017	0.010	0.170	0.324	0.186			
(-,-,-)	α_2	0.018	0.044	0.055	0.280	0.381	0.329	0.004	0.011	0.018	0.203	0.251	0.226	0.003	0.006	0.013	0.152	0.173	0.164			
	δ		-0.049	-0.050		0.322	0.324		-0.053	-0.050		0.212	0.202		-0.017	-0.019		0.152	0.150			
(0.05.0.05	α_0	-0.008	-0.013	-0.234	0.197	0.339	0.339	0.007	0.012	-0.198	0.145	0.263	0.265	-0.002	-0.001	-0.199	0.122	0.182	0.243			
(0.25,0.25,	α_1	0.008	0.052	0.092	0.272	0.599	0.431	-0.014	0.007	0.036	0.195	0.467	0.293	-0.005	0.021	0.026	0.172	0.342	0.228			
0.75)	α2	0.016	0.073	0.106	0.281	0.400	0.409	-0.001	0.020	0.053	0.201	0.268	0.283	0.000	0.008	0.033	0.152	0.192	0.209			
	<u> </u>	0.004	-0.060	-0.063	0.206	0.331	0.307	0.021	-0.007	-0.013	0.161	0.210	0.230	0.000	0.025	0.014	0 1 2 0	KMSE Spheck-Spf 0.1700 0.3 0.1315 0.7 0.315 0.7 0.1315 0.7 0.153 0.7 0.153 0.7 0.176 0.2 0.202 0.2 0.330 0.2 0.202 0.2 0.324 0.2 0.322 0.2 0.322 0.2 0.425 0.4 0.510 0.7 0.380 0.2 0.398 0.2 0.398 0.2 0.399 0.2 0.399 0.2 0.399 0.2 0.172 0.3 0.172 0.3 0.172 0.3 0.172 0.3 0.172 0.3 0.172 0.3 0.172 0.3 0.172 0.3 0.172 0.3 0.172 0.3	0.150			
(0505	<i>a</i> ₀	-0.004	0.023	-0.252	0.200	0.301	0.591	-0.021	0.042	-0.221	0.101	0.277	0.310	-0.041	0.042	-0.221	0.129	0.207	0.279			
0.5,0.5,	<i>a</i> ₁	-0.032	0.072	0.133	0.273	0.017	0.535	-0.034	0.043	0.113	0.205	0.409	0.449	-0.041	-0.013	0.030	0.170	0.330	0.329			
0.75)	42 S	-0.022	-0.020	-0.169	0.277	0.413	0.322	-0.042	0.007	-0.026	0.205	0.209	0.400	-0.037	0.013	0.000	0.140	0.212	0.230			
	<u>α</u> .	0.015	0.002	-0.192	0 250	0.300	0.402	0.046	0.000	-0.145	0 195	0.432	0.311	0.031	0.259	-0.141	0 164	0.130	0.235			
(0 75 0 75	α.	-0 153	-0 126	-0.036	0.301	0.680	0.455	-0 156	-0 177	-0.077	0.100	0.520	0.380	-0 146	-0 237	-0.101	0.225	0.515	0.347			
0.75)	α_1	-0.120	-0.267	-0 101	0.285	0.540	0.447	-0 153	-0.335	-0 155	0.242	0.500	0.391	-0 145	-0.362	-0.158	0.206	0.010	0.321			
0.1.0)	8	020	-0.341	-0.555	0.200	0.546	0.821	0.100	-0.306	-0.587	0.2.12	0.491	0.818	00	-0.280	-0.547	0.200	0.422	0.751			
	α,	-0.033	0.106	-0.230	0.198	0.465	0.359	-0.024	0.158	-0.188	0.145	0.409	0.274	-0.022	0.193	-0.171	0.120	0.393	0.233			
(0,0.75,	α_1	0.017	0.031	0.134	0.282	0.673	0.486	0.013	-0.046	0.055	0.195	0.511	0.307	0.014	-0.098	0.021	0.168	0.439	0.216			
0.75)	α,	0.050	-0.112	0.084	0.279	0.545	0.475	0.031	-0.194	0.003	0.197	0.466	0.310	0.024	-0.240	-0.020	0.165	0.446	0.234			
	8		0.358	0.109		0.509	0.605		0.343	0.038		0.441	0.537		0.308	0.082		0.393	0.466			
	α_0	-0.032	0.125	-0.221	0.198	0.474	0.353	-0.020	0.220	-0.169	0.143	0.452	0.255	-0.017	0.225	-0.161	0.118	0.429	0.228			
(0.25,0.75,	α_1	0.006	0.002	0.098	0.279	0.682	0.426	-0.003	-0.125	0.011	0.187	0.552	0.248	0.005	-0.143	0.009	0.170	0.472	0.220			
0.75)	α_{2}	0.042	-0.133	0.055	0.272	0.547	0.453	0.021	-0.242	-0.026	0.196	0.493	0.292	0.015	-0.252	-0.033	0.162	0.459	0.240			
	δ		0.107	-0.147		0.393	0.612		0.112	-0.214		0.317	0.571		0.078	-0.143		0.268	0.487			
	α_0	0.044	0.034	-0.171	0.253	0.365	0.328	0.064	0.059	-0.136	0.208	0.268	0.253	0.044	0.046	-0.151	0.169	0.200	0.229			

Table A3. Simulation Results for the Selection Equation, 25% Sample Selection

Note: Simulation results are based on 1000 replications for N=324, and 500 for N=625 and N=900. * In these models with no spatial dependence Heckit is theoretically consistent.

-0.160 -0.141 -0.138

-0.170 -0.150 -0.146

-0.668

-0.671

0.404

0.275

0.698

0.254

0.258

0.289

0.267

0.702

-0.153 -0.149 -0.143

-0.147 -0.145 -0.131

-0.630

-0.635

0.308

0.647

0.215 0.213

0.229

0.208

0.239

0.654

(0.75,0.25,

0.75)

 α_1

 α_2

δ

-0.150 -0.109 -0.100

-0.132 -0.098 -0.082

-0.692

-0.696

0.298

0.299

0.567 0.363

0.362

0.773

0.363

0.764

				N=3	324					N=	625	1070 04	N=900						
		<u>BI</u> AS			RMSE			BIAS		RMSE				BIAS		RMSE			
(δ,γ,ρ)		Heckit	Spheck-	Spheck-	Heckit	Spheck	Spheck-	Heckit	Spheck	Spheck-	Heckit	Spheck-	Spheck-	Heckit	Spheck-	Spheck-	Heckit	Spheck-	Spheck-
	a	-0.010	-0.027	-0.251	0.190	0.259	0.340	0.011	0.010	-0.207	0.140	0.172	0.259	-0.003	-0.003	-0.216	0.116	0.129	0.248
(0.0.0.5)*	<i>a</i> 1	0.009	0.041	0.046	0.253	0.408	0.316	-0.012	-0.012	0.003	0.183	0.264	0.203	0.006	0.004	0.015	0.156	0.199	0.166
(0,0,010)	<i>a</i> ₂	0.021	0.032	0.057	0.255	0.296	0.292	-0.007	-0.003	0.009	0.182	0.194	0.200	0.005	0.010	0.021	0.146	0.150	0.158
	<u> </u>	-0.005	-0.057	-0.054	0 196	0.286	0.284	0.020	-0.051	-0.047	0 146	0.195	0.190	0.005	-0.006	-0.007	0 1 1 9	0.141	0.134
(0.25,0.25,	 α ₁	0.002	0.058	0.060	0.249	0.429	0.335	-0.018	-0.006	0.009	0.140	0.282	0.207	-0.005	-0.008	0.009	0.1152	0.192	0.162
0.5)	α2	0.015	0.041	0.071	0.257	0.314	0.317	-0.023	-0.011	0.006	0.185	0.193	0.208	-0.004	0.004	0.019	0.143	0.148	0.156
	δ		-0.066	-0.089		0.282	0.295		-0.038	-0.055		0.189	0.187		-0.004	-0.025		0.138	0.128
(0 E 0 E	α,	0.031	-0.025	-0.300	0.208	0.304	0.462	0.043	0.015	-0.237	0.160	0.238	0.338	0.031	0.015	-0.245	0.133	0.173	0.317
(0.5,0.5,	α ₁ α	-0.046	0.078	0.095	0.252	0.486	0.460	-0.048	-0.020	0.031	0.186	0.349	0.288	-0.040	-0.012	0.036	0.161	0.251	0.250
0.5)	5	-0.025	-0.093	-0.163	0.202	0.348	0.422	-0.034	-0.014	-0.081	0.100	0.237	0.263	-0.000	0.032	-0.035	0.150	0.210	0.200
	α	0.115	0.110	-0.234	0.275	0.460	0.500	0.140	0.163	-0.170	0.238	0.391	0.358	0.120	0.160	-0.162	0.201	0.336	0.295
(0.75,0.75,	α_{i}	-0.156	-0.029	0.010	0.296	0.597	0.438	-0.167	-0.099	-0.043	0.245	0.438	0.334	-0.150	-0.092	-0.063	0.219	0.324	0.250
0.5)	α2	-0.134	-0.171	-0.021	0.279	0.512	0.488	-0.160	-0.192	-0.078	0.240	0.426	0.348	-0.149	-0.208	-0.101	0.206	0.385	0.269
	<u></u>	0.017	-0.366	-0.526	0 102	0.614	0.813	0.002	-0.264	-0.423	0 1 2 0	0.493	0.685	0.006	-0.242	-0.369	0.116	0.480	0.583
(0 0 75	α.	0.017	0.010	0.545	0.192	0.590	0.493	-0.002	0.031	-0.295	0.139	0.318	0.355	0.000	0.032	-0.282	0.110	0.264	0.302
0.5)	α2	0.026	-0.049	0.118	0.261	0.504	0.472	0.004	-0.050	0.070	0.180	0.399	0.314	0.007	-0.043	0.060	0.147	0.372	0.282
,	δ		0.407	0.219		0.614	0.619		0.470	0.268		0.638	0.595		0.528	0.349		0.622	0.537
	α,	-0.014	0.002	-0.362	0.199	0.400	0.534	0.014	0.040	-0.279	0.142	0.290	0.365	0.001	0.052	-0.280	0.124	0.290	0.348
(0.25,0.75,	α_{i}	0.003	0.126	0.177	0.251	0.581	0.489	-0.014	0.071	0.094	0.179	0.379	0.310	0.001	0.046	0.085	0.158	0.363	0.268
0.5)	α ₂ \$	0.025	-0.044	0.142	0.262	0.510	0.525	-0.016	-0.068	0.042	0.186	0.397	0.285	0.000	-0.058	0.051	0.153	0.354	0.244
	<u>α</u>	0.138	0.112	-0.116	0.287	0.325	0.317	0.144	0.141	-0.079	0.242	0.256	0.217	0.125	0.200	-0.095	0.204	0.208	0.204
(0.75,0.25,	<i>a</i> 1	-0.157	-0.104	-0.100	0.295	0.452	0.370	-0.168	-0.162	-0.149	0.247	0.300	0.253	-0.153	-0.149	-0.137	0.221	0.241	0.230
0.5)	<i>a</i> ₂	-0.142	-0.123	-0.095	0.290	0.309	0.319	-0.163	-0.156	-0.143	0.244	0.245	0.243	-0.153	-0.148	-0.135	0.211	0.214	0.221
	δ		-0.619	-0.633		0.683	0.704		-0.577	-0.590		0.607	0.617		-0.548	-0.562		0.565	0.577
	α,	-0.011	-0.029	-0.232	0.190	0.247	0.334	0.010	0.012	-0.179	0.140	0.167	0.236	-0.003	0.001	-0.185	0.116	0.126	0.222
(0,0,0.75)*	<i>a</i> 1 <i>a</i> 2	0.009	0.049	0.038	0.255	0.399	0.330	-0.012	-0.018	-0.021	0.183	0.243	0.203	0.007	0.002	-0.008	0.150	0.185	0.103
	δ	0.022	-0.057	-0.049	0.200	0.293	0.320	0.007	-0.055	-0.052	002	0.201	0.206	0.001	-0.002	-0.003	0.1.10	0.141	0.137
	α,	-0.006	-0.034	-0.257	0.196	0.261	0.391	0.020	0.021	-0.183	0.146	0.178	0.248	0.005	0.007	-0.191	0.119	0.137	0.242
(0.25,0.25,	α_1	0.003	0.053	0.067	0.249	0.394	0.387	-0.017	-0.016	-0.010	0.182	0.261	0.214	-0.006	-0.010	-0.006	0.152	0.189	0.177
0.75)	α2	0.016	0.040	0.073	0.255	0.296	0.358	-0.022	-0.017	-0.011	0.185	0.192	0.216	-0.004	0.001	0.006	0.143	0.154	0.192
	<u>0</u>	0.031	-0.098	-0.096	0 206	0.296	0.334	0 044	-0.066	-0.252	0 159	0.203	0.217	0.032	-0.025	-0.032	0 133	0.130	0.157
(0.5,0.5,	α_1	-0.041	0.062	0.119	0.251	0.466	0.511	-0.050	0.000	0.072	0.187	0.319	0.361	-0.040	0.004	0.070	0.160	0.234	0.328
0.75)	α2	-0.026	0.019	0.116	0.251	0.331	0.470	-0.055	-0.021	0.064	0.183	0.227	0.337	-0.040	-0.019	0.070	0.148	0.174	0.331
	δ		-0.092	-0.139		0.326	0.433		-0.021	-0.034		0.212	0.271		0.025	0.007		0.162	0.195
(0 75 0 75	$\alpha_{_0}$	0.121	0.129	-0.234	0.277	0.443	0.535	0.137	0.174	-0.197	0.235	0.387	0.440	0.120	0.183	-0.184	0.201	0.355	0.391
(0.75,0.75,	α_1	-0.155	-0.039	0.034	0.293	0.540	0.509	-0.163	-0.084	0.005	0.242	0.429	0.434	-0.149	-0.103	-0.023	0.218	0.334	0.366
0.73)	د <u>م</u> ج	-0.132	-0.260	-0.000	0.200	0.433	0.323	-0.155	-0.201	-0.317	0.230	0.373	0.429	-0.150	-0.220	-0.280	0.207	0.324	0.502
	α ₀	-0.023	0.040	-0.342	0.195	0.391	0.530	-0.001	0.078	-0.281	0.138	0.312	0.402	-0.011	0.091	-0.264	0.116	0.291	0.369
(0,0.75,	α_1	0.017	0.093	0.185	0.257	0.552	0.533	-0.003	0.028	0.109	0.186	0.386	0.391	0.015	-0.003	0.090	0.159	0.329	0.343
0.75)	α_{2}	0.030	-0.084	0.118	0.258	0.473	0.521	0.007	-0.094	0.064	0.178	0.374	0.352	0.010	-0.099	0.054	0.148	0.326	0.312
	<u></u>	0.024	0.424	0.273	0.100	0.633	0.647	0.012	0.475	0.284	0 1 4 2	0.650	0.624	0.001	0.458	0.297	0.120	0.621	0.594
(0.25 0 75	<i>a</i> .	0.021	0.034	-0.347	0.199	0.530	0.542	-0.012	0.091	-0.∠o4 0.119	0.142	0.304	0.427	-0.001	-0.001	-0.207	0.120	0.310	0.368
0.75)	α_1	0.032	-0.072	0.129	0.262	0.495	0.559	-0.013	-0.117	0.055	0.185	0.384	0.389	-0.003	-0.119	0.047	0.145	0.346	0.330
	8		0.222	0.046		0.484	0.584		0.259	0.070		0.494	0.559		0.263	0.096	-	0.484	0.504
	α_0	0.136	0.121	-0.094	0.286	0.312	0.306	0.145	0.146	-0.054	0.242	0.258	0.206	0.125	0.124	-0.070	0.204	0.206	0.186
(0.75,0.25,	$\alpha_{_1}$	-0.158	-0.124	-0.122	0.294	0.400	0.353	-0.168	-0.171	-0.170	0.247	0.290	0.261	-0.153	-0.153	-0.158	0.221	0.236	0.236
0.75)	δ^{α_2}	-0.140	-0.127	-0.109	0.290	0.303	0.330	-0.163	-0.159	-0.162 -0.692	0.244	0.248	0.251	-0.153	-0.148	-0.152 -0.655	0.211	0.212	0.223

Table A4. Simulation Results for the Selection Equation, 40% Sample Selection

Note: Simulation results are based on 1000 replications for N=324, and 500 for N=625 and N=900. * In these models with no spatial dependence Heckit is theoretically consistent.

Theoretical Appendix

The parameter estimate of the sample selection model with SAE dependence is obtained from the solution to equation (11) in the paper, where $g_N(\theta) = \frac{1}{N} z'_N \tilde{u}_N(\theta)$. Denote $g(\theta) \equiv \lim_{n \to \infty} E[g_n(\theta)]$. Then, the unknown parameter vector θ_0 satisfies $\lim_{n \to \infty} E[g_N(\theta_0)] = 0$. Further, define the objective function as $Q_N = g'_N(\theta) M_N g_N(\theta)$, where $M_N \xrightarrow{p} M$, and $Q = g'(\theta) Mg(\theta)$.

The proof of all three propositions follow closely Pinkse and Slade (1998). The main difference is that some extra conditions have to be verified for the additional moments stacked in $g_N(\theta)$ and the estimated inverse-Mills ratio (IMR).

Assumptions

- A1 θ_0 is in the interior of the parameter space Θ , which is a compact set.
- **A2** Q is uniquely minimized at θ_0
- **A3** The vector valued function $g(\theta)$ is continuous.
- A4 The density of observations in any region whose area exceeds a fixed minimum is bounded.
- A5 The elements of z_N are uniformly bounded.¹
- A6 Let d_{ij} denote the distance between location i and j, then

$$\sup_{\substack{Nij}} |cov(y_{1i}, y_{1j})| \leq \alpha(d_{ij}), \\
\sup_{\substack{Nij}} |cov(y_{2i}, y_{2j})| \leq \alpha(d_{ij}) \text{ and} \\
\alpha(d) \to 0 \text{ as } d \to \infty.$$

- A7 The moments $var(u_{ij}) = \sigma_1^2 \sum_j [\omega_{ij}^1]^2$, $var(u_{2i}) = \sigma_2^2 \sum_j [\omega_{ij}^2]^2$, and $E[u_{1i}, u_{2i}] = \sigma_{12} \sum_j \omega_{ij}^1 \omega_{ij}^2$ are uniformly bounded, bounded away from zero, and boundedly differentiable (with respect to θ).
- **A8** As $N \to \infty$, $M_N \xrightarrow{p} M$ for some positive definite matrix M.
- **A9** As $d \to \infty$, $d^2 \alpha \left(dd^* \right) / \alpha \left(d^* \right) \to 0$, for all fixed $d^* > 0$.
- A10 The area in which the observations are located grows at a rate of \sqrt{N} in both directions.
- **A11** $\Psi_1(\theta_0) = \lim_{N \to \infty} E\{Ng_N(\theta_0)g'_N(\theta_0)\}$ and $\Psi_2(\theta_0) = [\partial g'(\theta_0)/\partial \theta]M[\partial g(\theta_0)/\partial \theta']$ are positive definite matrices.
- **A12** Let $\rho_{Nij}(\theta)$ be the covariance between $\frac{u_{Ni}}{\sqrt{var(u_{Ni})}}$ and $\frac{u_{Nj}}{\sqrt{var(u_{Nj})}}$. For some fixed $N^* > 0$, $\rho_{Nij}(\theta)$ is boundedly differentiable, uniformly in $\theta \in \Theta$, N > L, and $i \neq j$.
- **A13** $| \rho_{Nij}(\theta) |$ is boundedly away from one from below, uniformly in $\theta \in H(\theta_0)$, $N > N^*$, and $i \neq j$, with $H(\theta_0)$ some neighborhood of θ_0 .

 $^{{}^{1}\}lambda(\delta,\gamma)$ is an element of z_N which will be shown below to be uniformly bounded, as well as its first derivative.

A14 As $N \to \infty$, $\frac{1}{N} \sum_{ij} | \rho_{Nij}(\theta) |$ is uniformly bounded in $\theta \in H(\theta_0)$.

A discussion of the implications of these assumptions can be found in Pinkse and Slade (1998).

Proof of Proposition 1

By assumption A2, Q is uniquely minimized at θ_0 . Thus, we only need to establish that Q_N converges uniformly to Q over the parameter space Θ . To show that Q_N converges uniformly to Q over Θ , it suffices to show that

(a) $Q_N \xrightarrow{p} Q$ at all $\theta \in \Theta \iff g_N(\theta) \xrightarrow{p} g(\theta)$ at all $\theta \in \Theta$.

(b) Q_N is stochastically equicontinuous and Q is continuous on $\Theta \iff g_N(\theta) \xrightarrow{p} g(\theta)$ is stochastically equicontinuous.

For (a), note that $g(\theta) \equiv \lim_{N \to \infty} E[g_N(\theta)]$, that is $E[g_N(\theta)] \xrightarrow{p} g(\theta)$. If $g_N(\theta) \xrightarrow{p} g(\theta)$. $E[g_N(\theta)]$, then $g_N(\theta) \xrightarrow{p} g(\theta)$, so we show the former.

Define the functions

$$\tau_{1i}\left(\psi_{i}\left(\theta\right)\right) \equiv \sqrt{\sum_{j} (\omega_{ij}^{1})^{2}} \cdot \phi\left(\psi_{i}\left(\theta\right)\right) / \left\{\Phi\left(\psi_{i}\left(\theta\right)\right) \left[1 - \Phi\left(\psi_{i}\left(\theta\right)\right)\right]\right\}$$

such that $\widetilde{u}_{1i}(\theta) = \tau_{1i}(\psi_i(\theta))(y_i - \Phi(\psi_i(\theta))).$

Let $\tau_i(\psi_i(\theta)) \equiv (\tau_{1i}(\psi_i(\theta)))', \mathbf{1})$ where $\mathbf{1}$ is a conformable vector of ones such that $\widetilde{u}_N(\theta) = ((\tau_1(\psi(\theta)))(y - \Phi(\psi(\theta))))', \mathbf{1}u'_{2N}(\theta))'.$ Then,

$$\lim_{n \to \infty} E |g_N(\theta) - E[g_N(\theta)]|^2$$

$$= \lim_{n \to \infty} \frac{1}{N^2} \sum_{ij} z'_i \tau_{Ni} \tau_{Nj} z_j cov[y_{i,}y_j]$$

$$\leq \lim_{N \to \infty} \frac{1}{N^2} C \sum_{ij} \alpha(d_{ij}) \quad \text{by assumptions } A5\text{-}A7$$

$$= 0$$

since $\alpha(d_{ij}) \to 0$ as $d \to \infty$ by assumption A6. Therefore, since $g_N(\theta) \xrightarrow{p} E[g_N(\theta)]$ then $g_N(\theta) \xrightarrow{p} g(\theta).$

For (b), given that by assumption A3 $g(\theta)$ is continuous, we need to show that $g_N(\theta)$ is stochastically equicontinuous.

Using the mean value theorem for θ^* between θ and $\tilde{\theta}$ we rewrite

$$g_N(\theta) - g_N\left(\tilde{\theta}\right) = \frac{1}{N} z'_N\{\tilde{u}'_N - \tilde{u}_N(\tilde{\theta})\} = \frac{1}{N} z'_i \frac{\partial \tilde{u}_{Ni}\left(\theta^*\right)}{\partial \theta'} (\theta - \tilde{\theta}).$$

Following Andrews (1992), stochastic equicontinuity is implied by

$$\sup_{\theta \in \Theta} \left| \frac{1}{N} \sum_{i} z_{i}^{\prime} \frac{\partial \widetilde{u}_{Ni}\left(\theta\right)}{\partial \theta^{\prime}} \right| = Op\left(1\right).$$

Recall that $\tau_i(\psi(\theta)) \equiv (\tau_{1i}(\psi(\theta))', \mathbf{1})'$ with $\tau_{1i}(\psi_i(\theta)) \equiv \sqrt{\sum_j (\omega_{ij}^1)^2} \cdot \phi[\psi_i(\theta)] / \Phi[\psi_i(\theta)] \{1 - \Phi(\psi_i(\theta))\}$

Similarly, define $h_i(\theta) \equiv ((y_i - \Phi(\psi_i(\theta)))', \widetilde{u}_{2i}(\theta)')'$, such that $u_{Ni}(\theta) = \tau_i(\psi_i(\theta))h_i(\theta)$ and the derivative becomes:

$$\frac{\partial \widetilde{u}_{Ni}\left(\theta\right)}{\partial \theta'} = \left[\frac{\partial \tau_{i}\left(\psi_{i}\left(\theta\right)\right)}{\partial \theta}h_{i}\left(\theta\right) - \frac{\partial h_{i}\left(\theta\right)}{\partial \theta}\tau_{i}\left(\psi_{i}\left(\theta\right)\right)\right]\frac{\partial \psi_{i}\left(\theta\right)}{\partial \theta}$$

where

$$\begin{aligned} \frac{\partial \tau_{i}\left(\psi_{i}\left(\theta\right)\right)}{\partial \theta} &= \frac{\partial}{\partial \theta} \begin{bmatrix} \tau_{1i}\left(\psi_{i}\left(\theta\right)\right)' \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial \theta} \begin{bmatrix} \sqrt{\sum_{j}\left(\omega_{ij}^{1}\right)^{2}} \cdot \frac{\phi\left[\psi_{i}\left(\theta\right)\right]}{\Phi\left[\psi_{i}\left(\theta\right)\right]\left(1-\Phi\left(\psi_{i}\left(\theta\right)\right)\right]} \end{bmatrix}' \\ \mathbf{0} \end{bmatrix} \\ \frac{\partial h_{i}\left(\theta\right)}{\partial \theta} &= \frac{\partial}{\partial \theta} \begin{bmatrix} \left[y_{1} - \Phi\left[\psi_{i}\left(\theta\right)\right]\right]' \\ \left[y_{2} - \beta_{0} - x_{2i}'\beta_{1} - \mu\lambda_{i}\left(\delta,\gamma\right)\right]' \end{bmatrix} = \begin{bmatrix} \left[-\Phi\left[\psi_{i}\left(\theta\right)\right]\right]' \\ -\left[1 - x_{2i}' - \mu\frac{\partial\lambda_{i}\left(\delta,\gamma\right)}{\partial \theta} - \lambda_{i}\left(\delta,\gamma\right)\right]' \end{bmatrix} \\ \frac{\partial \psi_{i}\left(\theta\right)}{\partial \theta} &= \frac{\partial}{\partial \theta} \begin{bmatrix} \frac{\alpha_{o} + x_{1i}'\alpha_{1}}{\sqrt{\sum_{j}\left[\omega_{ij}^{1}\left(\theta\right)\right]^{2}}} \end{bmatrix} \\ &= \begin{bmatrix} \sqrt{\sum_{j}\left[\omega_{ij}^{1}\left(\theta\right)\right]^{2}}\left(1 + x_{1i}'\right) - \left(\alpha_{0} + x_{1i}\alpha_{1}\right)\frac{\partial\sqrt{\sum_{j}\left[\omega_{ij}^{1}\left(\theta\right)\right]^{2}}}{\partial \theta} \end{bmatrix} \cdot \left[\sum_{j}\left[\omega_{ij}^{1}\left(\theta\right)\right]^{2}\right] \end{aligned}$$

Then the task is to show that each of the parts of $\frac{\partial \tilde{u}_{Ni}(\theta)}{\partial \theta'}$ is bounded uniformly. Following Pinkse and Slade (1998), we first establish

$$\sup_{y_{i}\in0,1;t\in\mathbb{R},y_{2}\in\mathbb{R}}\left|\frac{\partial\tau\left(t\right)}{\partial t}h\left(t\right)-\frac{\partial h\left(t\right)}{\partial t}\tau\left(t\right)\right|<\infty$$

for which it is enough to show (i) $\frac{\partial \tau(\theta)}{\partial \theta}$ and (ii) $\frac{\partial h(t)}{\partial \theta} \tau(t)$ are bounded uniformly in t. For (i), given that the only non-zero components of $\frac{\partial \tau(\theta)}{\partial \theta}$ are those of $\frac{\partial \tau_1(t)}{\partial \theta}$, we concentrate on those. These components are the same as in Pinkse and Slade (1998) setup and thus their same arguments apply. Note that:

$$\begin{aligned} \frac{\partial \tau_1\left(\theta\right)}{\partial \theta} &= \left\{ \frac{1}{\Phi\left(t\right)} \left[\frac{\phi\left(t\right)}{1 - \Phi\left(t\right)} \left\{ \frac{\phi\left(t\right)}{1 - \Phi\left(t\right)} - t \right\} \right] - \frac{\phi^2\left(t\right)}{\Phi^2\left(t\right)\left(1 - \Phi\left(t\right)\right)} \right\} \cdot \sqrt{\sum_j (\omega_{ij}^1)^2} + \\ &\frac{\partial}{\partial \theta} \left[\sqrt{\sum_j (\omega_{ij}^1)^2} \right] \cdot \frac{\phi[t]}{\Phi[t] \left\{1 - \Phi\left(t\right)\right\}} \end{aligned}$$

and (using assumption A7) the only places it can be unbounded are at $\pm\infty$. Since the expression is an even function, it suffices to check $t \to \infty$. Define $\Upsilon(t) = \frac{\phi(t)}{1 - \Phi(t)}$ and rewrite the above expression as:

$$\begin{aligned} \frac{\partial \tau_1\left(t\right)}{\partial t} &= \frac{\left(\Upsilon\left(t\right) - t\right)^2 + t(\Upsilon\left(t\right) - t\right) - \phi\left(t\right)\left(\Upsilon\left(t\right) - t\right)/\Phi\left(t\right) - t\phi\left(t\right)/\Phi\left(t\right)}{\Phi\left(t\right)} \cdot \sqrt{\sum_j (\omega_{ij}^1)^2} + \\ &\frac{\partial}{\partial \theta} \left[\sqrt{\sum_j (\omega_{ij}^1)^2}\right] \cdot \frac{\Upsilon\left(t\right)}{\Phi[t]} \end{aligned}$$

and noting that as $t \to \infty$, $\Phi(t) \to 1$ and $t\phi(t) \to 0$, and that

$$1 - \Phi(w) = \int_{w}^{\infty} \phi(t) dt = \int_{w}^{\infty} \frac{t\phi(t)}{t} dt = \frac{\phi(w)}{w} \left\{ 1 + \frac{1}{w^{2}} + O(w^{-4}) \right\}$$

as $w \to \infty$, the remaining term is

$$\Upsilon(t) - t = \frac{t}{1 + 1/t^2 + O(t^{-4})} - t = \frac{1}{t} + O(t^{-3})$$

as $t \to \infty$. Thus, analyzing

$$\frac{\left[\frac{1}{t} + O(t^{-3})\right]^2 + t\left[\frac{1}{t} + O(t^{-3})\right] - \phi\left(t\right)\left[\frac{1}{t} + O(t^{-3})\right] / \Phi\left(t\right) - t\phi\left(t\right) / \Phi\left(t\right)}{\Phi\left(t\right)} \to 1$$

and hence, together with assumption A7, $\frac{\partial \tau_1(\theta)}{\partial \theta}$ is bounded.

For (ii), that is, $\frac{\partial h(t)}{\partial \theta} \tau(t)$, recall that

$$\frac{\partial h(t)}{\partial t} = \begin{bmatrix} \left[-\phi(t) \right]' \\ -\left[1 - x_2' - \mu \frac{\partial \lambda(\delta, \gamma)}{\partial \theta} - \lambda(\delta, \gamma) \right]' \end{bmatrix} \text{ and } \tau(t) = \begin{bmatrix} \tau_1(t)' \\ \mathbf{1} \end{bmatrix}$$

and note it can be written as

$$\frac{\partial h\left(t\right)}{\partial t}\tau\left(t\right) = \begin{bmatrix} -\phi\left(t\right)\tau_{1}\left(t\right) \\ -\left[1-x_{2}^{'}-\mu\frac{\partial\lambda\left(t\right)}{\partial t}-\lambda\left(t\right)\right] \end{bmatrix} = \begin{bmatrix} -\phi\left(t\right)\frac{1}{\Phi\left(t\right)}\left[\Upsilon\left(t\right)-t+t\right]\cdot\sqrt{\sum_{j}\left(\omega_{ij}^{1}\right)^{2}} \\ -\left[1-x_{2}^{'}-\mu\frac{\partial\lambda\left(t\right)}{\partial t}-\lambda\left(t\right)\right] \end{bmatrix}.$$

The first component, $\phi(t) \frac{1}{\Phi(t)} [\Upsilon(t) - t + t] \cdot \sqrt{\sum_{j} (\omega_{ij}^{1})^{2}}$ is bounded by the same arguments above: $\Phi(t) \to 1, (\Upsilon(t) - t) = t^{-1} + O(t^{-3})$ and $\phi(t) \to 0$. So that it remains to check that the second component is bounded: $\left[1 - x_{2}' - \mu \frac{\partial \lambda(t)}{\partial t} - \lambda(t)\right]$.

Take
$$\lambda(t) = \frac{\sum_{j} \omega_{ij}^{1} \omega_{ij}^{2}}{\sum_{j} [\omega_{ij}^{1}]^{2}} \cdot \frac{\phi(t)}{\{1 - \Phi(t)\}} = \frac{\sum_{j} \omega_{ij}^{1} \omega_{ij}^{2}}{\sum_{j} [\omega_{ij}^{1}]^{2}} \Upsilon(t).$$

Since $\Upsilon(t) = \frac{1}{1/t + 1/t^3 + (1/t)O(t^{-4})}$ as $t \to \infty$ and by assumption A7, $\lambda(t)$ is bounded. Taking $\frac{\partial \lambda(t)}{\partial t} = \frac{\sum_{j}^{\Sigma \omega_{ij}^1 \omega_{ij}^2}}{\sum_{j} [\omega_{ij}^1]^2} \cdot \frac{\partial \Upsilon(t)}{\partial t}$, by assumption A7 the first term is bounded, while using results above, the second term:

 $\frac{\partial}{\partial t} \left[\frac{\phi(t)}{1 - \Phi(t)} \right] = \frac{\{1 - \Phi(t)\}\phi(t)(-t) - \phi(t)(-\phi(t))}{[\{1 - \Phi(t)\}]^2} = \frac{\phi^2(t) - \phi(t)t(1 - \Phi(t))}{[\{1 - \Phi(t)\}]^2}$ $= \frac{\phi^2(t)}{\phi^2(t)\left[1/t + 1/t^3 + (1/t)0 \cdot (t^{-4})\right]^2} - \frac{[1/t + 1/t^2 + 0 \cdot (t^{-4})]}{[1/t + 1/t^3 + (1/t)0 \cdot (t^{-4})]^2}$

and thus $\frac{\partial}{\partial t} \Upsilon(t)$ is bounded and therefore $\frac{\partial \lambda(t)}{\partial t}$ is bounded and the expression $\frac{\partial h(t)}{\partial t}$ is also bounded.

Note also that the term $h(t) = \begin{bmatrix} y_1 - \Phi(t) \\ [y_2 - \beta_o - x'_2\beta_1 - \mu\lambda(t)] \end{bmatrix}$ is also bounded as $\Phi(t) \rightarrow 1$ and $\lambda(t)$ is bounded.

By assumption A5 the elements of z_N are bounded and thus for some constant C:

$$\sup_{\theta \in \Theta} \left| \frac{1}{N} \sum_{i} z_{i}^{\prime} \frac{\partial \widetilde{u}_{Ni}\left(\theta\right)}{\partial \theta^{\prime}} \right| \leq C \sup_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \left\| \frac{\partial \psi_{i}\left(\theta\right)}{\partial \theta} \right\|$$

Finally, checking $\frac{\partial \psi_i(\theta)}{\partial \theta}$ with previous results,

$$\frac{\partial \psi_{i}(\theta)}{\partial \theta} = \left[\sqrt{\sum_{j} \left[\omega_{ij}^{1}(\theta) \right]^{2}} \left(1 + x_{2i}^{'} \right) - (\alpha_{0} + x_{1i}^{'} \alpha_{1}) \frac{\partial \sqrt{\sum_{j} \left[\omega_{ij}^{1}(\theta) \right]^{2}}}{\partial \theta} \right] \cdot \left[\sum_{j} \left[\omega_{ij}^{1}(\theta) \right]^{2} \right].$$

Since x_{1i} is bounded by A5 and the terms in the sums are also bounded by A7, then $\sup_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \left\| \frac{\partial \psi_i(\theta)}{\partial \theta} \right\|$ is bounded by A6 and A1. *QED*

Proof of Proposition 2

The first order conditions based on the objective function $Q_N = g_{N'}(\theta) M_N g_N(\theta)$ are given by $\frac{\partial Q_N(\hat{\theta})}{\partial \theta} = 0$. Using the mean value theorem for θ^* between $\hat{\theta}$ and θ_0 we can write:

$$\left(\hat{\theta}_{GMM} - \theta_0\right) = \left[\frac{\partial^2 Q_N\left(\theta^*\right)}{\partial\theta\partial\theta'}\right]^{-1} \frac{\partial Q_N\left(\theta_0\right)}{\partial\theta} \tag{1}$$

The expression that corresponds to the second derivative of the objective function Q_N can be written as:

$$\frac{\partial^2 Q_N\left(\theta\right)}{\partial \theta \partial \theta'} = \frac{2}{N^2} \left[\sum_{i=1}^N \frac{\partial^2 \widetilde{u}_{Ni}\left(\theta\right)}{\partial \theta \partial \theta'} z_i' M_N z_j \widetilde{u}_{Nj}\left(\theta\right) + \sum_{i=1}^N \frac{\partial \widetilde{u}_{Ni}\left(\theta\right)}{\partial \theta} z_i' M_N z_j \frac{\partial \widetilde{u}_{Nj}\left(\theta\right)}{\partial \theta'} \right].$$

We start by analyzing the convergence properties of this second derivative of the objective function. The following lemma will be useful.

Lemma 1 (Pinkse and Slade (1998) Lemma A3)

For any $\tilde{\theta}$ consistent for θ_0 , i.e. $\tilde{\theta} \xrightarrow{p} \theta_0$:

(a)
$$\frac{\partial g_N\left(\tilde{\theta}\right)}{\partial \theta'} \xrightarrow{p} \frac{\partial g\left(\theta_0\right)}{\partial \theta'}$$

(b) $g_N\left(\tilde{\theta}\right) \xrightarrow{p} g_N\left(\theta_0\right)$

Proof:

(a) Need to show that for ω such that $\|\omega\| = 1$,

$$\omega' \left[\frac{\partial g_N\left(\tilde{\theta}\right)}{\partial \theta'} - \frac{\partial g_N\left(\theta_0\right)}{\partial \theta'} \right] \xrightarrow{p} 0$$

as $\lim_{N \longrightarrow \infty} \frac{\partial g_N(\theta_0)}{\partial \theta'} = \frac{\partial g(\theta_0)}{\partial \theta'}$ follows from $g_N(\theta_0) \xrightarrow{p} g(\theta_0)$ and A3.

Setting $\bar{z}_i = \omega' z_i$ and using the mean value theorem, the above expression can be written as

$$=\frac{1}{N}\sum_{i=1}^{N}\bar{z}_{i}\left[\frac{\partial\widetilde{u}_{Ni}\left(\widetilde{\theta}\right)}{\partial\theta'}-\frac{\partial\widetilde{u}_{Ni}\left(\theta_{0}\right)}{\partial\theta'}\right]=\left(\widetilde{\theta}-\theta_{0}\right)'\frac{1}{N}\sum_{i=1}^{N}\bar{z}_{i}\frac{\partial^{2}\widetilde{u}_{Ni}\left(\theta^{*}\right)}{\partial\theta\partial\theta'}$$

where θ^* is between $\tilde{\theta}$ and θ_0 .

Analyzing the last expression, $\frac{1}{N} \sum_{i=1}^{N} \bar{z}_i \frac{\partial^2 \tilde{u}_{Ni}(\theta^*)}{\partial \theta \partial \theta'}$ is bounded since by A5 \bar{z}_i is uniformly bounded (including $\lambda(\delta, \gamma)$, which was shown in the proof of proposition 1) and $\frac{\partial^2 \tilde{u}_{Ni}(\theta^*)}{\partial \theta \partial \theta'}$ is also bounded. Therefore, since $\tilde{\theta} \xrightarrow{p} \theta_0$, $(\tilde{\theta} - \theta_0) \xrightarrow{p} 0$ and thus $\omega' \left[\frac{\partial g_N(\tilde{\theta})}{\partial \theta'} - \frac{\partial g_N(\theta_0)}{\partial \theta'} \right] \xrightarrow{p} 0 \blacksquare$

(b) The proof is analogous to part (a).

Now returning to analyzing the second derivative of $Q_N(\theta)$, note that $\sum_{j=1}^N z_j \tilde{u}_{Nj}(\theta) = op(N)$ from (a) in the proof of proposition 1. Furthermore, by lemma 1 $g_N(\theta^*) \xrightarrow{p} g_N(\theta_0)$ and also $\frac{1}{N} \sum_{i=1}^N \frac{\partial^2 \tilde{u}_{Ni}(\theta^*)}{\partial \theta \partial \theta'} z'_i \omega$ is bounded in probability in probability $\forall \|\omega\| = 1$. Then, the first term inside the square brackets will vanish asymptotically.

Considering the remaining term of $\frac{\partial^2 Q_N(\theta)}{\partial \theta \partial \theta'}$, looking at $\frac{1}{N} \sum_{i=1}^N z_i \frac{\partial \widetilde{u}_{Ni}\left(\widetilde{\theta}\right)}{\partial \theta'}$, it will converge in probability to $\frac{\partial g\left(\theta_0\right)}{\partial \theta'}$ by lemma 1. Finally, since $M_N \xrightarrow{p} M$ by A8, $\frac{\partial^2 Q_N\left(\theta^*\right)}{\partial \theta \partial \theta'} \xrightarrow{p} \left[\frac{\partial g'\left(\theta_0\right)}{\partial \theta}\right] M \left[\frac{\partial g\left(\theta_0\right)}{\partial \theta'}\right] \equiv \Psi_2\left(\theta_0\right)$.

Now we turn to the term $\frac{\partial Q_N(\theta_0)}{\partial \theta}$ in equation (1), which is equal to $\frac{\partial Q_N(\theta_0)}{\partial \theta} = 2\frac{\partial g'_N(\theta_0)}{\partial \theta}M_Ng_N(\theta_0)$ and it follows from previous results that $\frac{\partial g'_N(\theta_0)}{\partial \theta} \xrightarrow{p} \frac{\partial g'(\theta_0)}{\partial \theta}$.

The remaining task is to show that $g_N(\theta_0) \to N(0, \Psi_1(\theta_0))$. To do this, we follow again closely Pinkse and Slade (1998)'s strategy and employ Berenstein (1927) blocking method using McLeish (1974) central limit theorem for dependent processes in Davison's (1994, chapter 24).

Start by defining $Y_{0N} = \omega' \{ E [Ng_N(\theta_0) g'_N(\theta_0)] \}^{-\frac{1}{2}} \sqrt{N} g_N(\theta_0) = \frac{1}{\sqrt{N}} \sum_{t=1}^N A_{Nt} \text{ for implication of the task is to show } V_{t-1} = \frac{d}{\sqrt{N}} \sum_{t=1}^N A_{Nt}$

itly defined A_{Nt} and $\forall \|\omega\| = 1$, and thus the task is to show $Y_{0N} \xrightarrow{d} N(0, 1)$. Following Davison (1994, chapter 24), split the region in which the observations are located into a_N areas of size $c_1\sqrt{b_N} \times c_2\sqrt{b_N}$ each, where a_N and b_N are integers such that $a_N b_N = N$.

Without loss of generality, set $c_1 = c_2 = 1$ and let a_N and b_N be such that $\alpha(b_N) a_N \to 0$ and $N^{l-(\frac{1}{2})}b_N < 1$ uniformly in N for some fixed $0 < l < \frac{1}{2}$.

Define the set of indices Λ_{Nj} that correspond to observations in area j. By assumption, a number c > 0 exists such that $\max_{j} |\Lambda_{Nj}| < Cb_N$, where $|\cdot|$ applied to sets denotes the

cardinality of that set. Define
$$D_{Nj} = \frac{1}{\sqrt{N}} \sum_{t \in \Lambda_{Nj}} A_{Nt}$$
 such that $Y_{0N} = \sum_{j=1}^{a_N} D_{Nj}$.

Following Davison's (1994) theorem 24.1, McLeish's (1974) CLT requires that the following conditions hold.

- (a) $T_{Na_N} = \prod_{j=1}^{a_N} (1 + i\lambda D_{Nj})$ is uniformly integrable in $N > N^*$ for some fixed N^* and $\lambda > 0$.
- (b) $E[T_{Na_N}] 1 \to 0$
- (c) $\sum_{j=1}^{a_N} D_{Nj}^2 1 \xrightarrow{p} 0$
- (d) $\max_{i} |D_{Nj}| \xrightarrow{p} 0$

Before establishing each of these conditions, we note that for sufficiently large N, A_{Nt} is bounded, since $\Psi_1(\theta_0)$ is positive definite (p.d.) and thus $E[Ng_N(\theta_0)g'_N(\theta_0)]$ is p.d. and its inverse is bounded. We establish each of the above conditions in turn.

(a) It needs to be shown that for some fixed N^* ,

$$\sup_{N > N^*} E |T_{Na_N} I\{|T_{Na_N}| > K\}| \to 0 \text{ as } K \to \infty$$

where I is an indicator function.

Following Pinkse and Slade (1998), we begin by showing that $P\left[\sup_{N>N^*} |T_{Na_N}| > K\right] = 0$ for some K > 0 which will imply the above condition.

Note that

$$P\left[\sup_{N>N^{*}}|T_{Na_{N}}|>K\right] = P\left[\sup_{N>N^{*}}\left|\prod_{j=1}^{a_{N}}\left(1+i\lambda D_{Nj}\right)\right|>K\right]$$

$$\leq P\left[\sup_{N>N^{*}j=1}\left(1+\lambda^{2}D_{Nj}^{2}\right)^{\frac{1}{2}}>K\right]$$

$$= P\left[\sup_{N>N^{*}j=1}\left(1+\lambda^{2}D_{Nj}^{2}\right)^{\frac{1}{2}}>K \mid \sup_{N>N_{j}^{*}}N^{l}\mid D_{Nj}\mid\leq C\right] \cdot P\left[\max_{j}N^{l}\mid D_{Nj}\mid\leq C\right] + P\left[\sup_{N>N^{*}j=1}\left(1+\lambda^{2}D_{Nj}^{2}\right)^{\frac{1}{2}}>K \mid \sup_{N>N_{j}^{*}}N^{l}\mid D_{Nj}\mid\geq C\right] \cdot P\left[\sup_{N>N_{j}^{*}}N^{l}\mid D_{Nj}\mid\geq C\right]$$

$$\leq P\left[\sup_{N>N^{*}j=1}\left(1+\lambda^{2}D_{Nj}^{2}\right)^{\frac{1}{2}}>K \mid \sup_{N>N_{j}^{*}}N^{l}\mid D_{Nj}\mid\geq C\right] + P\left[\sup_{N>N_{j}^{*}}N^{l}\mid D_{Nj}\mid\geq C\right]$$

with \tilde{C} a uniform upper bound to the $A_{Nt's}$. Nothing that the first summand is bounded by $\sup_{N>N^*} I\left\{\left(1+\lambda^2 C N^{-2l}\right)^{a_{n/2}} > K\right\}$ which is zero for sufficiently large K, and that the

second summand is bounded by $P\left[\sup_{N>N^*,l} N^{l-\left(\frac{1}{2}\right)} b_N |A_{Nt}| > C\right] = 0$ since $N^{l-\left(\frac{1}{2}\right)} b_N < 1$ by construction. Therefore, $P\left[\sup_{N>N^*} |T_{Na_N}| > K\right] = 0$ for some K > 0, which in turn implies $\sup_{N>N^*} E |T_{Na_N}I\{|T_{Na_N}| > K\}| \to 0$ as $K \to \infty$ and thus condition (a) holds.

(b) From Davison (1994) we can write $T_{Na_N} = (i\lambda) \sum_{j=1}^{a_N} D_{Nj} T_{N,j-1}$. Then, it is enough to show that the $\max_j |E[D_{Nj}T_{N,j-1}]| = o(a_N^{-1})$.

Writing $T_{N,j-1} = \prod_{k \in \Xi_{N,j1}} (1 + i\lambda D_{Nk}) \cdot \prod_{k \notin \Xi_{N,j1}} (1 + i\lambda D_{Nk}) = \prod_{k \in \Xi_{N,j1}} (1 + i\lambda D_{Nk}) T_{RNj}$ where T_{RNj} is implicitly defined and Ξ_{Nj1} is the set of blocks adjacent to block j.

Thus, $T_{N,j-1} = (i\lambda) \sum_{\gamma \in \Gamma_{Nj}} \left(\prod_{k \in \Xi_{Nj1}} D_{Nk}^{\gamma k} \right) T_{RNj}$ with Γ_{Nj} the set of vectors of size equal to $|\Xi_{Nj1}|$ whose elements are all either zero or one. Because the number of elements in Γ_{Nj} is finite, it is enough to show that $\max_{j,\gamma} \left| E \left[D_{Nj} T_{RNj} \prod_{k \in \Xi_{Nj1}} D_{Nk}^{\gamma k} \right] \right| = o(a_N^{-1})$. To show this, we show that $(i) \max_j |E[D_{Nj} T_{RNj}]| = o(a_N^{-1})$ and $(ii) \max_{j \neq k} |E[D_{Nj} D_{Nk} T_{RNj}]| = o(a_N^{-1})$.

For (i), note that the observations in T_{RNj} are located at least a distance $b_N^{\frac{1}{2}}$ away from those in D_{Nj} by construction. Therefore, $\max_j |E[D_{Nj}T_{RNj}]|$ is bounded by $C_1 \max_j E|D_{Nj}T_{RNj}| \alpha (\sqrt{b_N})$ for large $C_1 > 0$ given the conditions on the covariances and that $E[D_{Nj}] = 0$. Using the properties of the constructed a_N , b_N and the properties of α in A6:

$$C_{1}\max_{j} E |D_{Nj}T_{RNj}| \alpha \left(\sqrt{b_{N}}\right) = o\left(N^{-\frac{1}{2}}b_{N}\alpha \left(\sqrt{b_{N}}\right)\right) = o\left(a_{N}^{-\frac{1}{2}}b_{N}^{-\frac{1}{2}}\alpha \left(\sqrt{b_{N}}\right)\right) = o\left(a_{N}^{-1}\right)$$

for large N, as required.
For (*ii*), $\max_{j \neq k} |E[D_{Nj}D_{Nk}T_{RNj}]| \leq \max_{j \neq k} N^{-\frac{1}{2}}b_{N} |E[D_{Nj}T_{RNj}]|$ by the boundedness prop-
erty of the $A_{Nt's}$. The maximum is thus of order $O\left(N^{-\frac{1}{2}}b_{N}a_{N}^{-1}\right)$ which is $o\left(a_{N}^{-1}\right)$.
Repeating the argument for the remaining elements in Γ_{Nj} completes the proof.
Therefore, condition (b) $E[T_{Na_{N}}] \rightarrow 1$ is demonstrated.

(c) We start by showing that $\sum_{j=1}^{a_N} \left(D_{Nj}^2 - E\left[D_{Nj}^2 \right] \right) \xrightarrow{p} 0$

 $\begin{array}{l} \text{Take} \sum\limits_{i,j=1}^{a_N} E\left\{ \left(D_{Nj}^2 - E\left[D_{Nj}^2\right]\right) \left(D_{Nj}^2 - E\left[D_{Nj}^2\right]\right) \right\} \leq C_2 \sum\limits_{l=0}^{C_1 \sqrt{a_N}} \left(l+1\right) \alpha \left(\sqrt{b_N}l\right) \max\limits_i E\left[D_{Ni}^4\right] \\ \text{where } C_1, C_2 > 0 \text{ are sufficiently large constants, and the inequality is a result of the conditions on the covariances and locations in assumptions A6 and A9. The right hand side of the inequality is of order <math>0 \left(N^{-2}b_N^3 a_N\right)$ since it follows from the conditions in A6 and A9 that $\max\limits_i E\left[D_{Ni}^4\right]$ is bounded by

$$\begin{split} &\frac{1}{N^2} \max_{i} \sum_{t_1, t_2, t_3, t_4 \in \Lambda_{N_i}} |E\left[A_{Nt_1}A_{Nt_2}A_{Nt_3}A_{Nt_4}\right]| \leq \\ &C_1 \frac{1}{N^2} \max_{i} \sum_{t_1, t_2, t_3, t_4 \in \Lambda_{N_i}} \left\{\alpha\left(d_{t_1, t_2}\right) + \ldots + \alpha\left(d_{t_3, t_4}\right)\right\} \leq C_2 \frac{1}{N^2} b_N^2 \max_{i} \sum_{t_1, t_2 \in \Lambda_{N_i}} \alpha\left(d_{t_1, t_2}\right) \leq \\ &C_4 \frac{1}{N^2} b_N^2 \max_{i} \sum_{t_1 \in \Lambda_{N_i}} \sum_{l=0}^{C_3 b_N^{1/2}} l\alpha\left(l\right) \text{ for some } C_1, C_2, C_3, C_4 > 0, \text{ and since } \sum_{l=0}^{\infty} l\alpha\left(l\right) \text{ is bounded} \\ &\text{by A6, the last term is of order } O\left(N^{-2} b_N^3 a_N\right). \\ &\text{Finally, } C_2 \sum_{l=0}^{C_1 \sqrt{a_N}} (l+1) \alpha\left(\sqrt{b_N} l\right) \max_{i} E\left[D_{Ni}^4\right] = O\left(N^{-2} b_N^3 a_N\right) = o\left(1\right) \text{ as } n \to \infty \text{ by the} \\ &\text{properties of } a_N \text{ and } b_N. \text{ Thus we have shown that } \sum_{j=1}^{a_N} \left(D_{Nj}^2 - E\left[D_{Nj}^2\right]\right) \xrightarrow{p} 0 \text{ and condition} \\ &(c) \text{ can be written as: } \sum_{j=1}^{a_N} D_{Nj}^2 - 1 = \sum_{j=1}^{a_N} E\left[D_{Nj}^2\right] - 1 + op\left(1\right) \text{ which can be further rewritten} \\ &\text{as } \sum_{j=1}^{a_N} E\left[D_{Nj}^2\right] - 1 + op\left(1\right) = E\left[Y_{0N}^2\right] - 1 - \sum_{i\neq j} E\left[D_{Ni}D_{Nj}\right] + op\left(1\right). \\ &\text{ To check the order of convergence we need only to analyze the term } \sum_{i\neq j} E\left[D_{Ni}D_{Nj}\right]. \text{ For this it is enough to analyze } \max_{i} \sum_{i\neq j} |E\left[D_{Ni}D_{Nj}\right]| \text{ since each of the summations over } i \text{ and } j \text{ contain terms with } a_N \text{ or } a_{N-1}. \text{ Take } \Xi_{Nil} \text{ as previously defined, then, for some } C_1 > 0, \\ &\max_{i} \sum_{i\neq j} |E\left[D_{Ni}D_{Nj}\right]| \text{ can be bounded by} \end{aligned}$$

$$\max_{i} \sum_{l=1}^{C_{1}\sqrt{a_{N}}} \sum_{j \in \Xi_{Nil}} |E[D_{Ni}D_{Nj}]| \le \max_{i} \sum_{j \in \Xi_{Nil}} |E[D_{Ni}D_{Nj}]| + \max_{i} \sum_{l=2}^{C_{1}\sqrt{a_{N}}} \sum_{j \in \Xi_{Nil}} |E[D_{Ni}D_{Nj}]|$$
(2)

and we analyze each of the terms in the right-hand side .

For the first term, note that $\max_{i \neq j} |E[D_{Ni}D_{Nj}]| = \max_{i \neq j} \left| \frac{1}{N} \sum_{t \in \Lambda_{Ni}, s \in \Lambda_{Ni}} E[A_{Nt}A_{Ns}] \right|$

 $\leq \max_{i \neq j} C_1 \frac{1}{N} \sum_{t \in \Lambda_{Ni}, s \in \Lambda_{Ni}} \alpha(d_{ts}) \text{ for some large } C_1 > 0, \text{ by the boundedness of } A_{Nt's} \text{ and } A6.$ Consider adjacent blocks for which dependence will be typically stronger, then, by A9 and A6, the number of (t, s) combinations within distance d is bounded by $C_2 b_N^{1/2} d^2$ for some $C_2 > 0$. Letting $C_3 = C_2 C_1$ the expression is bounded by $C_3 \max \frac{1}{N} b_N^{1/2} \sum_{d=0}^{C_4 \sqrt{b_N}} d^2 \alpha(d)$ for some $C_4 > 0$ and since by A9 $d^2 \alpha(d) \to 0$ the expression is $o\left(\frac{1}{N}b_N\right)$ and thus $\max_{i \neq j} |E[D_{Ni}D_{Nj}]| = o\left(\frac{1}{N}b_N\right)$ or $o\left(a_N^{-1}\right)$ (since $n = a_N b_N$), and so is the first term in (2). For the second term, first note that by the boundedness of A_{Nt} and $E[A_{Nt}] = 0$: $\max_{j \in \Xi_{Nil}} b_{Ni} = 0$.

For the second term, first note that by the boundedness of A_{Nt} and $E[A_{Nt}] = 0$: $\max_{j \in \Xi_{Nil}} \max_{t \in \Lambda_{Ni}} \max_{s \in \Lambda_{Nj}} |E[A_{Nt}A_{Ns}]| = O\left(\alpha\left(\sqrt{b_N}\left(l-1\right)\right)\right)$ uniformly in l. Therefore, the second term is bounded by $C_2 \max_i \sum_{l=2}^{C_1\sqrt{a_N}} \frac{1}{N} |\Xi_{Nil}| |\Lambda_{Nj}| \alpha\left(\sqrt{b_N}\left(l-1\right)\right) \leq C_1\sqrt{a_N}$

 $C_{3\frac{1}{N}}b_{N}^{2}\sum_{l=1}^{C_{1}\sqrt{a_{N}}}l\alpha\left(\sqrt{b_{N}}l\right) = o\left(\frac{1}{N}b_{N}\sum_{l=1}^{C_{1}\sqrt{a_{N}}}l\alpha\left(l\right)\right) = o\left(a_{N}^{-1}\right).$ The second-to-last equality is due to $\frac{\alpha\left(ts\right)}{\left(x\right)} = o\left(t^{2}\right)$ as $t \to \infty$ and the last one due to the boundedness of the sum

is due to $\frac{\alpha(ts)}{\alpha(s)} = o(t^2)$ as $t \to \infty$ and the last one due to the boundedness of the sum $\sum_{l=1}^{C_1\sqrt{a_N}} l\alpha(l)$

$$\sum_{l=1} l\alpha (l$$

Finally, since $\max_{i} \sum_{i \neq j} |E[D_{Ni}D_{Nj}]|$ is $o(a_N^{-1})$ and thus $\sum_{i \neq j} E[D_{Ni}D_{Nj}]$ is o(1), condition (c) is demonstrated.

(d) Using the boundedness of A_{Nt} ,

$$\max_{j} |D_{Nj}| = \max_{j} \left| \frac{1}{\sqrt{N}} \sum_{t \in \Lambda_{Nj}} A_{Nt} \right| \leq \frac{1}{\sqrt{N}} |\Lambda_{Nj}| \max_{t} |A_{Nt}| = Op\left(\frac{1}{\sqrt{N}}b_{N}\right) = op(1) \text{ by the construction of } b_{N}.$$

Since conditions (a)-(d) are satisfied under the current assumptions, $Y_{0N} \xrightarrow{d} N(0,1) \iff g_N(\theta_0) \xrightarrow{d} N(0, \Psi_1(\theta_0))$ which concludes the proof of proposition 2. *QED*

Proof of Proposition 3

 $\Psi_{2N}\left(\hat{\theta}_{GMM}\right) \xrightarrow{p} \Psi_{2}\left(\theta_{0}\right) \text{ follows from the fact that } \frac{\partial g_{N}\left(\hat{\theta}_{GMM}\right)}{\partial \theta'} \xrightarrow{p} \frac{\partial g\left(\theta_{0}\right)}{\partial \theta'} \text{ by part (a)}$ of Lemma 1, by the consistency of $\theta_{GMM} \xrightarrow{p} \theta_{0}$; and by A8 which assumes $M_{N} \xrightarrow{p} M$

To show that $\Psi_{1N}\left(\hat{\theta}_{GMM}\right) \xrightarrow{p} \Psi_1\left(\theta_0\right)$ we can show that $\Psi_{1N}\left(\hat{\theta}_{GMM}\right) \xrightarrow{p} \Psi_{1N}\left(\theta_0\right)$ as we did in Lemma 1.

Note that

$$\Psi_{1N}(\theta_0) = \frac{1}{N} \sum_{ij} \tau_{Ni}(\theta_0) \tau_{Nj}(\theta_0) z_i z'_j \left\{ \Phi_2\left(\psi_i(\theta_0), \psi_j(\theta_0), \rho_{Nij}(\theta_0)\right) - \Phi_2\left(\psi_i(\theta_0), \psi_j(\theta_0), 0\right) \right\}$$
$$= \frac{1}{N} \sum_{ij} \tau_{Ni}(\theta_0) \tau_{Nj}(\theta_0) z_i z'_j \rho_{Nij}(\theta_0) \frac{\partial \Phi_2\left(\psi_i(\theta_0), \psi_j(\theta_0), \rho_{Nij}(\theta^*)\right)}{\partial \rho}$$
(3)

where $\tau(\cdot)$ is as defined in the proof of proposition 1, Φ_2 stands for the bivariate normal distribution, and the second equality follows from the mean value theorem for θ^* between $\hat{\theta}_{GMM}$ and θ_0 .

First consider the partial derivative term and show that it is bounded. Take the following bivariate normal distribution. b = a

$$\Phi_2(a,b,\rho) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2\Pi (1-\rho)^{1/2}} \exp\left\{-\frac{1}{2(1-\rho^2)} (t^2 - 2\rho ts + s^2)\right\} dt ds$$

and make the following change of variable from t to $u = (t - \rho s) (1 - \rho^2)^{-1/2}$. Integrating over u and differentiating with respect to ρ yields:

$$\frac{\partial \Phi(a,b,\rho)}{\partial \rho} = \frac{1}{\sqrt{2\Pi}} \int_{-\infty} \left\{ -s \left(1 - \rho^2\right)^{-1/2} + \left(a - \rho s\right) \rho \left(1 - \rho^2\right)^{-3/2} \right\} \text{ which, by the conditions on}$$

 ρ assumed in A12 - A14, is bounded.

Repeating the application of the mean value theorem with respect to θ in (3), using the boundedness of the above partial derivative and the fact that $\hat{\theta}_{GMM} \xrightarrow{p} \theta_0$ yields the result that $\Psi_{1N} \left(\hat{\theta}_{GMM} \right) \xrightarrow{p} \Psi_{1N} \left(\theta_0 \right)$ and thus $\Psi_{1N} \left(\hat{\theta}_{GMM} \right) \xrightarrow{p} \Psi_1 \left(\theta_0 \right)$. QED

References

- [1] Andrews, D.W.K. 1992. Generic Uniform Convergence. Econometric Theory, 8: 241-57.
- [2] Bernstein, S. 1927. Sur l'Extension du Theoreme du Calcul des Probabilites aux Sommes de Quantities Dependantes. *Mathematische Annalen.* 97, 1-59.
- [3] Davidson, J. 1994. Stochastic Limit Theory. Oxford University Press: Oxford.
- [4] McLeish, D.L. 1974. Dependent Central-Limit Theorems and Invariance Principals. Annals of Probability. 2, 620-628.
- [5] Pinkse, J. and M.E. Slade. 1998. Contracting in Space. An Application of Spatial Statistics to Discrete-Choice Models. *Journal of Econometrics*. 85: 125-54.