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1. Introduction

The results below are not included in the main body of the paper
for sake of space considerations. We refer to most of these additional
calculations/findings via footnotes in the paper or short remarks in the
text.

2. Additional asymmetry tests

We also performed structural change and asymmetry tests for con-
ventional CAPM-type βs as compared to the tail-βs in the main body
of our paper. We therefore calculated CAPM-βs like in Ang and Chen
(2002). These results can be compared with our 1st set of results on
tail-βs with respect to the NYSE Composite.1 The latter authors cal-
culate correlations and βs for sets of different portfolios conditional on
the tail area. More specifically, the two-sided truncated CAPM-βs boil
down to:

βu =
cov (X1,X2|X1 > x1, X2 > x2)

var (X2|X1 > x1, X2 > x2)

βl =
cov (X1,X2|X1 < x3, X2 < x4)

var (X2|X1 < x3, X2 < x4)
(2.1)
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with βu and βl referring to the CAPM-βs conditioned on the up-
per and lower bivariate tails, respectively. These βs can simply be
obtained by running the CAPM regression with OLS over the defined
subsample. We calculated these βs for two tail subsamples. First,
(x1, x2) = (µ1, µ2) with the latter pair referring to the sample means of
the return data. Second, the marginal exceedance probability p = 5%
implies that the lower quantiles (x3, x4) < (0, 0) are the 5% left tail
quantiles of the historical return distribution whereas the upper quan-
tiles (x1, x2) > (0, 0) correspond with the 95% upper quantiles of the
historical returns. Lower and upper quantiles can differ because of
asymmetry.
We also tested for structural change and asymmetry in βl and βu.

Analogous to the tail-β tests in the paper, we consider two struc-
tural change tests

¡
H0 : βl1 = βl2 and H0 : βu1 = βu2

¢
and two asym-

metry tests
¡
H0 : βl1 = βu1 and H0 : βl2 = βu2

¢
. The structural change

tests take 9/11 as the sample midpoint and test for time variation in
the lower and upper CAPM-β separately; the asymmetry tests test
for asymmetry between βl and βu for the pre-9/11 and post-9/11 pe-
riod separately. The equality tests are calculated using Newey-West
standard errors to correct for heteroskedasticity and autocorrelation.
Notice that our approach differs from the asymmetry test of Ang and
Chen (2002) because we wanted to stay as close as possible to the 9/11
paper.2

Prior to discussing the estimation and testing results of the truncated
CAPM-βs, one should realize that comparing CAPM-βs with tail-βs
should be done with great care because these are two very different
measures. First, the tail area on which the truncated CAPM-βs are
calculated is necessarily less extreme than the tail areas we typically
consider when using extreme value analysis. Whereas EVT enables one
to evaluate co-exceedance probabilities beyond the historical sample

2Ang and Chen propose to test for asymmetry relative to some symmetric bench-
mark model such as the bivariate normal. For symmetric benchmark models the
lower and upper CAPM-βs are equal. Thus, if e.g. the lower beta βl significantly
differs from the normality-implied value of βl and the upper beta βu does not sig-
nificantly differ from the theoretical value under the normal, one can conclude that
there is asymmetry. However, this criterion for asymmetry is always relative to
some benchmark model. As such one could interpret the Ang and Chen approach
as a goodness-of-fit test of the data to the tails of a (symmetric) benchmark model.
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boundaries, βl and βu are only defined in-sample.
3 Second, CAPM-

βs are linear dependence measures whereas semi-parametric estimates
of co-exceedance probabilities can both capture linear and nonlinear
dependence in the data. As such, the Ang-Chen framework may be
ill-suited to measuring dependence for extreme tail areas because de-
pendence in crisis periods may well be nonlinear.
The above discussion makes clear that an absolute comparison of a

regression-based dependence measure and an EVT-based dependence
measure (the co-exceedance probability) is relatively meaningless. How-
ever, it is interesting to know whether the ranking of the return pairs
on the basis of the two systematic risk measures differs a lot. More-
over, is structural change /asymmetry more or less pronounced for the
regression-based βs as compared to the tail-βs? Let us now turn to
the estimation and testing results for the CAPM-βs and consider these
issues.
Table 1 contains estimation results for full sample (“unconditional”)

βs and truncated (“conditional”) CAPM-βs as defined in (2.1). The
first two columns contain unconditional CAPM-βs (i.e. using all data)
for the pre-9/11 and post-9/11 period whereas the other columns dis-
tinguish between lower and upper tails and the pre-9/11 and post-9/11
period. Moreover, we either truncate on the basis of the sample means
(columns with header “mean-truncated”) or go further into the bivari-
ate tail (columns with header “tail-truncated”). Notice that the tail-βs
for the NYSE Composite in Figure 2 of the paper are defined much fur-
ther in the bivariate tail, i.e., for p=0.02%.4 The market portfolio is
chosen to be the NYSE Composite. We previously argued that a di-
rect comparison of CAPM-βs and the tail-βs is relatively meaningless.
One can, however, look at how a ranking of the sectors according to
their systematic risk - as measured by CAPM-β or tail-β - differs. By
visual inspection one sees that high CAPM-βs often do not correspond
with high tail-βs and vice versa. Thus, the two measures often seem to
tell a different story. Thus, linear dependence measures applied to the
tail area tell different stories than more general dependence measures

3However, EVT becomes more inaccurate if one uses more data from the centre of
the bivariate distribution. The Pareto tail for univariate tails and the Ledford-Tawn
model for joint probabilities break down for more moderate in-sample quantiles. In
general, EVT is built on limit laws for minimum/maximum returns which implies
it is only suited for modelling the distributional tail.
4However, there are virtually no joint exceedances in this case for the historical

data which implies that CAPM-βs based on the corresponding tail area would
become extremely noisy and inaccurate. We therefore opted for a significance level
p=5%.
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such as our tail-β. As earlier suggested, the discrepancy between the
two dependence measures might be due to nonlinearities in extreme
dependence that cannot be captured by linear CAPM-βs.

[Insert Table 1, 2]
Table 2 contains test results for CAPM-β equality tests. Structural

change and asymmetry test statistics are contained in the left and
right panels, respectively. Tests are performed for the above discussed
truncations of the original data. First, we see that there is abundant
evidence of structural change in the full sample β (β1 = β2 column).
Structural change results for truncated lower and upper βs is less sig-
nificant but constancy of βl and βu can still be rejected in the majority
of the cases (see left structural change panel). Notice that we also de-
tected structural change in the NYSE tail-βs, albeit to a lesser extent.
However, the sign of the changes differs for both dependence measures.
Upon considering the statistically significant changes only, tail-βs all
tend to rise after 9/11 while CAPM-βs only rise in roughly half of the
cases. Second, asymmetries seem to be less common than structural
change. This also holds for the asymmetry tests in our EVT framework.
However, the sign of the significant asymmetries is usually reverse for
both dependence measures. Whereas the significant CAPM-β asym-
metries mostly indicate a dominance of upward CAPM-βs, we find the
reverse for significant asymmetries between co-crashes and co-booms
in an EVT framework.

3. Robustness of the heavy tail assumption

One may be concerned that the assumption of heavy or Pareto tail
declines (regular variation at infinity) might not necessarily always
hold. Indeed, the generalized extreme value (GEV) distribution for
scaled minima or maxima nests three subclasses of models: (fat-tailed)
Pareto tails, (fat-tailed) Weibull tails and (thin-tailed) Gumbel tails
(see e.g. Embrechts et al. (1997)). Assuming that extremal financial
returns are always regularly varying at infinity bears some misspecifi-
cation risk indeed (although many predecessors made this assumption
in academically published work). In order to check to what extent tails
are governed by a Pareto-type decline, one can estimate the tail shape
parameter γ in the GEV distribution

Gγ (x) = exp
³
− (1 + γx)−1/γ

´
,

and check the sign of bγ. In case of Pareto tail decline, we know that
γ = 1/α > 0. The cases γ = 0 and γ < 0 correspond with the Gumbel
and Weibull limit laws, respectively. The Hill estimator is unsuited
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for estimating the more general parameter γ because it only works un-
der Pareto tails and always renders positive estimates by construction.
Semi-parametric estimators based on order statistics have been devel-
oped for the general tail shape parameter γ, see e.g. Pickands (1975)
or Dekkers et al. (1989). The sign of the estimates indicates the type
of tail decline. Moreover, upon knowing the asymptotic distribution ofbγ, one can test hypotheses of the type γ = 0, γ ≤ 0 or γ ≥ 0. In order
to get some feeling of the type of tail decline (regularly varying or not)
we calculate the DEDH estimator for γ (but the analysis below does
not change much if it is performed with the Pickands estimator). The
DEDH estimator reads:

bγ =M (1)
n + 1− 1

2

⎧⎪⎨⎪⎩1−
³
M

(1)
n

´2
M2

n

⎫⎪⎬⎪⎭
−1

,

with

M (1)
n =

1bα = 1

m

m−1X
j=0

ln

µ
Xn−j,n
Xn−m,n

¶
,

and

M (2)
n =

1

m

m−1X
j=0

µ
ln

µ
Xn−j,n
Xn−m,n

¶¶2
.

Notice that X1,n ≤ · · · ≤ Xj,n ≤ · · · ≤ Xn,n represent the ascending
order statistics of the financial return series. One can see that M (1)

n is
the inverse of the Hill statistic. The cutoff point m again determines
the number of extremes used in estimation. Dekkers et al. established
consistency and asymptotic normality for bγ.
This estimator can now be put at work in order to check which limit

law governs the extremes of financial returns. A positive bγ suggests
fat tailed Pareto behavior whereas a negative bγ suggest a fat tailed
Weibull. To stay consistent with the Hill calculations in the paper, we
conditioned the DEDH estimator on the same value of the nuisance
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parameter m.5 Table 3 contains estimation and testing results for the
DEDH estimator.

[Insert Table 3]

The point estimates bγ (left panel) are conditioned on the same op-
timal m∗ as the Hill statistics in the paper. In the right panel we test
the null hypothesis of thin tails H0 : γ = 0 against the (one-sided)
heavy tailed alternative H1 : γ > 0. One could perform an asymptotic
test using the asymptotic variance expression given in Dekkers et al.
for the case γ ≥ 0 but this test only holds for i.i.d. data. In order to
stay consistent with the main body of the paper, we therefore block
bootstrapped the standard deviation of bγ using block sizes of 50.6
The table distinguishes between upper and lower tails and pre- and

post-9/11 tails. Negative point estimates were only detected twice;
moreover, DEDH estimates consistently stay positive over a wide range
of m (plots available upon request). As for the null hypothesis of thin
tails it can be rejected at the 99% significance level in nearly 80% of
the considered tail cases. In addition to the DEDH estimation and
testing outcomes we also performed a simple Jarque-Bera normality
test; normality was strongly rejected in all cases. The remaining non-
rejections for the DEDH test might be due to the high asymptotic
variance of the DEDH estimator and the resulting poor power proper-
ties, even in medium-sized samples. Concluding, we believe that the
regular variation assumption is a defendable modelling assumption on
the basis of the above evidence. If we would wrongly assume that tails
are heavy when they are actually thin tailed, capital adequacy policies
for the long run based on extreme quantile estimation would be too
conservative.
As concerns the tail of the auxiliary variable Zmin (see eq. (2.7) in

the paper) that summarizes the dependence structure of return pairs
(X,Y ) , it is regularly varying by construction with a tail index α hov-
ering between 1 (asymptotic dependence) and 2 (complete asymptotic

5At first sight, one could argue that the more general estimators like Pickands
and DEDH estimator are preferable above the Hill statistic estimator because they
eliminate tail model risk. However, this goes at the expense of estimation risk, i.e.,
their asymptotic variances are much higher than the asympotic variance of the Hill
estimator. The intuition behind this result is that the Pareto model is nested into
the GEV distribution. Hence, an estimator starting from the latter distributional
assumption will be more imprecise because it has to encompass the three allowed
limit laws.
6Just as in the main body of the paper, the block bootstrap is meant to take

account of the temporal dependence structure in financial returns.
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independence). Thus, a pretest for the tail of Zmin is not necessary
prior to calculating the tail-βs.7

4. Estimation risk and asymptotic normality under EVT

In the previous section we argued that the regular variation assump-
tion is an acceptable working hypothesis for our data. The reader
might also be worried that the semi-parametric quantile estimator may
perform poorly (high bias and variance) and that the normal approx-
imation for the equality tests for structural change and asymmetry
may not hold for the sample size we employ. First, the small sample
performance and convergence of estimates and test statistics may be
hampered by linear (1st order autocorrelation) and nonlinear temporal
dependencies (stochastic volatility) in the data. From Hsing (1991),
Resnick and Starica (1998) and Embrechts et al. (1997) we know that
the Hill estimator is a consistent estimator for dependent data like the
ARMA processes and ARCH-type processes but temporal dependence
may still harm in small(er) samples. The fact that the quantile estima-
tor is defined as a 1st order approximation constitutes a 2nd potential
source of poor small sample performance.

4.0.1. Linear dependence. Embrechts et al. (1997, p. 270) argue that
serial correlation of the order of 0.2 or higher leads to an upward bias
in the Hill statistic (and thus a downward bias in estimated quantiles,
see Figure 5.5.4). However, 1st order serial correlations in financial
data are usually much weaker than the serial correlation parameters
used in the Embrechts simulation (θ = 0.2, 0.5, 0.9).Moreover, at lower
return frequencies (daily, weekly) there is virtually no statistically and
economically significant autocorrelation. At higher frequencies such as
our data set, market microstructure effects might induce statistically
significant but economically minor 1rst order serial correlations; but
their point estimates are too small to cause large biases in the Hill
estimator (the bulk of 1st order serial correlations in our data do not
exceed 0.1 in absolute value - and most of them are positive).

4.0.2. 1st order approximation. If financial returns are fat tailed - and
focusing on the upper tails by taking X∗ = −X - the class of heavy

7QQ plots constitute an alternative graphical device in order to get some feeling
of the nature of tail decline. All QQ plots we made become approximately linear
in the tails which is indicative of Pareto tail decline. Nonsurprisingly, the linear-
ity (and thus the start of the tail) starts much earlier for the bivariate auxiliary
variables Zmin compared to the original raw returns.
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tailed distributions exhibits the regular variation at infinity property

P {X > x} = l (x)x−α,

with x large and where l (x) is a slowly varying function.Under some
mild extra conditions the class of regularly varying distributions obeys
the following 2nd order expansion for large x:

(4.1) P {X > x} ' ax−α
¡
1 + bx−β + o

¡
x−β

¢¢
,

as x -∞ and α, β, a > 0.The higher the 2nd order parameter β the
quicker l (tx) /l (x) converges to 1 for large x. An intuitive derivation of
the quantile estimator goes as follows (Danielsson and de Vries (1997)).
Let p > 1/n but close to 1/n, and q < 1/n, where n is the sample size
and p, q stand for exceedance probabilities. We want to estimate the
out of sample quantile xq by using the empirical counterpart of the in
sample quantile xp. By using the above expansion, we get:

p ' a (xp)
−α £1 + bx−βp

¤
and q ' a (xq)

−α £1 + bx−βq
¤
.

Division of p and q and rearranging renders

xq ' xp

µ
p

q

¶1/αÃ1 + bx−βq
1 + bx−βp

!1/α
.

Ignore the second term and replace xp by its empirical counterpart
Xn−m,n (X1,n ≤ · · · ≤ Xn−m,n ≤ · · · ≤ Xn,n) for which m/n is closest
to p. The extreme quantile estimator then becomes:

xq ' xp

µ
m

np

¶1/α
,

where α is estimated by the Hill statistic:

(4.2) bα = Ã 1
m

m−1X
j=0

ln

µ
Xn−j,n
Xn−m,n

¶!−1
,

and with m the number of highest order statistics used in the estima-

tion. Clearly, whether the factor
³
1+bx−βq
1+bx−βp

´1/α
is negligible or not will

depend on the magnitudes of the parameter values α, β, and b.

4.0.3. Optimal threshold selection. Tail index estimators like the Hill
statistic are characterized by a bias/variance trade-off. The more data
used from the distributional centre the smaller will be the variance of
the estimator but the more bias will be introduced. Goldie and Smith
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(1987) therefore proposed to select m such as to minimize the asymp-
totic Mean Squared Error (AMSE). Upon assuming the 2nd order ex-
pansion (4.1), Danielsson and de Vries (1997) derive an expression of
the AMSE in terms of the 2nd order expansion parameters:

(4.3) AMSE(bα,m) = a−2β/α
1

α2
β2b2

(α+ β)2
(
m

n
)
2β
α +

1

α2m
,

where the first part is the squared bias and the second part is the
variance. Minimizing (4.3) w.r.t. m renders the optimal number m∗of
highest order statistics

(4.4a) m∗ = cn2β/2β+α , c =

µ
α(α+ β)2

2β3b2
a2β/α

¶α/2β+α

For each of the data generating processes below (except GARCH(1,1))
we derived the parameter vector (α, β, a, b) and the accompanying an-
alytic selection criterion (4.4a). This highly simplifies the Monte Carlo
simulation. As for the GARCH(1,1) process the parameters of the 2nd
order expansion are unknown and we have to resort to the Beirlant et
al. (1999) aproach to estimating the empirical AMSE.

4.0.4. Data generating processes and results. Monte Carlo simulations
are carried out for a large set of regularly varying distributions. We
choose the data generating processes such as to get a large cross sec-
tion of different parameter values (a, b, α, β) in (4.1). The distribu-
tional models chosen for the Monte Carlo study were student-t, Frechet,
i.e. P {X > x} = exp (−x−α) , Burr, i.e. P {X > x} = ¡1 + xβ

¢−α/β
,

symmetric stable df, AR(1) with stable innovations, GARCH(1,1) and
a Stochastic Volatility model. So, we clearly distinguished between
models that generate i.i.d. data and dependent models. The tail
index equals the degrees of freedom parameter v (α = v) in case of
the Student-t. The tail index of the Student-t, Frechet, Burr and the
Stochastic Volatility model is varied between 2 and 4, the range one
typically observes in empirical applications. For generating symmetric
stable draws we used the algorithm proposed by Samorodnitsky and
Taqqu (1994):

(4.5) Xstable =
sinφγ

(cos γ)1/φ

µ
cos (1− φ) γ

W

¶(1−φ)/φ
where 0 < φ ≤ 2 represents the characteristic exponent. The parame-
ter γ is drawn uniformly on [−π /2 π /2] whereas W is exponentially
distributed with mean 1. One has to be careful when linking the value
of the characteristic exponent to the amount of probability mass in the
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tails of the stable df. Let α stand for the tail index as defined earlier.
For φ < 2, α = φ; but when φ = 2, the distribution becomes normal
and all moments exist which implies α =∞.
In addition to i.i.d. data, we also investigate the performance of our

estimator for dependent data. We focus on three stochastic processes
that are characterized by either dependence in the 1st or the 2nd distri-
butional moment: the first one exhibits 1st order serial correlation and
the other two exhibit conditional heteroscedasticity. Serially correlated
data are generated using an AR(1) process with ρ = 0.1 and symmetric
stable innovations. The additivity property for the innovations implies
that the serially correlated draws will also be stable and hence one can
select the nuisance parameter m optimally using the parameters of the
2nd order expansion (4.1) for the symmetric stable df. A second sto-
chastic process that we use as a simulation vehicle for dependent data
is taken from Danielsson et al. (2001). It constitutes a rudimentary
stochastic volatility model characterized by volatility persistence:

Yt = UtWtHt, P {Ut = −1} = P {Ut = 1} = 0.5
Ht = βQt + γHt−1, Qt ∼ N (0, 1) , β = 0.1, γ = 0.9

Wt =

s
1− γ2

β2

√
v√
Zt

, Zt ∼ χ (v) .

The multiplicative factor Ut guarantees the fair game property (with-
out this factor, the model both exhibits dependence in the 1rst and the
second moment). This process generates volatility clusters in Yt and is
designed such that Yt is Student-t distributed with v degrees of free-
dom. Hence, we can determine the theoretical second order parameters
for the expansion of regularly varying tails and use these to calculate
the optimal nuisance parameterm for the Hill statistic and the quantile
estimator. Finally, we simulated form a GARCH(1,1) process, by using
standard normal innovations, an intercept of 10−6 in the variance equa-
tion and coefficients for the lagged squared return and variance term
of 0.31 and 0.59, respectively. These parameters were chosen such that
they sum up to 0.9 (reflecting the stylized fact of persistence). These
values also correspond to a theoretical tail index of α = 4.
The second order limit expansion (4.1) is unknown for the GARCH

process but it is known for all the other dfs. The theoretical β value
for the Student-t is β = 2 and for the Frechet and symmetric stable
it is β = α. As for the Burr, β can be chosen independent from α.
Thus the latter distribution is perfectly suited to study what happens
to the small sample properties of the estimates and test statistics if one
changes the 2nd order parameter while leaving the 1st order parameter



11

α fixed. We simulated from the Burr distribution for values of β equal
to 2 and 4. Upon knowing the parameters of the 2nd order expansion,
the optimalm∗ can now be analytically calculated by eq. (4.4a). Notice
that we limit ourselves to univariate simulation experiments because
the whole estimation and testing framework for the bivariate case is
mapped back into a univariate framework anyway in the Ledford-Tawn
approach.8

Table 4 reports simulation results for the average and standard de-
viation of the Hill statistic and accompanying quantile estimator.

[Insert table 4]

The table reports true values of the quantile qp (for those cases for
which they can be determined analytically) as well as the average and
standard deviation of α and qp for 5,000 Monte Carlo replications and
for samples of 8,000 draws; this reflects the length of the pre-9/11 and
post-9/11 empirical financial return series (n=8,380). The quantiles
are calculated for two values of the marginal exceedance probability p.
Not surprisingly, the bias in the Hill estimator and corresponding quan-
tiles increases with α.Moreover, the standard errors also increase when
tails get thinner. The intuition behind this result is that lighter tails
are closer to a thin tailed local alternative like the normal distribution.
This decreases the accuracy of tail estimation techniques that assume
regular variation as a starting point. Also, and conform to our a priori
intuition, the quantile estimates become less precise the further one
looks into the tail. Apart from comparing bias and standard deviation
across different values of α it is also worth noticing what happens when
the 2nd order parameter β changes for given fixed values of α. Only in
the Burr distribution case, we can let β evolve independently from α.
The results clearly reveal that the bias and standard error decrease for
higher values of β,i.e., the quicker the 2nd order term in the expansion
(4.1) converges to zero the smaller will be the estimation risk. Finally,
notice that the bias and variance properties for dependent data (AR(1),
stochastic volatility model and GARCH(1,1)) are not dramatically dif-
ferent from the i.i.d. results. Summarizing, the quantile estimator

8Bivariate estimation risk for tail-βs has already been assessed previously by
Hartmann et al. (2005). They applied the same EVT framework as ours to daily
bank stock returns in order to calculate tail-βs w.r.t. macro factors and interbank
co-exceedance probabilities. Monte Carlo simulations for a sample of size n≈ 3, 000
render reasonable results for the bias and variance of the tail dependence parameter
and tail-β and for a number of bivariate parametric models (bivariate Normal,
bivariate Pareto and bivariate Gumbel-Pareto).
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performs relatively well when judged by the mean and standard de-
viation. Moreover, the performance of the quantile estimator is fairly
consistent across distributions and stochastic processes.
Table 5 reports simulation results for the critical values of the equal-

ity tests in the paper’s empirical section. The tests are used for de-
tecting structural change/asymmetry in tail indices (tail dependence
parameters) and tail quantiles (tail-βs).

[Insert table 5]
The table reports the benchmark values of the normal quantile (top

row) as well as the critical values for 5,000 Monte Carlo replications
and for samples of 16,000 draws (equal subsamples of 8,000 draws).
The same data generating processes are employed as for assessing es-
timation risk. The table shows that size distortions are small for all
unconditional models characterized by i.i.d. draws. Critical values for
the AR(1) process and the persistent GARCH(1,1) process suggests
that our tests may be size distorted, especially the quantile equality
test. However, a large part of testing outcomes in the paper’s empiri-
cal section would remain significant upon application of size-corrected
testing procedures because a lot of t-statistics in the empirical section
are bigger than 3 or 4 in absolute value! An avenue of future research
could be to fit an intraday version of a GARCH or other Stochastic
Volatility model and to use this as a vehicle to simulate or bootstrap
small sample critical values.

5. Robustness to GARCH

One of the authors did filter for GARCH in a previous paper on sys-
temic risk in the U.S. vs. the European banking sector, see Hartmann
et al. (2005). In that paper, basically the same type of co-exceedance
probabilities were estimated; the co-exceedance probabilities between
banks or w.r.t aggregate shocks were tested for endogenous structural
change (no exogenously fixed breakpoint as in the 9/11 paper) using
the Quintos et al. (2001) technique. The structural change tests were
complemented by cross sectional tests comparing the magnitude of the
co-exceedance probabilities across different pairs of banks. Hartmann
et al. (2005) both presented raw and GARCH filtered results. Fil-
tering for GARCH, they observe that the co-exceedance probabilities
nearly all decrease; however, they are still way above the marginal ex-
ceedance probability p, the value the co-exceedance probability would
take under complete independence. Thus, GARCH seems to induce
part - but not all - of the extreme dependence that determines the
level of the co-exceedance probabilities. Second, the break results and
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cross sectional tests do change upon filtering but not in a dramatic
way. Only a minor part of the testing results change and breaks are
still abundantly present for the filtered data pairs. Part of the breaks
disappear. In a version of the 9/11 paper that even preceded the 1st
submission we did filter for GARCH and the effects were comparable to
the described Hartmann et al. observations. However, the problem of
applying the Poon et al. (2004) and Hartmann et al. (2005) GARCH
filters lie in the intraday nature of our data (Poon et al. and Hart-
mann et al. worked with daily data). It is by now generally accepted
that modelling of intraday volatility is much more complex than daily
volatility modelling. More specifically, it would also require the mod-
elling of intraday seasonal effects on the volatility which is a nontrivial
exercise, see e.g. Andersen and Bollerslev (1997, 1998) or Bollerslev,
Cai and Song (2000). We think that modelling the intraday volatility
seasonalities - although very interesting - lies outside the scope of this
paper.
Also, notice that our tests should be able to disentangle changes in

the unconditional tail features from clusters of high and low conditional
volatility (given a stationary stochastic volatility model). We there-
fore estimate the asymptotic variances of the tail index and quantile
estimates by means of a block bootstrap that captures the nonlinear
dependence in the data. Indeed, the parameters governing the uncon-
ditional distribution (scale, tail index) should necessarily be related to
the parameters governing the conditional distribution (e.g. GARCH
and seasonal volatility parameters). However, there is no closed form
solution known of this relation except in some very simple cases.9 Con-
sequently, changes in the tail index/quantile necessarily reflect changes
in the GARCH or seasonal volatility parameters. How exactly the con-
ditional parameters are changing is unknown and would require a full
fledged intraday GARCH model together with structural breaks tests
and asymmetry tests.

6. Details on the block bootstrap

The test statistics in eqs. (2.11) and (2.12) the paper were calculated
using (block) bootstrapped standard deviations. The blocks are meant
to take account of temporal dependence in the data. If financial returns
would be completely independent over time we could have exploited
the fact that m1/2 (bα− α) → N (0, α2) and

√
m

ln( mpn)
ln q(p)

q(p)
→ N (0, γ2)

9Closed forms of the relation between conditional and unconditional parameters
are only known for simple cases like the ARCH(1) or GARCH(1,1) models with
conditionally normal innovations.
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and estimate the asymptotic variances of the left-hand side expressions
with bα2 and bγ2 = 1/ bα2, respectively. However, financial returns, and
especially high frequency data like ours, may exhibit strong nonlinear
dependencies which may change the asymptotic variance (it is proba-
bly upward biased by the temporal dependence although this should
not necessarily be the case). It can be shown that consistency and as-
ymptotic normality still holds if data are temporally dependent, albeit
with a different asymptotic variance, see e.g. Drees (2002). The latter
author suggests estimators for this asymptotic variance under general
(nonspecified) dependence but this asymptotic variance can only be
used if one wants to test the estimated tail index or quantile values
against a specific value, i.e., H0 : α = α0 or H0 : q = q0. For the
structural change and asymmetry tests at hand (H0 : α1 = α2 and
H0 : q1 = q2), however, estimates of the asymptotic variances alone
are insufficient because one also needs the covariance terms for (α1, α2)
and (q1, q2) in order to calculate standard deviations for (bα1 − bα2) and
(bq1 − bq2) . This covariance may both be present in the structural change
test (due to temporal dependence) as well as the asymmetry test (due
to cross sectional dependence). The block bootstrap seems a straight-
forward way to estimating the standard deviation of the difference.
However, the application of nonparametric bootstraps (let alone block
bootstraps) in EVT analysis is still in its infancy and clear-cut tech-
niques for the determination of the optimal block length are unknown
as to date.10 In order to get an idea of the optimal block length’s mag-
nitude in our case, we simulated from a GARCH(1,1) with β0+β1 ≈ 1
(persistent; close to nonstationarity). Making abstraction of intraday
seasonalities - that also play a role in driving the volatility at the intra-
day frequency - we might consider this model as a crude approximation
of our data. The GARCH model has the advantage that it is known
how to estimate the scaling factor of the Hill estimator’s and quantile
estimator’s variance, i.e., scale such that σ2 (bα) = scale × bα2, see e.g.
Hsing (1991). In the simulations, we always found estimates of this
scaling factor close to 2 for β0 + β1 ≈ 1. Moreover, the scaling factor
seemed invariant upon varying the value of the sum β0 + β1 from 0.9
to 0.95 till 0.99 and upon changing the trade-off between (β0, β1) for
β0 + β1 = c when c is fixed. By trial and error, we next searched

10Hall et al. (1995) determine the optimal block length as a function of the
sample size for some specific parametric examples with temporal dependence. They
advice to set block lengths equal to either aT 1/3 or aT 1/4 where T is the sample
size and a some scaling factor that depends on the model at hand. Neither of their
considered parametric examples, however, is relevant for finance and they also do
not give estimators for the exponent and the scaling factor a.
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for the optimal block length for this GARCH process, i.e., the block
length that can reproduce variances for the Hill statistic that are ap-
proximately twice as high as their theoretical values under absence
of GARCH. We were able to get quite good results for block lengths
around 50-75 (the former value is used).
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Table 1. Unconditional and conditional (truncated)
CAPM beta’s

Indices full sample mean tail (p=5%)
< 9/11 > 9/11 <9/11 >9/11 <9/11 >9/11

l u l u l u l u
INDU 1.160 1.159 1.1 1.1 1.110 1.112 1.108 1.018 1.040 1.020
TRANS 0.680 1.019 0.598 0.566 0.991 0.900 0.321 0.378 0.882 0.733
UTIL 0.573 0.818 0.542 0.572 0.908 0.900 0.362 0.534 0.811 1.149
PC 2.181 1.567 1.673 2.039 1.304 1.339 0.955 1.928 0.698 0.838
BIO 1.859 1.562 1.571 1.700 1.247 1.281 0.732 1.780 0.285 0.502
INSUR 0.440 0.612 0.385 0.342 0.527 0.566 0.220 0.043 0.246 0.525
TEL 1.942 1.532 1.549 1.825 1.275 1.299 0.973 1.726 0.647 0.788
BANK 0.544 0.657 0.477 0.507 0.589 0.639 0.393 0.508 0.343 0.594
FIN 0.806 0.822 0.728 0.745 0.738 0.814 0.634 0.715 0.482 0.776
OFIN 1.215 0.878 1.172 1.075 0.747 0.763 1.009 0.754 0.380 0.501
INTER 2.568 1.673 1.963 2.510 1.380 1.403 1.251 2.583 0.527 0.741
PHARMA 0.864 0.981 0.805 0.727 0.910 0.932 0.630 0.494 0.782 0.770
AIR 0.654 1.248 0.581 0.536 1.207 0.950 0.300 0.411 1.002 0.409
OIL 0.577 0.782 0.510 0.502 0.763 0.674 0.322 0.236 0.684 0.480
SCAP 0.694 0.839 0.672 0.627 0.763 0.725 0.571 0.529 0.322 0.568
MCAP 0.977 0.953 0.866 0.873 0.899 0.858 0.651 0.771 0.598 0.709
GROWTH 1.481 1.169 1.331 1.397 1.098 1.096 1.133 1.267 0.970 0.924
VALUE 1.026 1.174 0.969 0.994 1.142 1.140 0.865 0.988 1.051 1.086
Note: The table reports estimates of nontruncated and truncated CAPM beta’s. We
distinguish between pre-9/11 and post-9/11 subsamples. The nontruncated estimates are
based on all observations in these sample periods. "Mean-truncated" results are based on
return data below (above) their sample averages (denoted by l and u, respectively). "Tail-
truncated" results are based on the 0.05% smallest (largest) return observations (denoted
by l and u, respectively).
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Table 2. 9/11 structural change/asymmetry tests for
CAPM beta’s

indices structural change asymmetry
mean tail(p=5%) mean tail (p=5%)

β1 = β2 l1 = l2 u1 = u2 l1 = l2 u1 = u2 l1 = u1 l2 = u2 l1 = u1 l2 = u2
IND 0.09 -0.46 -0.49 0.94 -0.03 0 -0.09 1.20 0.2
TRAN ***-13.23 ***-5.69 ***-8.62 ***-2.61 ***-3.78 0.83 1.32 -0.71 0.6
UTIL ***-5.77 ***-4.94 ***-2.95 ***-2.01 ***-2.55 -0.55 0.07 -1.37 -1.1
PC ***11.77 ***4.82 ***5.93 0.87 ***2.91 ***-2.77 -0.73 **-2.18 -0.8
BIO ***4.78 ***3.22 ***2.89 *1.79 ***3.18 -0.83 -0.40 ***-2.35 -1.3
INSUR ***-8.13 ***-3.68 ***-4.74 -0.20 ***-4.38 0.91 -1.00 1.41 ***-2.4
TEL ***8.34 ***3.42 ***4.68 1.15 ***3.64 ***-2.34 -0.34 **-2.22 -0.7
BANK ***-7.17 ***-3.42 ***-3.31 0.65 -0.82 -0.67 -1.96 -0.99 ***-4.1
FIN -0.92 -0.31 ***-1.79 1.39 -0.71 -0.41 ***-2.66 -0.66 ***-4.5
OFIN ***7.84 ***5.45 ***3.96 ***2.43 1.47 0.92 -0.49 0.86 -1.3
INTER ***13.79 ***6.04 ***6.69 **2.25 ***4.47 **-3.28 -0.24 ***-2.74 -1.1
PHARMA ***-4.77 ***-2.27 ***-3.63 -1.02 **-1.97 1.29 -0.54 0.83 0.0
AIR ***-14.10 ***-4.64 ***-5.25 -1.45 0.01 0.88 *1.74 -0.79 1.2
OIL ***-8.59 ***-5.97 ***-4.53 ***-2.91 ***-2.84 0.20 **2.24 1.14 1.5
SCAP ***-6.79 ***-2.56 ***-2.54 ***2.52 -0.38 0.96 1.59 0.35 ***-3.1
MCAP 1.35 -0.20 0.43 0.43 0.71 -0.17 0.25 -0.85 *-1.9
GROWTH ***14.57 ***9.08 ***5.90 **2.04 ***2.64 -1.32 0.07 -1.01 0.6
VALUE ***-15.43 ***-11.30 ***-8.32 ***-5.06 ***-2.49 -1.33 0.14 ***-3.12 -0.9
Note: Structural change tests for the full (non-truncated) pre-9/11 and post-9/11 subsamples are contained
in column 1. The rest of the table reports truncated (subsample) structural change and asymmetry tests.
"Mean-truncated" testing results are based on return data below or above sample averages (denoted by
l and u, respectively). "Tail truncated" testing results are based on the 0.05% smallest (largest) return
observations (denoted by l and u, respectively). The tests are calculated using Newey-West standard errors
robust to heteoskedasticity and autocorrelation. Moreover, the tests are normally distributed and two-sided
rejections at the 10, 5 and 2 percent significance level are denoted by *, ** and ***, respectively.
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Table 3. Dekkers-Einmahl-de Haan estimates of the
tail index: estimation and testing results

Indices DEDH bγ H0 : γ = 0

<9/11 >9/11 <9/11 >9/11
l u l u l u l u

INDU 0.279 0.266 0.155 0.183 ***3.361 ***2.409 **2.206 ***2.817
TRANS 0.177 0.190 0.346 0.228 ***3.157 ***2.376 ***3.298 ***4.351
UTIL 0.301 0.219 0.354 0.382 ***4.174 **2.250 ***7.310 ***5.843
PC 0.184 0.303 0.141 0.152 *1.806 ***4.236 **1.977 *1.773
BIO 0.194 0.181 0.019 0.095 1.171 *1.182 0.178 1.203
INSUR 0.333 0.290 0.100 0.262 ***2.660 ***3.408 1.104 ***3.549
TEL 0.205 0.302 0.176 0.097 ***2.763 ***4.458 ***2.546 0.846
BANK 0.207 0.284 0.022 0.250 ***3.336 ***3.931 0.173 ***3.898
FIN 0.187 0.205 -0.114 0.258 1.634 ***2.615 -0.824 ***4.301
OFIN 0.285 0.262 0.098 0.204 **2.028 ***3.691 1.387 ***2.464
INTER 0.259 0.317 0.122 0.170 ***2.107 ***5.488 1.567 ***2.199
PHARMA 0.234 0.164 0.175 0.174 ***3.910 **2.254 **2.147 **1.983
AIR 0.220 0.173 0.409 0.170 ***3.647 *1.895 ***3.109 **2.104
OIL 0.179 0.200 0.225 0.132 ***2.366 ***3.707 ***3.410 1.558
SCAP 0.209 0.262 0.010 0.227 ***3.111 ***3.294 0.146 ***3.615
MCAP 0.233 0.265 -0.010 0.153 **2.220 ***4.069 -0.070 1.558
GROWTH 0.206 0.283 0.141 0.163 1.439 ***4.912 *1.692 **2.194
VALUE 0.212 0.320 0.127 0.216 ***2.375 ***3.012 1.299 ***3.582
NYCOMP 0.246 0.293 0.140 0.185 ***2.664 **2.212 1.392 ***2.245
Note: The table reports estimates of the Dekkers-Einmahl-De Haan (DEDH) estimator and
corresponding co-exceedance probabilities for the pre-9/11 and post-9/11 subsample and for
the lower (l) and upper (u) bivariate tail separately. The co-exceedance probabilities are
calculated for a marginal significance level p=0.02%
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Table 4. Tail index and quantile estimation risk for rep-
resentative data generating processes

Tail index bα Quantile bqp
p = 0.05% p = 0.02%

aver. s.e. aver. s.e. qp aver. s.e. qp
Student(α = 2) 1.90 0.12 34.01 4.75 31.60 55.40 9.44 49.98
Student(α = 4) 3.57 0.42 8.82 0.88 8.61 11.48 1.48 10.91
Frechet(α = 2) 1.94 0.07 47.33 4.64 44.71 76.00 8.72 70.71
Frechet(α = 4) 3.90 0.13 6.85 0.33 6.69 8.67 0.48 8.41
Burr((α, β) = (2, 2)) 1.94 0.08 47.07 5.20 44.71 75.72 9.92 70.70
Burr((α, β) = (4, 2)) 3.67 0.31 6.80 0.57 6.61 8.75 0.92 8.35
Burr((α, β) = (2, 4)) 1.97 0.05 46.15 3.57 44.72 73.48 6.55 70.71
Burr((α, β) = (4, 4)) 3.88 0.17 6.86 0.38 6.69 8.70 0.58 8.41
Stab(α = 1.2) 1.23 0.06 189.42 37.98 - 402.86 97.09 -
Stab(α = 1.5) 1.60 0.15 52.54 11.26 - 94.71 25.62 -
AR((ρ, α) = (0.1, 1.2)) 1.25 0.07 188.67 41.33 - 397.02 104.07 -
AR((ρ, α) = (0.1, 1.5)) 1.66 0.16 49.30 11.04 - 86.99 24.50 -
SV((α, β, γ) = (2, 0.1, 0.9)) 1.95 0.12 32.32 4.46 31.60 52.03 8.68 49.98
SV((α, β, γ) = (4, 0.1, 0.9)) 3.76 0.45 8.43 0.83 8.61 10.83 1.37 10.91
GARCH((α, β0, β1) = (4, 0.3, 0.59)) 3.96 0.66 1.80E-2 3.76E-3 - 2.31E-2 6.51E-3 -
Note: The table reports average estimated values and true (analytic) values of the tail index and tail
quantile. Averages are calculated for samples of n=8,000 and for 250 replications. The optimal number
of highest order statistics m is determined analytically for all unconditional models by minimizing the
Asymptotic Mean Squared Error (AMSE). For Garch(1,1) models we choose m on basis of Hill plots and the
Beirlant et al. (1999) method. The univariate quantiles are calculated for marginal exceedance probabilities
equal to 0.05% and 0.02%.
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Table 5. Small sample critical values for (univariate)
tail index and tail quantile equality test

p=1% p=2.5% 5% p=95% p=97.5% p=99%
as. nor. -2.33 -1.96 -1.64 1.64 1.96 2.33

Panel A: H0 : α1 = α2
Student(α = 2) -2.27 -1.90 -1.61 1.60 1.91 2.24
Student(α = 4) -2.24 -1.89 -1.57 1.60 1.92 2.27
Frechet(α = 2) -2.33 -1.90 -1.61 1.62 1.92 2.31
Frechet(α = 4) -2.33 -1.93 -1.64 1.61 1.95 2.29
Burr((α, β) = (4, 2)) -2.17 -1.85 -1.55 1.60 1.85 2.17
Burr((α, β) = (2, 2)) -2.26 -1.95 -1.63 1.61 1.93 2.25
Burr((α, β) = (4, 4)) -2.25 -1.91 -1.61 1.59 1.91 2.21
Burr((α, β) = (2, 4)) -2.20 -1.93 -1.65 1.66 1.97 2.28
Stab(α = 1.2) -2.35 -1.99 -1.66 1.66 2.00 2.30
Stab(α = 1.5) -2.50 -1.98 -1.69 1.66 1.98 2.31
AR((ρ, α) = (0.1, 1.2)) -2.51 -2.10 -1.76 1.75 2.09 2.49
AR((ρ, α) = (0.1, 1.5)) -2.41 -2.04 -1.75 1.68 2.01 2.36
SV(α, β, γ) = ((2, 0.1, 0.9)) -2.22 -1.89 -1.58 1.60 1.90 2.17
SV((α, β, γ) = (4, 0.1, 0.9)) -2.20 -1.83 -1.54 1.53 1.81 2.17
GARCH((α, β0, β1) = (4, 0.3, 0.59)) -2.33 -1.96 -1.63 1.76 2.08 2.40

Panel B: H0 : q1 = q2
student (α = 2) -2.32 -1.95 -1.67 1.62 1.90 2.26
student (α = 4) -2.39 -1.91 -1.64 1.61 1.94 2.32
Frechet (α = 2) -2.33 -1.97 -1.64 1.63 1.92 2.34
Frechet (α = 4) -2.30 -1.95 -1.65 1.60 1.95 2.33
Burr((α, β) = (4, 2)) -2.25 -1.93 -1.63 1.57 1.86 2.27
Burr((α, β) = (2, 2)) -2.29 -1.94 -1.64 1.64 1.95 2.25
Burr((α, β) = (4, 4)) -2.27 -1.90 -1.61 1.63 1.94 2.26
Burr((α, β) = (2, 4)) -2.32 -1.99 -1.66 1.66 1.94 2.22
Stable(α = 1.2) -2.39 -2.00 -1.67 1.72 1.99 2.37
Stable(α = 1.5) -2.36 -2.03 -1.74 1.73 2.08 2.52
AR((ρ, α) = (0.1, 1.2)) -2.60 -2.15 -1.83 1.86 2.21 2.60
AR((ρ, α) = (0.1, 1.5)) -2.56 -2.13 -1.81 1.82 2.11 2.52
SV(α, β, γ) = ((2, 0.1, 0.9)) -2.23 -1.93 -1.62 1.61 1.93 2.25
SV((α, β, γ) = (4, 0.1, 0.9)) -2.14 -1.85 -1.59 1.63 1.92 2.30
GARCH((α, β0, β1) = (4, 0.3, 0.59)) -2.82 -2.39 -2.02 1.93 2.27 2.68
Note: The table reports small sample critical values for the tail index equality test (Panel A)
and the tail quantile equality test (panel B). Test statistics are based on samples of size n=8,000
and small sample critical values are obtained as quantiles averaged over 5,000 replications. The
optimal number of highest order statistics m is determined analytically for all unconditional models
by minimizing the Asymptotic Mean Squared Error (AMSE). For Garch(1,1) models we set m using
Hill plots and the Beirlant et al. (1999) method. The standard deviation in the test statistics’
denominators is either determined via a wild bootstrap (unconditional i.i.d. models) or a bootstrap
with block size 50 (GARCH(1,1)). The quantile equality test is performed for a marginal exceedance
probability of 0.02%.
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