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Online Appendix

A Contacts with the Literature

This work is related to the literature on trend-cycle decompositions using UC models. It also

relates to the literature on common components estimation with dynamic factor models.

Introducing multidimensional variability into the UC model’s setup can be done in three ways.

One is to incorporate many variables belonging to one unit of interest to extract common trends

and/or cycles. Another possibility is to incorporate many units of interest that use the same

variable to extract common trends, cycles, or both. The third possibility considers a combination

of many units of interest and many variables to extract common trends, cycles, or both. In this

paper, I adopt the third possibility.

A.1 Many Variables and a Single Economic Unit

Crone and Clayton-Matthews (2005) employ the UC model discussed in Stock and Watson

(1988, 1989) to describe how to use mixed frequency data from the U.S. states to estimate state-

level monthly indexes of economic activity for each state. Observable variables for each state are

the first difference of the following: (the log of) nonagricultural employment, the unemployment

rate, (the log of) average hours worked in manufacturing, and (the log of) real wage and salary

disbursements. A scalar latent stationary series is common to the state-level observable variables

and is interpreted as the state’s cycle. The observable series load on the state’s cycle with leads

and/or lags. In this analysis, only the cross-sectional structure of the many variables is exploited,

not the variability along the state-level dimension.

Basistha and Startz (2008) and Fleischman and Roberts (2011) also use several variables, but at

the aggregate level, to estimate the U.S. NAIRU and the U.S. potential output and its associated

business cycle, respectively. The authors of both papers emphasize the advantages of using a

multivariate approach in the estimation of UC models, including better estimate precision and the

ability to coherently assess the trade-offs of competing signals.
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A.2 A Single Variable and Many Economic Units

Kouparitsas (2002, 2001) specifies a UC model to decompose U.S. regional per capita income

fluctuations into their trend and cycle components. Using data from the eight BEA regions, the

model assumes that real income in each region is the sum of region-specific trend and cyclical

components. The trend is assumed to follow a unit root with drift, whereas the cyclical component

is made up of a common cycle across regions as well as a regional cycle. Each region has a

different sensitivity with respect to the common cycle. The estimation of this UC model provides

an estimated U.S. business cycle that accords well with National Bureau of Economic Research

(NBER) recession periods and region-specific counterparts. Overall, the results suggest that a

large share of the regional business cycle variations is explained by the common component and

that spillovers from one region to another are not a significant source of variations. Even though

Kouparitsas assumes a common cycle, he does not assume the existence of a common trend. This

assumption makes his model less general than the model I propose, which also incorporates the

unemployment rate in addition to data on real GDP to inform the estimation of the cycle and

allows one to interpret the estimated cycle as a measure of the output gap in contrast with the

cycle obtained from real income data.

Del Negro and Otrok (2008) extend a factor model to incorporate time-varying factor loadings

and stochastic volatility to extract the international business cycle using a panel of 19 countries.

The model is estimated with Bayesian methods and allows one to obtain the common and country-

specific cycles for the GDP growth rates, but it does not consider the common GDP trends.

Mitra and Sinclair (2012) also use many units and one variable. They propose a multivariate UC

model to simultaneously decompose real GDP for each of the G-7 countries into its respective trend

and cycle components. The setup considers real GDP as the only observable variable and assumes

that each country’s GDP is driven by specific trend and cycle components. The setup allows for

possible correlations between any of the contemporaneous shocks to the unobserved (trend and

cycle) components.

Stock and Watson (2016) propose a multivariate dynamic factor model with time-varying co-

efficients and stochastic volatility estimated with Bayesian methods to calculate the U.S. trend

inflation. They use 17 components of the personal consumption expenditure price inflation to con-
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struct an index akin to core inflation. This work is the most similar to the present paper, although

Stock and Watson’s paper only considers one variable in the analysis—the inflation rate—while

this paper considers two—real GDP and the unemployment rate, which are linked in a structural

way assuming Okun’s law to provide more information for estimating the cyclical component of

aggregate output. Moreover, the framework of Stock and Watson is not suitable to analyze business

cycle fluctuations because the common and idiosyncratic shocks are all assumed to not have serial

correlation.

A.3 Many Variables and Many Economic Units

Gregory, Head and Raynauld (1997) use a dynamic factor model estimated with classical meth-

ods to decompose aggregate output, consumption, and investment for the G-7 countries into factors

that are (i) common across all countries and aggregates, (ii) common across aggregates within a

country, and (iii) specific to each individual aggregate. The authors have to detrend the data to use

the dynamic factor models approach because the underlying factors are assumed to be stationary.

Similarly, Kose, Otrok and Whiteman (2003) estimate a dynamic factor model, but with Bayesian

methods, to extract common components from macroeconomic aggregates (output, consumption,

and investment) in a 60-country sample covering seven regions of the world. They allow factors

common to the world, the regions, and the countries. Here, too, data are de-trended.

For the U.S., Owyang, Rapach and Wall (2009) use state-level income and payroll employment

data to estimate a dynamic factor model of the 48 contiguous states and the District of Columbia

in order to extract business cycle factors. The estimation of the model identifies three common

factors underlying the fluctuations in state-level income and employment growth, with the first

common factor resembling aggregate fluctuations in real activity at the national level. The factors

explain a large proportion of the total variability in state-level variables, although there is still a

substantial amount of cross-state heterogeneity.
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B State-space Model in Matrix Form

The model in equation (1)-equation (11) can be written in matrix form as the following:

zit = C(Θmi) + H(Θmi)xit +wit, wit|Ft−1 ∼ iid N(0,R(Θmi)) (B.1)

xit = F(Θsi)xi,t−1 +Gvit, vit|Ft−1 ∼ iid N(0,Q(Θsi)), (B.2)

where

zit =






∆yit

∆uit




 , xit =


























ct

ct−1

ct−2

ηyt

ηut

υit

υi,t−1

υi,t−2


























, wit =






ηyit

ηuit




 , vit =












εt

ηyt

ηut

ζit












,

C(Θmi) =






µi + δyi µ

0




 ,

H(Θmi) =






αi −αi 0 δyi 0 1 −1 0

αiθ1i αi(θ2i − θ1i) −αiθ2i 0 δui θ1i θ2i − θ1i −θ2i




 ,

R(Θvi)) =






σ2
ηyi

0

0 σ2
ηui




 ,
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F(Θsi) =


























φ1 φ2 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 ρi 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0


























,

G =


























1 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


























,

Q(Θvi) =












σ2
ε 0 0 0

0 σ2
ηy 0 0

0 0 σ2
ηu 0

0 0 0 σ2
ζi












,

and

Θmi = {µ, µi, αi, θ1i, θ2i, δ
y
i , δ

u
i , σ

2
ηyi
, σ2

ηui
}

Θsi = {φ1, φ2, ρi, σ
2
e , σ

2
ηy , σ

2
ηu , σ

2
ζi},

for i = 1, . . . , n.
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C Details on the Gibbs Sampler

Let zit, xit, Θmi, andΘsi for i = 1, 2, . . . , n, be defined as in Appendix B. Let ZT = {z̃1, z̃2, . . . , z̃T }

denote the observed data and let XT = {x̃1, x̃2, . . . , x̃T }. Here, z̃t = {z1t, z2t, . . . , znt} and

x̃t = {x1t,x2t, . . . ,xnt}. Denote Θm =
n⋃

i=1
Θmi and Θs =

n⋃

i=1
Θsi.

Partition Θsi = Θ
1
si

⋃
Θ

2
si

⋃
Θ

3
si, where

Θ
1
si = {φ1, φ2},

Θ
2
si = {ρi, σ

2
ζi},

Θ
3
si = {σ2

e , σ
2
ηy , σ

2
ηu}.

Notice that the identification conditions imply that Θ3
si is not random.

Also, partition Θmi = Θ
1
mi

⋃
Θ

2
mi, where

Θ
1
mi = {µi, αi, θ1i, θ2i, δ

y
i , δ

u
i },

Θ
2
mi = {σ2

ηyi
, σ2

ηui
},

where µ has been excluded because it is fixed under the identification conditions.

The Gibbs sampler procedure is as follows:

1. Start with initial values for the model’s parameters, Θ = Θm
⋃

Θs.

2. DrawXT from p(XT |ZT ,Θm,Θs) using the Durbin and Koopman (2002) simulation smoother.

3. Draw Θ
1
s from p(Θ1

s |ZT ,XT ,Θm,Θ
2
si,Θ

3
si) using the conditional distributions implied by the

independent normal-inverse-gamma prior.

4. For i = 1, 2, . . . , n, sample as follows:

(a) Draw Θ
2
si from p(Θ2

si|ZT ,XT ,Θm,Θ
1
s ,Θ

2
si) using the conditional distributions implied

by the independent normal-inverse-gamma prior.

(b) Draw Θ
1
mi from p(Θ1

mi|ZT ,XT ,Θ
2
mi,Θ

3
mi,Θm(/i),Θs) using the conditional distributions

implied by the independent normal-inverse-gamma prior. Repeat similarly for Θ2
mi and

sample from
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• p(Θ2
mi|ZT ,XT ,Θ

1
mi,Θ

3
mi,Θm(/i),Θs).

5. Return to step 2.

D States Most Strongly Affected by the Great Recession and

Growth Rates by States after the Great Recession

The states that were most strongly affected by the Great Recession in terms of real GDP

growth rates in the 2007–09 period appear in figure M.1. Arizona, Florida, Michigan, and Nevada

experienced the lowest average annualized growth rates of real GDP, with rates lower than negative

3 percent. By contrast, states such as Alaska, South Dakota, and North Dakota experienced average

growth rates greater than 3 percent in that period (not shown). All told, 26 of the 50 states plus

the District of Columbia experienced negative average growth rates. Figure M.2 shows the average

output growth rates that the states experienced during and after the recovery between 2010 and

2016. North Dakota and Texas have grown the fastest, with average rates above 3 percent, while

Wyoming and Alaska have grown the slowest, with average rates close to negative 1 percent.

[Figure 1 about here.]

Several different factors can help to rationalize the heterogeneity in the growth rates of the U.S.

states during and after recessions. Industry composition, demographics, credit demand and supply,

and state fiscal policies, among others have been mentioned in the literature (see Owyang, Piger

and Wall, 2005; Carlino and Defina, 1998; Mian and Sufi, 2009, 2010; Owyang and Zubairy, 2013,

for example). I exploit the heterogeneity in the data at the state level to obtain a common estimate

of the cycle—the aggregate output gap—while at the same time I relate the aforementioned factors

to characterize the output gaps at the state level in the forthcoming sections.

E Prior Distributions

The prior distributions of the parameters of the UC model with state-level data appear in table

M.1. The equations for each parameter are in the last column.

[Table 1 about here.]
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The prior means of the parameters of the common cycle, φ1 and φ2, are similar to those

found in the literature on trend-cycle decompositions of output. For example, Morley, Nelson

and Zivot (2003) find that the estimation of a UC model with aggregate data on real GDP in

absence of correlation between trend and cycle innovations yields estimated coefficients φ̂1 = 1.53

and φ̂2 = −0.61. Similarly, Gonzalez-Astudillo and Roberts (2016) also use aggregate data but

include the unemployment rate along with real GDP and find estimates around 1.6 for φ1 and -0.65

for φ2 both with or without correlation between output innovations. In the present paper, the

joint prior distribution of these two parameters is truncated to satisfy the weak stationarity feature

of the common cycle. The mean growth rate of each state’s GDP has a truncated normal prior

distribution with mean 0.8, which yields an annualized growth rate of real GDP around 3 percent,

roughly the historical average. The distributions of the parameters that load on the common cycle,

αi, are normal with means and standard deviations equal to one.1 The coefficients that load on

the common trends, δyi , and δui , have truncated normal distributions with means and standard

deviations equal to one. The Okun’s law coefficients, θ1i and θ2i, are normally distributed with

prior means equal to -0.25 each, such that the long-run Okun’s law coefficient for each state is

centered at -0.5 under the prior distribution. This is the usual Okun’s law coefficient used in the

literature (see Abel, Bernanke and Croushore, 2013). The prior distribution of the parameter of

the idiosyncratic cycle, ρi, is a truncated standard normal. Finally, given the lack of previous

estimates of these coefficients in the literature, I assume that σ2
ηyi
, σ2

ηui
, and σ2

ζi
are distributed as

inverse-gamma centered at one with undefined variance. In general, the standard deviations of the

parameters imply that the distributions are neither too tight nor too narrow.2

F Parameter Results and Convergence Diagnostics

This appendix lays out the results from the Bayesian estimation showing the estimates of the

posterior mean and standard deviation of the parameters of the model, as well as the first and

fiftieth order autocorrelation coefficient, the relative numerical efficiency (RNE) using a 4 percent

taper, and the p-value of the Geweke (1991) convergence diagnostics using a 4 percent tapper as

1In the case of California, the prior distribution of αi is a truncated normal with mean and standard deviation

equal to one.
2I also explored assuming flat priors for σ

2
η
y
i
, σ2

ηu
i
, and σ

2
ζi
. The results do not change materially.
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well in which the null hypothesis considers equality of the means of the first 20 percent of draws

with that of the last 50 percent. Given the large number of parameters, the results appear in

tables M.2-M.11. In the tables, the parameters µi, αi, δ
y
i , δ

u
i , θ1i, θ2i, ρi, σ

2
ζi
, σ2

ηyi
, and σ2

ηui
are

numbered from i = 1, . . . , 51 according to the states and the District of Columbia in the following

order: Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, District

of Columbia, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana,

Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska,

Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota,

Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee,

Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin, and Wyoming. φ1 and φ2

are the parameters of the AR(2) specification of the common component of the cycle.

The draws from the posterior distribution used to produce the results of the model are based on

300,000 draws after burning in the first 100,000 and thinning every 100th draw, which left me with

2,000 draws from the posterior distribution. The results of the diagnostics tests show that these

2,000 draws do not evidence significant autocorrelation of first order and almost no autocorrelation

of order fifty. Apart from 3 out of 513 parameters, the p-values of the test of equality of means

between the fist 20 percent of the draws and the last 50 percent are all above 1 percent, which

indicate that the null hypothesis is not rejected for any of the parameters and the sampler has

converged.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]
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[Table 9 about here.]

[Table 10 about here.]

[Table 11 about here.]

G Obtaining the Aggregate Trend and Cycle

The objective of the estimation is to obtain the trend-cycle decomposition of aggregate GDP by

exploiting the cross-sectional variability of state-level data. Because of the nonlinearity implicit in

the aggregation of the variables and the fact that state-level GDP appears in logs in the specification

equation (1)-equation (11), an approximation is needed. The quarterly growth rate of aggregate

real GDP is given by the following:

∆%Yt =

n∑

i=1

wit∆%Yit

≈
n∑

i=1

wit∆yit

=

n∑

i=1

wit (∆τyit +∆cit)

=

n∑

i=1

wit (δ
y
i (µ + ηyt ) + µi + ηyit + αi∆ct +∆υit)

≈ δ̄y(µ+ ηyt ) + µ̄+ η̄yt
︸ ︷︷ ︸

∆ GDP Trend

+ ᾱ∆ct + ῡyt
︸ ︷︷ ︸

∆ GDP Cycle

,

where Yit is real GDP of state i, Yt is aggregate real GDP in period t, and the contribution of of

state’s i GDP to aggregate GDP is denoted by wit.

Hence, I can express the trend and cycle components of the aggregate GDP as

GDP Trend ≈ δ̄yτyt + ξ̄yt ,

GDP Cycle ≈ ᾱct + ῡyt ,
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where

µ̄t =

n∑

i=1

wiµi,

δ̄y =
n∑

i=1

wiδ
y
i ,

η̄yt =
n∑

i=1

wiη
y
it,

ξ̄yt =

n∑

i=1

wiξ
y
it,

ᾱ =

n∑

i=1

wiαi,

ῡyt =
n∑

i=1

wiυit,

where wi =
∑T

t=1 wit/T is the sample average of each state’s contributions to aggregate GDP. I

use the smoothed estimates ct|T and υit|T to obtain the estimate of the cycle and, by residual, the

trend.

H Variance Decomposition of States’ Cycles and Trends

In this section, I describe how each state’s output cycle and trend variability are explained by

the variability in the common cycle and trend during the period of analysis. To that end, I perform

variance decompositions of the state’s cycle and trend of output. Recall that the specification

for the cycle of each state i = 1, 2, . . . , n is cit = αict + υit. Hence, one can obtain the fraction

of the variance of the cycle that is due to the common cycle and the fraction that corresponds

to the idiosyncratic component. Similarly, because the output trend of each state is given by

τyit = δyi τ
y
t + ξyit, one can obtain the proportion of the variability of the output trend of each state

that is due to the common trend and that due to the idiosyncratic component. Figures M.3 and M.4

show the percent of the variance decomposition of the state’s cycles and output trends, respectively.

[Figure 2 about here.]
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Economic policies designed at the federal level can have different effects on the state economies,

depending, among several factors, on industry composition, size of firms, the ability of banks to

alter their balance sheets, demographics, and government spending composition as described by

Carlino and DeFina (1999) and Owyang and Zubairy (2013). In that regard, the propagation of

federal economic policies at the state level can be different depending, for instance, on how strongly

a particular state’s cycle or trend is linked to its common counterpart, which I assumed is the target

of economic policies at the federal level. On the one hand, Nevada, California, Georgia, Arizona,

and Florida are among the states with cycle variability that is explained the most by the variance

of the common cycle, whereas West Virginia, Wyoming, Louisiana, and North Dakota have the

smallest variation of their cycle attributed to the common cycle. On the other hand, the states

whose trends are most strongly connected with the common trend are Kentucky, Alabama, and

Indiana, whereas those with lowest associations are New York, Delaware, and Alaska.

I Variance Decomposition of States’ GDP Growth

The model also allows one to establish a measure of how cyclical the state economies are. In

this section, I decompose the variance of real GDP growth at the state level in the proportion that

is explained by variations of the cycle and the proportion that is explained by variations of the

output trend during the period of analysis. This indicator is useful to characterize the sources of

variations in GDP growth for policymaking decisions both at the state and the federal level, for

example. Figure M.5 illustrates the proportions for each state.

[Figure 3 about here.]

California, Utah, Florida, Arizona, Georgia, and Oregon have the highest proportion of their

real GDP growth’s variance explained by the variance of their respective output cycles. In contrast,

states such as North Dakota, Wyoming, Vermont, and West Virginia have the lowest proportions.

One can also characterize the features that make a state “more cyclical” than others. Table M.13

shows that, on average, and at the 10 percent level of significance, states with higher participation of

the sectors related with wholesale trade, retail trade, and transportation are more cyclical, likewise

states that have a higher share of population between the ages of 18 and 44. In addition, states with
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higher leverage tend to experience fluctuations in output that are explained more by fluctuations

in their cyclical component than in their trend output.

J Okun’s Law Coefficients at the State Level

As a final point, the results shed light on the cyclical features of the state-level labor markets,

in particular the sensitivity of the unemployment gap to the output gap in each state. Policies

designed to affect the cyclical position of the economy at the federal level can propagate differently

across states’ labor markets via two channels. First, these policies can affect the state output gaps

differently. Second, the state labor markets can have unique reactions to their respective output

gaps. I describe the first channel in online Appendix H. I measure the second channel by the

sum of the Okun’s law coefficients, θ1i + θ1i. The higher the absolute value of this sum, the more

responsive the unemployment rate is to the cyclical fluctuations of output at the state level. Figure

M.6 presents the results grouped by values of the posterior mean estimates.

[Figure 4 about here.]

According to the estimates of the model, the states with more-cyclical labor markets are

Louisiana, Rhode Island, and Mississippi whereas the states with less-cyclical labor markets are

Nebraska, Kansas, and Alaska. Guisinger et al. (2018) find that Lousiana has the highest com-

parable Okun’s law coefficient, just as in this paper. Rhode Island also appears in the top three

states classified by their Okun’s law coefficients. On the other extreme, Guisinger et al. find South

Dakota and North Dakota, among other states, with very low coefficients, similar to the findings

in this paper.

The average of the posterior mean of the sum of the Okun’s law coefficients across states is

about -0.3, which is smaller in absolute value than the usual coefficient of -0.5. Likewise, Owyang

and Sekhposyan (2012) and Grant (2018) report a statistically significant decline in the reaction of

the unemployment gap to the output gap during the Great Recession. Similarly, Ball, Leigh and

Loungani (2017) also find that the Okun’s law coefficient has declined recently, but the difference

with respect to the past does not appear to be statistically significant.
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Table M.14 shows that those states with higher participation of the construction industry tend to

be characterized by more-cyclical labor markets in this period, whereas those states that have higher

contributions from agriculture and mining tend to have less-cyclical labor markets, as is expected

from these sectors. Guisinger et al. (2018) emphasize that institutional differences can help explain

the variation in the size of Okun’s law coefficients across states. One of those institutional factors is

the percentage of the workforce who are union members. I add said variable to the set of regressors

previously used, but the results show that this variable is not statistically significant at conventional

levels.

As a final exercise with respect to labor market cyclicality, the model allows one to estimate

the effect of an increase in the aggregate output gap on each state’s unemployment rate. This

exercise is particularly useful to understand how the unemployment rate reacts at the state level

with respect to policies designed at the aggregate level. Figure M.7 shows the response of the state-

level unemployment rate to such a shock over 20 quarters for the three most sensitive and the three

least sensitive states.3 On the one hand, a 0.8 percentage point increase in the aggregate output gap

causes the unemployment rates of Nevada, Arizona, and California to decline by about 1, 0.8, and

0.75 percentage point, respectively, within 3 quarters of the shock. On the other hand, the responses

of Wyoming, North Dakota, and West Virginia imply a muted effect on the unemployment rates

of those states.

K Variance Decomposition of Aggregate GDP Growth

As described in Section 2, the common trend and cycle components imply co-movement among

the state economies that, in turn, influence the variability of the aggregate GDP. One can compute

the variance decomposition of aggregate GDP growth, which provides an indicator of how cyclical

is the U.S. economy, as follows:4

var(∆% Aggregate GDP) = var(∆ Aggregate GDP trend) + var(∆ Output Gap).

3The state-level unemployment rate trend and the idiosyncratic component of the state’s cycle remain constant

in this exercise.
4The full derivation appears in online Appendix L.
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Therefore, the percent of the variance of GDP growth that is due to the variance of the change in

the aggregate cycle is given by the following expression:

var(∆ Output Gap)

var(∆ Aggregate GDP trend) + var(∆ Output Gap)
= 62%.

The contribution of the variability of the cycle to the variability of GDP growth of 62 percent

is close to estimates obtained with longer samples. For example, Gonzalez-Astudillo and Roberts

(2016) find that the contribution is around 60 percent or 65 percent, depending on the assumption

about the correlation between trend and cycle components.

L Derivation of the Variance Decomposition of Aggregate GDP

Given that (the log of) aggregate GDP can be specified as the sum of its aggregate trend and

cycle, one can write the following:

var(∆%Yt) = var(∆ Aggregate GDP trend) + var(∆ Output Gap)

≈ var(δ̄y∆τt +∆ξ̄yt ) + var(ᾱ∆ct +∆ῡyt )

= δ̄y
2
var(ηyt + η̄yt) + ᾱ2 var(∆ct +∆ῡyt )

≈ δ̄y
2

(

1 +

n∑

i=1

w2
i σ

2
ηyi

)

+ ᾱ2

(

2(γ0 − γ1) +

n∑

i=1

w2
i σ

2
∆υit

)

,

where

γ0 =

1−φ2

1+φ2

(1− φ2
2)− φ2

1

,

γ1 =
φ1

1− φ2
γ0.

M Prior and Posterior Distribution Results from the Aggregate

UC Model

The prior distribution choices and the posterior mean and standard deviation results appear in

table M.12.
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[Table 12 about here.]

The mean annual growth rate of potential GDP (4µ) is estimated to be close to 1.6 percent, 1

percentage point lower than the estimate with state-level data obtained from weight averaging the

estimated state-level mean growth rates (4
∑51

i=1 wiµi). With respect to the Okun’s law coefficients,

the long-run sensitivity of the unemployment gap to the output gap is about -0.59, more than twice

the simple average obtained from the state-level data. Owyang, Vermann and Sekhposyan (2013)

also investigate the Okun’s law coefficients across states, although they use the growth rates version

of the law, and find that there can be discrepancies between the estimates with state-level data and

the estimate obtained from aggregate data.
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Table M.1: Prior Distributions of the Parameters using State-Level Data

Parameter Distribution Mean Standard Deviation Equation
φ1 Truncated Normal 1.5 1 ct = φ1ct−1 + φ2ct−2 + εt

φ2 Truncated Normal -0.6 1 ct = φ1ct−1 + φ2ct−2 + εt

µi Truncated Normal 0.8 0.8 ξ
y
it

= µi + ξ
y
i,t−1 + η

y
it

αi Normal 1 1 cit = αict + υit

δyi Truncated Normal 1 1 τ
y
it

= δ
y
i
τ
y
t + ξ

y
it

δui Truncated Normal 1 1 τu
it = δui τu

t + ξuit

θ1i Normal -0.25 0.25 uit = τu
it + θ1icit + θ2ici,t−1

θ2i Normal -0.25 0.25 uit = τu
it + θ1icit + θ2ici,t−1

ρi Truncated Normal 0 1 υit = ρiυi,t−1 + ζit

σ2
ηyi

Inverse Gamma 1 Inf ξ
y
it

= µi + ξ
y
i,t−1 + η

y
it

, var(η
y
it

) = σ2
η
y
i

σ2
ηui

Inverse Gamma 1 Inf ξuit = ξui,t−1 + ηu
it, var(ηu

it) = σ2
ηu
i

σ2
ζi

Inverse Gamma 1 Inf υit = ρiυi,t−1 + ζit, var(ζit) = σ2
ζi
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Table M.2: Posterior Distribution Estimates and Convergence Diagnostics

Parameter Mean Sd. auto1 auto50 RNE p-value
φ1 1.518 0.159 0.026 0.014 0.840 0.923
φ2 -0.555 0.157 0.025 0.014 0.813 0.783
cT 0.920 10.458 0.005 0.004 0.868 0.587
µ1 0.553 0.135 0.182 0.006 0.401 0.946
µ2 0.524 0.272 0.165 -0.025 0.309 0.548
µ3 0.676 0.148 0.101 0.015 0.597 0.973
µ4 0.676 0.190 0.075 0.011 0.680 0.567
µ5 0.744 0.123 0.049 -0.015 0.542 0.830
µ6 0.757 0.119 0.077 0.022 0.833 0.787
µ7 0.271 0.157 0.010 -0.023 0.898 0.235
µ8 0.472 0.275 -0.010 -0.012 1.043 0.844
µ9 0.564 0.116 0.019 -0.003 0.718 0.058
µ10 0.570 0.133 0.153 0.018 0.497 0.101
µ11 0.570 0.121 0.130 -0.009 0.353 0.744
µ12 0.606 0.115 0.159 -0.000 0.470 0.688
µ13 0.749 0.149 0.048 0.034 0.777 0.245
µ14 0.485 0.114 0.122 -0.013 0.612 0.615
µ15 0.827 0.193 0.253 0.019 0.202 0.425
µ16 0.699 0.181 0.082 0.014 0.495 0.867
µ17 0.843 0.223 0.049 -0.018 0.911 0.057
µ18 0.749 0.176 0.196 0.004 0.303 0.370
µ19 0.235 0.148 0.025 -0.016 1.441 0.187
µ20 0.464 0.139 0.164 -0.015 0.343 0.935
µ21 0.639 0.114 0.163 0.034 0.331 0.886
µ22 0.799 0.124 0.124 -0.012 0.502 0.528
µ23 0.521 0.197 0.188 -0.006 0.320 0.444
µ24 0.634 0.153 0.173 -0.005 0.228 0.532
µ25 0.564 0.185 0.112 -0.013 0.457 0.616
µ26 0.453 0.132 0.054 -0.014 0.886 0.342
µ27 0.549 0.130 0.031 -0.003 0.813 0.431
µ28 0.762 0.162 0.124 0.001 0.340 0.206
µ29 0.541 0.166 0.106 -0.005 0.808 0.078
µ30 0.584 0.145 0.018 0.025 0.661 0.660
µ31 0.524 0.133 0.132 0.014 0.507 0.780
µ32 0.372 0.179 0.152 -0.011 0.259 0.293
µ33 0.507 0.188 -0.001 -0.027 0.837 0.123
µ34 0.675 0.160 0.071 0.020 0.406 0.309
µ35 1.309 0.307 0.008 0.026 0.881 0.283
µ36 0.542 0.151 0.184 0.023 0.279 0.746
µ37 0.839 0.276 0.057 -0.023 0.338 0.778
µ38 0.820 0.152 0.029 -0.010 0.958 0.702
µ39 0.741 0.137 0.208 0.033 0.226 0.838
µ40 0.383 0.161 0.071 0.022 0.683 0.072
µ41 0.720 0.124 0.128 0.011 0.358 0.743
µ42 0.689 0.237 0.016 -0.014 0.756 0.631
µ43 0.682 0.129 0.155 0.017 0.546 0.231
µ44 0.853 0.136 0.088 0.017 0.449 0.505
µ45 0.877 0.126 0.045 0.018 1.111 0.072
µ46 0.594 0.151 0.100 -0.013 0.575 0.691
µ47 0.527 0.104 0.117 0.055 0.545 0.326
µ48 1.053 0.140 0.084 0.003 0.482 0.752
µ49 0.521 0.159 0.110 -0.010 0.874 0.850
µ50 0.553 0.118 0.145 0.004 0.375 0.968
µ51 0.614 0.306 0.114 -0.001 0.256 0.765

Note: Statistics are based on 2,000 draws from the Gibbs sampler. Mean: average across draws; Sd.: standard
deviation across draws; auto1: first order autocorrelation across draws; auto50: fiftieth order autocorrelation across
draws; RNE: relative numerical efficiency using a 4 percent taper; p-value: p-value of the null hypothesis that the
mean of the first 20 percent of draws is equal to the mean of the last 50 percent of draws using a 4 percent taper
for the standard error.
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Table M.3: Posterior Distribution Estimates and Convergence Diagnostics

Parameter Mean Sd. auto1 auto50 RNE p-value
α1 0.712 0.252 0.231 -0.009 0.195 0.476
α2 -0.420 0.570 0.085 -0.018 0.407 0.811
α3 1.728 0.303 0.035 0.016 1.015 0.950
α4 0.766 0.338 0.161 0.012 0.231 0.637
α5 1.601 0.313 0.103 -0.013 0.277 0.811
α6 1.036 0.254 0.045 0.035 0.540 0.424
α7 1.005 0.318 0.027 0.012 0.783 0.784
α8 1.073 0.432 -0.012 0.028 0.795 0.904
α9 0.235 0.210 0.107 -0.027 0.393 0.212
α10 1.642 0.285 0.038 0.012 0.517 0.703
α11 1.316 0.235 0.021 0.009 0.792 0.894
α12 0.813 0.200 0.079 -0.027 0.477 0.379
α13 1.160 0.276 0.020 0.002 0.964 0.025
α14 0.891 0.215 0.075 0.002 0.635 0.389
α15 1.162 0.349 0.243 -0.016 0.180 0.865
α16 0.855 0.336 0.089 -0.005 0.398 0.221
α17 0.957 0.405 0.063 0.008 0.471 0.735
α18 0.797 0.327 0.314 -0.026 0.143 0.903
α19 0.060 0.326 0.028 -0.002 0.571 0.851
α20 0.517 0.262 0.224 -0.030 0.228 0.829
α21 0.503 0.207 0.104 -0.007 0.257 0.677
α22 0.666 0.212 0.137 0.025 0.364 0.987
α23 1.074 0.456 0.152 -0.023 0.238 0.900
α24 0.814 0.295 0.107 -0.010 0.344 0.954
α25 0.547 0.304 0.113 -0.028 0.251 0.695
α26 0.219 0.247 0.214 -0.026 0.166 0.969
α27 0.722 0.247 -0.004 0.009 0.894 0.443
α28 0.478 0.298 0.063 -0.013 0.442 0.718
α29 1.836 0.331 0.044 0.011 0.756 0.655
α30 0.674 0.271 0.099 -0.033 0.393 0.350
α31 0.834 0.231 0.118 0.004 0.362 0.641
α32 0.314 0.298 0.024 0.044 0.790 0.700
α33 0.631 0.332 -0.020 -0.039 1.496 0.711
α34 1.090 0.295 0.020 -0.021 0.556 0.084
α35 -0.083 0.469 0.084 -0.011 0.318 0.830
α36 0.917 0.277 0.129 0.019 0.327 0.055
α37 0.474 0.483 0.006 0.025 1.071 0.848
α38 1.307 0.292 0.010 0.022 0.854 0.742
α39 0.667 0.244 0.191 -0.014 0.211 0.790
α40 0.570 0.292 0.046 -0.039 0.682 0.865
α41 1.246 0.238 0.056 -0.028 0.807 0.822
α42 0.318 0.438 0.064 0.004 0.541 0.173
α43 0.958 0.234 0.026 0.014 0.694 0.213
α44 0.737 0.300 0.057 0.006 0.409 0.516
α45 1.301 0.311 0.058 0.073 0.502 0.960
α46 0.156 0.312 0.313 -0.001 0.128 0.637
α47 0.454 0.191 0.113 0.005 0.266 0.124
α48 1.185 0.263 -0.010 0.012 1.784 0.823
α49 -0.022 0.295 0.203 0.011 0.221 0.870
α50 0.813 0.219 0.094 -0.054 0.399 0.304
α51 0.056 0.501 0.056 0.025 1.122 0.344

Note: Statistics are based on 2,000 draws from the Gibbs sampler. Mean: average across draws; Sd.: standard
deviation across draws; auto1: first order autocorrelation across draws; auto50: fiftieth order autocorrelation across
draws; RNE: relative numerical efficiency using a 4 percent taper; p-value: p-value of the null hypothesis that the
mean of the first 20 percent of draws is equal to the mean of the last 50 percent of draws using a 4 percent taper
for the standard error.
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Table M.4: Posterior Distribution Estimates and Convergence Diagnostics

Parameter Mean Sd. auto1 auto50 RNE p-value
δy1 1.391 0.242 0.252 -0.053 0.190 0.868
δy2 0.563 0.558 0.527 -0.031 0.078 0.854
δy3 1.254 0.279 0.050 0.012 0.520 0.604
δy4 1.637 0.347 0.012 0.030 0.574 0.960
δy5 0.637 0.264 0.030 -0.017 1.312 0.533
δy6 0.792 0.240 0.046 0.006 0.773 0.990
δy7 0.841 0.330 0.015 -0.032 0.906 0.632
δy8 0.647 0.434 -0.004 0.034 0.951 0.013
δy9 0.529 0.238 0.052 -0.015 0.454 0.845
δy10 1.134 0.249 0.095 0.040 0.501 0.405
δy11 0.944 0.242 0.161 -0.031 0.238 0.881
δy12 1.056 0.210 0.147 -0.057 0.289 0.530
δy13 1.081 0.282 -0.009 -0.002 1.377 0.994
δy14 1.038 0.214 0.100 -0.030 0.453 0.871
δy15 1.992 0.366 0.363 -0.013 0.113 0.730
δy16 1.367 0.341 0.144 -0.042 0.284 0.539
δy17 1.600 0.418 0.022 0.017 0.847 0.064
δy18 1.932 0.306 0.256 -0.044 0.167 0.265
δy19 1.163 0.329 -0.024 -0.013 0.819 0.332
δy20 1.294 0.257 0.217 -0.034 0.169 0.804
δy21 0.911 0.234 0.217 -0.045 0.188 0.949
δy22 1.098 0.233 0.158 -0.049 0.334 0.491
δy23 1.570 0.420 0.233 -0.016 0.171 0.822
δy24 1.228 0.310 0.314 -0.015 0.125 0.478
δy25 1.516 0.349 0.162 0.008 0.240 0.418
δy26 1.103 0.247 0.018 -0.034 1.078 0.178
δy27 0.513 0.254 -0.007 0.012 0.883 0.408
δy28 1.021 0.357 0.237 -0.058 0.164 0.215
δy29 1.476 0.299 0.024 -0.008 1.421 0.224
δy30 0.868 0.303 0.049 -0.029 0.650 0.533
δy31 1.294 0.240 0.186 -0.016 0.227 0.546
δy32 0.667 0.427 0.403 -0.025 0.101 0.596
δy33 0.251 0.210 -0.019 -0.017 0.988 0.260
δy34 1.039 0.313 0.116 -0.017 0.292 0.632
δy35 0.911 0.496 -0.017 -0.018 0.845 0.687
δy36 1.247 0.302 0.303 -0.015 0.133 0.362
δy37 0.873 0.541 0.290 -0.003 0.140 0.790
δy38 0.814 0.296 0.060 -0.019 0.745 0.242
δy39 1.304 0.265 0.298 -0.029 0.145 0.746
δy40 1.066 0.307 0.055 0.026 0.538 0.445
δy41 1.214 0.236 0.181 -0.014 0.263 0.931
δy42 0.693 0.405 0.000 0.005 0.618 0.505
δy43 1.062 0.240 0.166 0.012 0.290 0.935
δy44 0.396 0.281 0.303 -0.018 0.124 0.627
δy45 0.567 0.249 0.053 0.003 0.768 0.055
δy46 1.415 0.285 0.108 -0.032 0.311 0.591
δy47 0.925 0.202 0.155 0.004 0.305 0.482
δy48 1.132 0.262 0.061 0.019 0.465 0.564
δy49 1.234 0.324 0.112 -0.025 0.361 0.889
δy50 1.072 0.227 0.140 0.016 0.272 0.804
δy51 0.774 0.703 0.543 -0.014 0.073 0.914

Note: Statistics are based on 2,000 draws from the Gibbs sampler. Mean: average across draws; Sd.: standard
deviation across draws; auto1: first order autocorrelation across draws; auto50: fiftieth order autocorrelation across
draws; RNE: relative numerical efficiency using a 4 percent taper; p-value: p-value of the null hypothesis that the
mean of the first 20 percent of draws is equal to the mean of the last 50 percent of draws using a 4 percent taper
for the standard error.
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Table M.5: Posterior Distribution Estimates and Convergence Diagnostics

Parameter Mean Sd. auto1 auto50 RNE p-value
δu1 1.601 0.272 0.079 -0.031 0.957 0.413
δu2 0.406 0.148 0.008 -0.043 1.292 0.946
δu3 0.732 0.227 0.184 -0.033 0.242 0.932
δu4 0.747 0.186 0.109 0.013 0.425 0.807
δu5 0.975 0.212 0.101 -0.017 0.366 0.629
δu6 0.619 0.199 0.121 -0.044 0.347 0.972
δu7 0.511 0.191 0.127 0.011 0.243 0.718
δu8 0.844 0.214 0.036 -0.020 1.181 0.199
δu9 0.812 0.215 0.045 0.012 0.826 0.884
δu10 1.083 0.219 0.036 0.018 0.641 0.495
δu11 0.941 0.202 0.103 -0.014 0.426 0.664
δu12 0.680 0.192 0.039 -0.029 0.888 0.338
δu13 0.854 0.260 0.097 0.001 0.367 0.661
δu14 1.187 0.242 0.043 -0.005 0.752 0.426
δu15 1.229 0.248 0.078 -0.046 0.763 0.654
δu16 0.649 0.170 0.068 -0.008 0.534 0.694
δu17 0.709 0.163 0.068 -0.031 0.669 0.993
δu18 1.184 0.236 0.078 -0.019 0.764 0.386
δu19 0.784 0.400 0.040 0.032 0.488 0.298
δu20 0.805 0.190 0.095 -0.023 0.608 0.693
δu21 0.765 0.181 0.029 -0.005 0.999 0.576
δu22 0.679 0.173 0.033 -0.016 0.854 0.901
δu23 1.679 0.339 0.140 -0.012 0.326 0.621
δu24 0.785 0.181 0.066 -0.032 0.725 0.544
δu25 0.831 0.277 0.135 0.007 0.378 0.779
δu26 1.117 0.210 0.098 -0.019 0.570 0.687
δu27 0.499 0.176 0.015 -0.014 0.569 0.116
δu28 0.460 0.131 0.029 -0.047 0.885 0.488
δu29 1.003 0.270 0.211 -0.040 0.198 0.758
δu30 0.705 0.182 0.108 -0.005 0.510 0.508
δu31 0.904 0.216 0.026 0.012 0.751 0.953
δu32 0.908 0.215 0.075 0.005 0.836 0.257
δu33 0.803 0.201 0.056 -0.021 0.716 0.520
δu34 1.257 0.243 0.089 -0.018 0.701 0.613
δu35 0.391 0.151 0.060 -0.038 0.432 0.550
δu36 1.223 0.232 0.073 -0.016 0.537 0.745
δu37 0.819 0.197 0.080 0.008 0.477 0.784
δu38 1.307 0.289 0.218 0.018 0.242 0.971
δu39 0.831 0.183 0.042 -0.019 0.790 0.286
δu40 0.974 0.245 0.042 0.026 0.938 0.515
δu41 1.198 0.241 0.070 0.031 0.845 0.253
δu42 0.582 0.162 0.041 -0.052 0.788 0.788
δu43 1.279 0.256 0.025 0.018 0.764 0.897
δu44 0.766 0.191 0.078 -0.023 0.619 0.151
δu45 1.006 0.216 0.077 -0.021 0.979 0.393
δu46 0.647 0.171 0.061 -0.028 0.423 0.870
δu47 0.863 0.171 0.051 -0.066 0.625 0.719
δu48 0.946 0.223 0.120 -0.025 0.420 0.683
δu49 1.144 0.242 0.096 -0.044 0.623 0.543
δu50 1.115 0.216 0.080 -0.009 0.569 0.549
δu51 1.078 0.252 0.057 -0.046 0.957 0.191

Note: Statistics are based on 2,000 draws from the Gibbs sampler. Mean: average across draws; Sd.: standard
deviation across draws; auto1: first order autocorrelation across draws; auto50: fiftieth order autocorrelation across
draws; RNE: relative numerical efficiency using a 4 percent taper; p-value: p-value of the null hypothesis that the
mean of the first 20 percent of draws is equal to the mean of the last 50 percent of draws using a 4 percent taper
for the standard error.
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Table M.6: Posterior Distribution Estimates and Convergence Diagnostics

Parameter Mean Sd. auto1 auto50 RNE p-value
θ1,1 -0.299 0.078 -0.002 -0.020 0.906 0.884
θ1,2 -0.092 0.064 0.094 0.007 0.577 0.494
θ1,3 -0.186 0.046 0.018 -0.038 0.795 0.134
θ1,4 -0.094 0.050 -0.015 -0.004 1.109 0.176
θ1,5 -0.162 0.042 -0.043 -0.022 1.397 0.339
θ1,6 -0.212 0.059 0.013 -0.032 0.620 0.629
θ1,7 -0.167 0.062 0.029 -0.029 0.714 0.645
θ1,8 -0.165 0.066 0.051 0.005 0.650 0.252
θ1,9 -0.250 0.076 -0.055 -0.026 0.861 0.282
θ1,10 -0.187 0.047 0.072 0.003 0.773 0.422
θ1,11 -0.211 0.050 -0.012 0.033 1.168 0.449
θ1,12 -0.251 0.066 0.014 -0.021 0.720 0.191
θ1,13 -0.209 0.073 0.034 0.047 0.439 0.127
θ1,14 -0.247 0.069 0.028 0.001 0.961 0.974
θ1,15 -0.222 0.062 0.003 -0.018 0.506 0.630
θ1,16 -0.111 0.059 -0.001 0.013 1.252 0.512
θ1,17 -0.078 0.048 0.002 -0.001 0.876 0.777
θ1,18 -0.199 0.073 0.022 -0.022 0.767 0.787
θ1,19 -0.382 0.101 0.035 0.029 0.534 0.945
θ1,20 -0.235 0.070 -0.016 0.006 1.052 0.806
θ1,21 -0.229 0.068 -0.014 0.021 0.879 0.918
θ1,22 -0.196 0.060 0.042 0.019 0.552 0.611
θ1,23 -0.176 0.072 0.022 0.038 0.813 0.938
θ1,24 -0.114 0.056 0.007 0.030 0.872 0.462
θ1,25 -0.238 0.093 0.129 -0.002 0.322 0.905
θ1,26 -0.193 0.070 0.022 0.055 0.755 0.403
θ1,27 -0.196 0.063 -0.022 0.012 1.115 0.456
θ1,28 -0.057 0.036 -0.031 -0.011 0.879 0.866
θ1,29 -0.207 0.054 -0.012 -0.029 0.715 0.866
θ1,30 -0.093 0.050 0.024 -0.024 0.572 0.701
θ1,31 -0.237 0.069 -0.005 0.045 0.446 0.898
θ1,32 -0.200 0.081 0.043 -0.006 0.465 0.391
θ1,33 -0.180 0.072 -0.011 -0.004 0.694 0.353
θ1,34 -0.231 0.063 -0.005 -0.026 0.630 0.382
θ1,35 -0.107 0.064 0.007 0.044 1.415 0.312
θ1,36 -0.165 0.067 -0.021 0.019 0.921 0.107
θ1,37 -0.107 0.069 0.006 -0.013 0.781 0.264
θ1,38 -0.209 0.067 0.097 0.045 0.322 0.467
θ1,39 -0.198 0.065 0.028 0.012 0.841 0.914
θ1,40 -0.267 0.074 0.002 -0.006 1.039 0.625
θ1,41 -0.228 0.059 -0.006 -0.010 1.144 0.417
θ1,42 -0.082 0.060 0.072 -0.005 0.865 0.863
θ1,43 -0.205 0.073 -0.018 0.034 1.385 0.123
θ1,44 -0.170 0.065 -0.011 0.018 0.891 0.152
θ1,45 -0.143 0.055 0.017 -0.055 0.777 0.524
θ1,46 -0.160 0.068 -0.015 -0.020 1.011 0.378
θ1,47 -0.222 0.066 -0.011 0.015 1.270 0.854
θ1,48 -0.172 0.060 0.043 -0.040 0.794 0.212
θ1,49 -0.237 0.080 0.032 -0.005 1.093 0.227
θ1,50 -0.168 0.065 -0.006 -0.013 0.732 0.469
θ1,51 -0.189 0.081 0.019 0.036 1.126 0.557

Note: Statistics are based on 2,000 draws from the Gibbs sampler. Mean: average across draws; Sd.: standard
deviation across draws; auto1: first order autocorrelation across draws; auto50: fiftieth order autocorrelation across
draws; RNE: relative numerical efficiency using a 4 percent taper; p-value: p-value of the null hypothesis that the
mean of the first 20 percent of draws is equal to the mean of the last 50 percent of draws using a 4 percent taper
for the standard error.
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Table M.7: Posterior Distribution Estimates and Convergence Diagnostics

Parameter Mean Sd. auto1 auto50 RNE p-value
θ2,1 -0.080 0.074 0.020 0.032 1.039 0.817
θ2,2 -0.035 0.049 0.069 0.027 0.605 0.615
θ2,3 -0.087 0.048 0.113 0.017 0.304 0.765
θ2,4 -0.069 0.045 0.012 -0.021 1.387 0.716
θ2,5 -0.100 0.043 0.064 -0.043 0.632 0.248
θ2,6 -0.123 0.058 0.075 0.012 0.387 0.539
θ2,7 -0.110 0.056 0.084 0.020 0.282 0.254
θ2,8 -0.095 0.051 0.006 -0.009 0.607 0.381
θ2,9 -0.146 0.074 -0.011 0.004 1.139 0.314
θ2,10 -0.057 0.046 0.007 0.019 0.911 0.307
θ2,11 -0.083 0.051 0.033 -0.059 0.928 0.544
θ2,12 -0.103 0.064 0.018 -0.006 0.637 0.361
θ2,13 -0.145 0.070 0.021 -0.002 0.607 0.895
θ2,14 -0.084 0.067 -0.029 0.032 1.294 0.826
θ2,15 -0.072 0.062 0.018 0.038 1.021 0.303
θ2,16 -0.041 0.050 0.012 -0.027 0.656 0.525
θ2,17 -0.043 0.039 0.024 0.041 1.395 0.580
θ2,18 -0.093 0.068 0.041 -0.005 1.293 0.718
θ2,19 -0.065 0.098 -0.008 0.025 1.488 0.950
θ2,20 -0.091 0.066 -0.046 0.019 0.818 0.270
θ2,21 -0.113 0.067 0.045 -0.001 0.698 0.676
θ2,22 -0.122 0.056 0.010 0.014 0.643 0.488
θ2,23 -0.098 0.069 0.077 0.001 0.439 0.156
θ2,24 -0.056 0.053 0.004 -0.015 1.129 0.466
θ2,25 -0.186 0.085 0.084 0.008 0.361 0.824
θ2,26 -0.113 0.065 -0.022 0.001 1.574 0.639
θ2,27 -0.079 0.060 0.009 -0.003 0.885 0.444
θ2,28 -0.033 0.035 -0.001 0.025 0.716 0.654
θ2,29 -0.086 0.056 0.170 -0.023 0.277 0.911
θ2,30 -0.073 0.048 0.037 -0.000 0.564 0.647
θ2,31 -0.121 0.066 0.064 0.001 0.838 0.336
θ2,32 -0.087 0.070 0.070 0.051 0.851 0.386
θ2,33 -0.088 0.061 -0.020 0.004 1.060 0.007
θ2,34 -0.042 0.059 0.003 0.022 0.783 0.059
θ2,35 -0.040 0.054 0.000 0.009 0.911 0.337
θ2,36 -0.071 0.062 0.037 0.008 0.751 0.428
θ2,37 -0.055 0.053 -0.000 0.031 0.510 0.024
θ2,38 -0.075 0.065 0.159 0.003 0.274 0.713
θ2,39 -0.075 0.060 -0.052 0.027 1.149 0.369
θ2,40 -0.165 0.063 0.035 0.022 0.942 0.644
θ2,41 -0.077 0.058 0.044 0.021 0.798 0.067
θ2,42 -0.048 0.046 0.032 -0.003 1.052 0.980
θ2,43 -0.046 0.070 0.007 0.035 0.858 0.214
θ2,44 -0.083 0.056 0.020 -0.033 0.952 0.575
θ2,45 -0.097 0.052 0.066 0.007 0.585 0.919
θ2,46 -0.095 0.064 -0.007 0.031 1.171 0.967
θ2,47 -0.098 0.063 0.025 -0.017 1.104 0.542
θ2,48 -0.068 0.054 -0.030 0.020 0.926 0.684
θ2,49 -0.062 0.077 0.073 0.016 0.497 0.350
θ2,50 -0.061 0.063 0.045 -0.000 0.525 0.035
θ2,51 -0.078 0.068 0.073 -0.031 0.702 0.255

Note: Statistics are based on 2,000 draws from the Gibbs sampler. Mean: average across draws; Sd.: standard
deviation across draws; auto1: first order autocorrelation across draws; auto50: fiftieth order autocorrelation across
draws; RNE: relative numerical efficiency using a 4 percent taper; p-value: p-value of the null hypothesis that the
mean of the first 20 percent of draws is equal to the mean of the last 50 percent of draws using a 4 percent taper
for the standard error.
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Table M.8: Posterior Distribution Estimates and Convergence Diagnostics

Parameter Mean Sd. auto1 auto50 RNE p-value
ρ1 0.749 0.210 -0.006 0.035 0.987 0.409
ρ2 0.616 0.299 -0.011 -0.019 1.043 0.428
ρ3 0.702 0.308 0.052 -0.017 0.713 0.755
ρ4 -0.108 0.321 0.016 -0.027 1.026 0.613
ρ5 0.477 0.352 -0.025 0.020 1.024 0.323
ρ6 0.706 0.304 0.005 0.052 1.021 0.400
ρ7 0.253 0.382 -0.009 0.011 1.389 0.013
ρ8 0.253 0.437 0.016 -0.027 0.956 0.663
ρ9 0.141 0.399 0.025 -0.009 0.870 0.052
ρ10 0.818 0.203 0.013 -0.008 0.880 0.607
ρ11 0.578 0.326 0.014 -0.026 1.044 0.803
ρ12 0.741 0.201 0.015 -0.010 1.225 0.978
ρ13 0.344 0.338 0.058 0.004 0.978 0.670
ρ14 0.704 0.241 0.013 0.024 0.667 0.741
ρ15 0.790 0.171 0.018 0.009 1.295 0.122
ρ16 0.729 0.217 -0.007 -0.048 1.246 0.936
ρ17 0.230 0.358 -0.006 0.032 1.259 0.086
ρ18 0.599 0.286 -0.075 -0.039 1.398 0.551
ρ19 0.732 0.230 0.028 0.011 0.656 0.095
ρ20 0.717 0.288 -0.019 0.004 1.368 0.559
ρ21 0.673 0.282 0.031 0.007 1.832 0.899
ρ22 0.412 0.339 0.008 -0.014 1.099 0.975
ρ23 0.702 0.332 -0.012 -0.002 1.346 0.816
ρ24 0.421 0.375 0.004 -0.014 1.100 0.218
ρ25 0.498 0.377 -0.017 0.022 1.022 0.708
ρ26 0.081 0.400 0.014 0.011 0.608 0.618
ρ27 0.583 0.327 -0.013 -0.023 1.015 0.596
ρ28 -0.130 0.266 0.042 0.007 1.243 0.687
ρ29 0.522 0.325 0.048 -0.039 0.551 0.378
ρ30 -0.390 0.252 0.007 0.009 0.903 0.897
ρ31 0.581 0.325 0.042 0.012 0.931 0.199
ρ32 0.507 0.322 0.005 0.011 1.088 0.404
ρ33 0.466 0.367 -0.030 -0.033 0.896 0.279
ρ34 0.548 0.263 -0.003 0.009 1.217 0.509
ρ35 0.595 0.369 0.049 0.019 0.978 0.740
ρ36 0.750 0.240 -0.007 0.016 1.187 0.506
ρ37 0.381 0.420 -0.030 -0.061 0.932 0.136
ρ38 0.485 0.351 -0.001 0.008 1.394 0.642
ρ39 0.629 0.273 -0.008 -0.018 1.065 0.477
ρ40 0.765 0.250 0.058 -0.009 0.808 0.353
ρ41 0.760 0.192 0.012 0.001 0.826 0.268
ρ42 0.192 0.387 -0.011 -0.032 1.404 0.249
ρ43 0.715 0.235 0.043 -0.023 1.049 0.836
ρ44 0.775 0.212 0.020 -0.019 1.171 0.430
ρ45 0.762 0.278 0.005 0.041 1.111 0.221
ρ46 0.276 0.436 0.051 -0.008 0.476 0.396
ρ47 0.750 0.214 -0.004 -0.023 0.961 0.622
ρ48 0.631 0.311 0.008 0.019 1.079 0.656
ρ49 0.700 0.202 -0.003 0.040 1.008 0.756
ρ50 0.544 0.334 0.001 0.008 1.712 0.671
ρ51 0.677 0.288 -0.014 -0.013 0.856 0.242

Note: Statistics are based on 2,000 draws from the Gibbs sampler. Mean: average across draws; Sd.: standard
deviation across draws; auto1: first order autocorrelation across draws; auto50: fiftieth order autocorrelation across
draws; RNE: relative numerical efficiency using a 4 percent taper; p-value: p-value of the null hypothesis that the
mean of the first 20 percent of draws is equal to the mean of the last 50 percent of draws using a 4 percent taper
for the standard error.
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Table M.9: Posterior Distribution Estimates and Convergence Diagnostics

Parameter Mean Sd. auto1 auto50 RNE p-value
σ2
ζ1

0.170 0.051 0.029 0.032 0.886 0.182

σ2
ζ2

0.667 0.758 0.134 0.009 1.104 0.403

σ2
ζ3

0.249 0.094 0.085 -0.016 0.450 0.840

σ2
ζ4

0.402 0.193 0.013 0.030 0.773 0.291

σ2
ζ5

0.209 0.079 0.034 0.017 0.545 0.509

σ2
ζ6

0.220 0.082 -0.004 0.031 0.909 0.964

σ2
ζ7

0.266 0.132 0.037 0.000 0.616 0.079

σ2
ζ8

0.413 0.585 0.285 -0.013 0.586 0.137

σ2
ζ9

0.203 0.072 0.065 0.001 0.880 0.119

σ2
ζ10

0.170 0.054 0.043 -0.045 0.662 0.988

σ2
ζ11

0.149 0.046 -0.008 -0.013 0.994 0.384

σ2
ζ12

0.154 0.044 -0.020 0.041 1.422 0.556

σ2
ζ13

0.237 0.091 0.008 -0.003 0.605 0.312

σ2
ζ14

0.156 0.045 0.010 0.033 1.223 0.809

σ2
ζ15

0.220 0.079 -0.015 0.011 0.747 0.902

σ2
ζ16

0.284 0.144 0.011 -0.006 0.824 0.280

σ2
ζ17

0.428 0.251 -0.003 -0.038 1.026 0.250

σ2
ζ18

0.163 0.056 -0.005 -0.035 0.667 0.563

σ2
ζ19

0.394 0.180 0.029 0.002 0.994 0.495

σ2
ζ20

0.179 0.061 0.023 0.029 1.063 0.640

σ2
ζ21

0.158 0.050 0.016 -0.000 1.126 0.996

σ2
ζ22

0.206 0.069 0.039 0.025 0.852 0.735

σ2
ζ23

0.423 0.216 -0.011 0.000 0.681 0.779

σ2
ζ24

0.244 0.092 -0.015 0.040 0.885 0.192

σ2
ζ25

0.284 0.129 -0.032 -0.006 0.766 0.456

σ2
ζ26

0.193 0.069 0.008 -0.007 0.965 0.030

σ2
ζ27

0.255 0.112 -0.022 0.011 1.000 0.032

σ2
ζ28

0.475 0.193 -0.025 -0.036 1.189 0.370

σ2
ζ29

0.245 0.115 0.041 -0.040 0.542 0.139

σ2
ζ30

0.305 0.128 0.023 -0.032 0.692 0.754

σ2
ζ31

0.169 0.056 0.019 0.065 0.552 0.828

σ2
ζ32

0.290 0.164 0.044 -0.033 0.893 0.676

σ2
ζ33

0.269 0.174 0.021 0.003 1.016 0.503

σ2
ζ34

0.276 0.123 0.035 0.011 0.915 0.407

σ2
ζ35

0.496 0.658 0.170 0.007 1.032 0.831

σ2
ζ36

0.210 0.076 -0.024 -0.002 0.750 0.001

σ2
ζ37

0.580 0.574 0.040 -0.027 0.937 0.789

σ2
ζ38

0.250 0.101 0.034 0.037 0.512 0.689

σ2
ζ39

0.169 0.053 -0.027 0.003 0.855 0.261

σ2
ζ40

0.350 0.158 0.031 0.014 1.078 0.931

σ2
ζ41

0.154 0.045 -0.006 -0.008 1.103 0.984

σ2
ζ42

0.829 0.729 0.099 0.001 0.882 0.403

σ2
ζ43

0.174 0.058 0.021 0.003 1.041 0.727

σ2
ζ44

0.332 0.152 0.025 0.030 0.795 0.943

σ2
ζ45

0.236 0.093 0.003 0.013 1.086 0.833

σ2
ζ46

0.194 0.078 0.018 -0.012 0.591 0.391

σ2
ζ47

0.147 0.044 -0.006 -0.036 0.988 0.455

σ2
ζ48

0.225 0.082 0.035 -0.013 0.843 0.252

σ2
ζ49

0.333 0.149 0.010 -0.000 0.780 0.525

σ2
ζ50

0.143 0.043 -0.030 0.037 0.895 0.083

σ2
ζ51

0.600 0.807 0.242 0.012 0.536 0.732

Note: Statistics are based on 2,000 draws from the Gibbs sampler. Mean: average across draws; Sd.: standard
deviation across draws; auto1: first order autocorrelation across draws; auto50: fiftieth order autocorrelation across
draws; RNE: relative numerical efficiency using a 4 percent taper; p-value: p-value of the null hypothesis that the
mean of the first 20 percent of draws is equal to the mean of the last 50 percent of draws using a 4 percent taper
for the standard error.
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Table M.10: Posterior Distribution Estimates and Convergence Diagnostics

Parameter Mean Sd. auto1 auto50 RNE p-value
σ2
η
y
1

0.169 0.050 0.032 -0.030 0.915 0.066

σ2
η
y
2

3.804 1.398 0.255 0.003 0.188 0.665

σ2
η
y
3

0.285 0.098 0.039 0.029 0.807 0.432

σ2
η
y
4

0.689 0.292 -0.005 0.015 0.967 0.281

σ2
η
y
5

0.316 0.117 0.085 -0.007 0.403 0.367

σ2
η
y
6

0.308 0.100 -0.012 0.005 1.653 0.328

σ2
η
y
7

1.168 0.314 -0.002 0.011 0.874 0.480

σ2
η
y
8

5.712 1.464 0.063 -0.051 1.041 0.656

σ2
η
y
9

0.382 0.123 0.032 -0.018 1.332 0.004

σ2
η
y
10

0.201 0.063 0.046 -0.004 0.396 0.279

σ2
η
y
11

0.219 0.064 0.014 -0.031 1.136 0.499

σ2
η
y
12

0.188 0.054 -0.002 0.041 1.143 0.607

σ2
η
y
13

0.529 0.162 -0.008 0.006 1.144 0.561

σ2
η
y
14

0.199 0.058 0.058 -0.004 1.046 0.907

σ2
η
y
15

0.378 0.122 0.021 -0.028 0.752 0.812

σ2
η
y
16

0.712 0.225 -0.028 -0.035 0.920 0.992

σ2
η
y
17

1.342 0.453 -0.005 0.024 1.030 0.590

σ2
η
y
18

0.263 0.086 0.045 0.015 0.562 0.349

σ2
η
y
19

0.745 0.254 0.049 -0.006 0.752 0.183

σ2
η
y
20

0.265 0.081 0.018 -0.030 0.663 0.704

σ2
η
y
21

0.245 0.072 0.020 0.010 0.877 0.101

σ2
η
y
22

0.249 0.083 -0.006 0.033 1.052 0.083

σ2
η
y
23

0.765 0.270 0.015 -0.017 0.556 0.789

σ2
η
y
24

0.395 0.130 -0.013 -0.019 1.808 0.527

σ2
η
y
25

0.688 0.204 -0.017 0.029 1.405 0.796

σ2
η
y
26

0.320 0.104 0.021 0.005 0.835 0.259

σ2
η
y
27

0.521 0.161 0.015 0.008 0.995 0.270

σ2
η
y
28

0.608 0.266 -0.016 -0.001 0.900 0.523

σ2
η
y
29

0.485 0.154 0.026 -0.006 0.862 0.639

σ2
η
y
30

0.547 0.203 -0.005 -0.006 1.076 0.767

σ2
η
y
31

0.252 0.074 -0.012 -0.003 1.710 0.302

σ2
η
y
32

0.980 0.318 0.133 -0.047 0.270 0.327

σ2
η
y
33

1.756 0.474 0.029 -0.026 0.888 0.793

σ2
η
y
34

0.646 0.202 0.009 -0.025 1.053 0.906

σ2
η
y
35

4.445 1.167 0.045 0.023 1.696 0.468

σ2
η
y
36

0.332 0.100 0.031 0.005 0.704 0.000

σ2
η
y
37

3.031 0.989 0.058 -0.057 0.633 0.462

σ2
η
y
38

0.547 0.172 0.027 -0.013 0.622 0.200

σ2
η
y
39

0.232 0.071 -0.033 -0.033 0.847 0.487

σ2
η
y
40

0.613 0.205 0.003 0.050 0.941 0.108

σ2
η
y
41

0.173 0.052 0.007 0.005 0.997 0.076

σ2
η
y
42

2.424 1.149 0.055 0.002 0.771 0.435

σ2
η
y
43

0.286 0.087 -0.007 -0.016 0.741 0.244

σ2
η
y
44

0.532 0.189 0.020 0.008 0.930 0.922

σ2
η
y
45

0.396 0.134 0.037 -0.007 0.479 0.271

σ2
η
y
46

0.301 0.107 0.049 -0.012 0.384 0.458

σ2
η
y
47

0.175 0.050 -0.010 0.043 0.796 0.360

σ2
η
y
48

0.364 0.113 -0.024 -0.000 0.984 0.860

σ2
η
y
49

0.471 0.187 0.055 -0.002 0.457 0.968

σ2
η
y
50

0.183 0.053 -0.008 -0.000 1.321 0.189

σ2
η
y
51

5.062 1.443 0.230 -0.008 0.213 0.785

Note: Statistics are based on 2,000 draws from the Gibbs sampler. Mean: average across draws; Sd.: standard
deviation across draws; auto1: first order autocorrelation across draws; auto50: fiftieth order autocorrelation across
draws; RNE: relative numerical efficiency using a 4 percent taper; p-value: p-value of the null hypothesis that the
mean of the first 20 percent of draws is equal to the mean of the last 50 percent of draws using a 4 percent taper
for the standard error.
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Table M.11: Posterior Distribution Estimates and Convergence Diagnostics

Parameter Mean Sd. auto1 auto50 RNE p-value
σ2
ηu
1

0.086 0.018 0.000 -0.004 0.870 0.191

σ2
ηu
2

0.048 0.010 -0.011 -0.048 1.116 0.178

σ2
ηu
3

0.063 0.013 0.052 -0.029 0.847 0.007

σ2
ηu
4

0.063 0.013 -0.027 -0.013 1.236 0.126

σ2
ηu
5

0.060 0.013 0.000 -0.028 1.044 0.044

σ2
ηu
6

0.070 0.015 -0.007 -0.012 1.975 0.778

σ2
ηu
7

0.060 0.013 0.002 -0.024 1.821 0.292

σ2
ηu
8

0.060 0.013 0.030 -0.031 0.870 0.641

σ2
ηu
9

0.093 0.020 0.070 0.011 0.922 0.131

σ2
ηu
10

0.061 0.013 0.006 0.014 0.950 0.192

σ2
ηu
11

0.055 0.011 -0.002 0.015 0.740 0.911

σ2
ηu
12

0.061 0.013 0.046 -0.009 0.845 0.148

σ2
ηu
13

0.120 0.025 -0.011 0.028 1.126 0.186

σ2
ηu
14

0.084 0.018 0.046 -0.014 0.942 0.388

σ2
ηu
15

0.068 0.014 0.004 0.018 1.047 0.654

σ2
ηu
16

0.049 0.010 0.013 -0.010 0.968 0.020

σ2
ηu
17

0.049 0.010 0.014 -0.018 1.322 0.595

σ2
ηu
18

0.072 0.015 0.032 0.011 1.091 0.640

σ2
ηu
19

0.618 0.133 0.038 -0.044 1.026 0.308

σ2
ηu
20

0.057 0.012 0.017 0.004 1.118 0.812

σ2
ηu
21

0.053 0.011 0.005 -0.040 1.005 0.379

σ2
ηu
22

0.058 0.012 0.014 -0.023 0.935 0.609

σ2
ηu
23

0.089 0.020 0.016 0.017 1.047 0.204

σ2
ηu
24

0.056 0.011 0.024 0.021 1.318 0.587

σ2
ηu
25

0.142 0.032 0.016 -0.010 0.964 0.767

σ2
ηu
26

0.067 0.014 -0.011 -0.008 1.277 0.775

σ2
ηu
27

0.062 0.013 -0.007 0.054 0.680 0.655

σ2
ηu
28

0.046 0.009 -0.019 -0.010 0.997 0.032

σ2
ηu
29

0.087 0.019 0.002 -0.002 1.310 0.197

σ2
ηu
30

0.058 0.012 -0.001 0.008 0.899 0.160

σ2
ηu
31

0.072 0.015 -0.014 -0.012 0.902 0.196

σ2
ηu
32

0.073 0.016 -0.009 -0.015 1.331 0.822

σ2
ηu
33

0.061 0.013 0.033 0.011 0.626 0.821

σ2
ηu
34

0.070 0.015 -0.012 -0.012 1.014 0.018

σ2
ηu
35

0.048 0.010 -0.002 0.007 1.550 0.776

σ2
ηu
36

0.068 0.015 -0.017 0.007 1.009 0.453

σ2
ηu
37

0.061 0.013 0.005 0.061 1.165 0.177

σ2
ηu
38

0.088 0.019 0.056 -0.009 0.587 0.688

σ2
ηu
39

0.054 0.011 0.039 0.005 0.821 0.976

σ2
ηu
40

0.081 0.019 -0.003 0.004 0.997 0.144

σ2
ηu
41

0.073 0.016 0.003 -0.031 1.173 0.768

σ2
ηu
42

0.053 0.011 0.029 0.001 1.180 0.274

σ2
ηu
43

0.093 0.020 -0.004 -0.012 1.177 0.211

σ2
ηu
44

0.064 0.013 -0.014 0.026 1.015 0.844

σ2
ηu
45

0.069 0.015 0.019 0.026 1.424 0.557

σ2
ηu
46

0.056 0.011 0.024 -0.019 1.396 0.524

σ2
ηu
47

0.049 0.010 0.007 -0.024 1.063 0.594

σ2
ηu
48

0.068 0.015 0.040 0.034 0.717 0.209

σ2
ηu
49

0.091 0.020 0.032 0.041 0.898 0.325

σ2
ηu
50

0.059 0.013 0.006 0.011 0.845 0.509

σ2
ηu
51

0.080 0.018 -0.000 -0.006 1.034 0.323

Note: Statistics are based on 2,000 draws from the Gibbs sampler. Mean: average across draws; Sd.: standard
deviation across draws; auto1: first order autocorrelation across draws; auto50: fiftieth order autocorrelation across
draws; RNE: relative numerical efficiency using a 4 percent taper; p-value: p-value of the null hypothesis that the
mean of the first 20 percent of draws is equal to the mean of the last 50 percent of draws using a 4 percent taper
for the standard error. 30



Table M.12: Prior and Posterior Distributions of the Parameters using Aggregate Data

Parameter Prior Distribution Prior Mean Prior Standard Deviation Posterior Mean Posterior Standard Deviation
µ Normal 0.8 0.8 0.40 0.07
φ1 Truncated Normal 1.5 0.5 1.55 0.13
φ2 Truncated Normal -0.6 0.2 -0.59 0.13
θ1 Normal -0.4 0.1 -0.39 0.07
θ2 Normal -0.1 0.1 -0.20 0.07
σ2
ε Inverse Gamma 1 Inf 0.21 0.06

σ2
ηy Inverse Gamma 1 Inf 0.18 0.05

σ2
ηu Inverse Gamma 1 Inf 0.07 0.02
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Figure M.1: States with Negative Average Real
GDP Annual Growth in the 2007–2009
Period
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Note: States in light gray experienced positive average growth rates.
Source: BEA Regional Economic Accounts.

Figure M.2: Average Real GDP Annual Growth by
State in the 2010–2016 Period
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Source: BEA Regional Economic Accounts.
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Figure M.3: Variance Decomposition of the State’s
Cycles
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Note: x = 100 ×
α2
i var(ct)

var(cit)
is the proportion of the variance of the

state’s cycle that is explained by the variance of the common cycle.

Figure M.4: Variance Decomposition of the State’s
Output Trends

TX

AK

MT

CA

ID

AZ

NV

NM

OR

CO

WY

IL
UT

MN

SD

IA

KS

NE

ND

WI

WA

OK

MO

FL

MI

IN

GA

NY

AL

PA

AR

NC

LA

TN

MS

VAKY

OH

ME

SC

WV

VT

HI

NH

MD

NJ

MA

CT

DE

RI

90% ≤ x

50% ≤ x < 90%

20% ≤ x < 50%

10% ≤ x < 20

x < 10%

Note: x = 100 ×

(

δ
y
i

)2

(

δ
y
i

)2
+σ2

η
y
i

is the proportion of the variance of the

state’s output trend that is explained by the variance of the common
output trend.

33



Figure M.5: Variance Decomposition of the State’s
GDP Growth
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Note: x = 100 ×
α2
i var(∆ct)

var(∆cit)
is the proportion of the variance of the

state’s real GDP growth rate that is explained by the variance of its
cycle.

Table M.13: Variance Decomposition of the State’s
GDP Growth Explained by Industry
Composition, Demographics, and State
Policy

Variable Coefficient

Intercept −1.52∗∗

Agriculture, forestry, fishing, and hunting 0.50
Mining, quarrying, and oil and gas extraction −0.55
Construction −1.64
Manufacturing 0.16
Wholesale trade; Retail trade; Transportation and warehousing 2.30∗

Finance and insurance; Real estate and rental and leasing −0.04
Government and government enterprises −1.23
Share of 25+ population with a bachelor’s degree −0.35
State’s personal income tax as a share of personal income −1.26
Share of population between the ages of 18 and 44 3.34∗∗∗

Debt-to-income ratio 0.85∗∗∗

Note: The dependent variable is the proportion of the variance of the
state’s real GDP growth rate that is explained by the variance of its
cycle. Explanatory variables are expressed in their 2005–2017 averages.
***, **, and * denote statistical significance at the 1, 5, and 10 percent
levels, respectively. R̄2 = 0.55.
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Figure M.6: Okun’s Law Coefficients (θ1i + θ2i)
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Table M.14: State Labor Market Cyclicality Ex-
plained by Industry Composition, De-
mographics, State Policy, and Union
Membership

Variable Coefficient

Intercept 0.36
Agriculture, forestry, fishing, and hunting −1.82∗∗∗

Mining, quarrying, and oil and gas extraction −0.46∗

Construction 3.68∗∗∗

Manufacturing 0.05
Wholesale trade; Retail trade; Transportation and warehousing −1.07
Finance and insurance; Real estate and rental and leasing −0.23
Government and government enterprises 0.24
Share of 25+ population with a bachelor’s degree −0.45
State’s personal income tax as a share of personal income 0.70
Share of population between the ages of 18 and 44 0.10
Union membership 0.00

Note: The dependent variable is the absolute value of the sum θ1i+θ2i
for each state. Explanatory variables are expressed in their 2005–2017
averages. ***, **, and * denote statistical significance at the 1, 5, and
10 percent levels, respectively. R̄ = 0.40.

Figure M.7: Impulse-Response Analysis for the Cyclical Component of the Unemployment Rate
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Note: Response to a 0.8 percentage point increase in the aggregate output gap.
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