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Technical Appendix  

A. 1 Distribution of the maximum belief 

The dynamic model outlined in the paper involves the distribution, F, of the 

contestant’s assessment of her chance of answering the question successfully. Without 

lifelines, ≡ nF F  is the distribution of ( )max
∈∆nx

x  if x has the probability density function, 

( )ψ n x . Indeed ( )max
∈∆nx

x  measures the individual assessment of her likelihood of answering 

the question correctly when faced with n alternatives. In this section, we describe formulae 

for the distribution of the highest order statistic ( ) { }
1
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F z X z , given that X  is 

distributed with density function ψ n . In particular we can show that 
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and, as a consequence, the density function ( )2f z  has support 
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 where is satisfies 

( ) [ ]2 2φ=f z z . The distribution function at higher orders can be obtained from 2F  

recursively. Whenever ( )0,1∈z , we have ( ) ( )1
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, and the relevant density functions, say 3f  and 4f , can be 

shown to exist and to be continuous everywhere inside ( )0,1 . For example, in the uniform 

case where ( ) 1φ =x  for [ ]0,1∈x , and 0 elsewhere, we find that  
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In this latter case it is easy to verify that the density function is continuous and that the 

derivatives match at the boundaries of each segment. The distribution functions nF  do depend 

on the density φ  in an important fashion. We interpret φ  as a description of the individual’s 
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knowledge. When φ  is diffuse over [ ]0,1  (e.g. uniform) all points on the simplex ∆n  are 

equally likely and in some instances the individual will have the belief that she can answer 

the question correctly while in some cases the beliefs will be relatively uninformative, while 

if φ  is concentrated around, or in the limit at, ½ the individual is always  indecisive. Finally, 

when φ ’s modes are located around 0 and 1, the individual is always relatively informed 

about the correct answer.  

A. 2 Lifelines 

Extending the model above to allow for the lifelines makes the analysis more difficult 

but also enables us to exploit more aspects of the data. We show how, in the first sub-section 

below, the model can be modified when only one lifeline is allowed for. In a second sub-

section we show how the model can be modified for all three lifelines. We then present the 

precise assumptions that allow the modelling of each lifeline in particular. 

A. 2.1  The complete game 

There are three lifelines available which can be played at most once. As above each 

lifeline generates a new belief, q, which is used in the decision process. Given the initial 

belief p, the new belief is drawn from a separate distribution for each lifeline, say ( )1 |H q p  

for 50:50, ( )2 |H q p  for ATA and ( )3 |H q p  for PAF. We write ( )1 2 3, ,γ γ γ=  for the 

“lifeline state” vector where 0γ =i  if the i th lifeline has been played and 1 otherwise. We use 

( );nW p  to denote the optimal expected value of the game at stage n, when the probability 

vector of the current question is p and the lifeline state is ( )1 2 3, ,γ γ γ . As above, ( )nV p  is 

used as a shorthand for ( )( ); 0,0,0nW p  and ( )nV p  satisfies the recursive dynamic 

programming equations set out in section 5.1 above. Below we write the dynamic 

programming equations using the notation ( )( ) ( )( )1 2 3 1 2 3, , E ; , , ,γ γ γ γ γ γ =  n n nf W P  where 

the expectation is with respect to nP , the distribution of the belief vector p at stage n. When 

there are one or more lifeline left, i.e. 1 2 3 1γ γ γ+ + ≥ , the contestant has three options: (i) quit, 

(ii) answer the question, (iii) use one of the remaining lifelines. The recursive equation is 

( ) ( )( ) ( ){ }1 1; max , , ;− −= − +n n n n n nW a p f b b kp p  where ( );nk p  denotes the maximum 

expected value from using a lifeline when the belief is p and the lifeline state vector is . 
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Here, ( )
( )

( ){ }; max E ; |
∈

= −  n n i i
i I

k W
�

p Q e p  where ( ) { }:= ≤jI j e  using ie  to denote the 

i th unit vector in 3R  and iQ  is distributed according to ( )|iH q p . This formulation does not 

preclude an individual from using more than one lifeline on the same question, a behaviour 

we observe in some contestants. 

A. 2.2 “50:50” 

This is the simplest lifeline to model. It provides the contestant with “perfect 

information” since two incorrect answers are removed. Ex-ante (i.e. before the lifeline is 

played) the contestant believes that the correct answer is i (=1,…,4) with probability ip . The 

50:50 lifeline removes two of the incorrect answers, retaining ≠j i , say, with equal 

probability (1/3). By Bayes Theorem, the probability that answers i,j  survive this elimination 

process is 3ip . The answers i and j can also be retained if j is correct and i survives 

elimination. This occurs with probability 3jp . Applying Bayes Theorem gives the updated 

belief vector { },i jq , where { },  equals  if ,  if ,  = =
+ +

i j ji
k

i j i j

pp
k i k j

p p p p
q and 0 otherwise. 

Hence ( )1 ;H q p  is a discrete distribution with support { }{ }{ } { }
,

, 1,2,3,4∈

i j

i j
q  such that  

{ }( ) ( ),
1 ; 3= +i j

i jH p pq p , and 0 elsewhere. 

A. 2.3 “Ask the Audience” 

Modelling ATA requires more than simply applying Bayes’ rule to the current belief 

draw. In particular we must allow the contestant to learn from the information provided by 

the lifeline, i.e. here the proportions of the audience’s votes in favour of each alternative 

answer. The difficulty here is to understand why and how should a “perfectly informed” 

rational individual revise his/her prior on the basis of someone else’s opinion?  The route we 

follow here was proposed by French (1980) in the context of belief updating after the opinion 

of an expert is made available. French suggests that the updated belief that some event A is 

realised after some information inf has been revealed should be obtained from the initial 

belief, [ ]Pr A ,  the marginal probability that a given realisation of the information is 

revealed, [ ]Pr inf , and the individual’s belief about the likelihood that the information will 

arise if A subsequently occurs, Pr[inf | ]A  according to the following rule, related to Bayes 
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theorem: [ ] [ ]Pr | inf Pr inf | Pr[ ] / Pr[inf]=A A A . In this expression Pr[inf | ]A  is understood 

as another component of the individual’s belief - her assessment of the likelihood of the 

signal given that the relevant event subsequently occurs. Introducing A, A’s alternative 

event, this is rewritten as 

 [ ] [ ]
[ ]

Pr inf | Pr[ ]
Pr | inf

Pr inf | Pr[ ] Pr inf | Pr[ ]
=

 +  

A A
A

A A A A
.               

In our context we treat asking the audience as an appeal to an expert, and assume that the 

events of interest are the four events “answer k is correct”, k=1,2,3,4. We assume that 

contestants “learn” some information about the quality of the expert in particular the 

distribution of the quantities ( )1 2 3 4Pr , , , | answer  is correct θ= ≡   kq q q q kq , where kq  is the 

proportion of votes allocated to the kth alternative. Following French’s proposal, the kth 

component of the updated belief π  given the information q is 
4

1

π θ θ
=

= ∑k k k j j
j

p p . Let us 

assume for now that each contestant knows the joint distribution of the vector 

( )1 2 3 4, , ,θ θ θ θ θ= . In fact the above expression implies that, without loss of generality, we 

can normalise the θk  to sum to one. Denote ( )θI  the density function of θ  given some 

initial belief p. Given p, the density of the updated belief ( )2 ;πH p  can be calculated as 

( ) ( )( )
44 4
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; ;π θ π π −
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p pp . The term 
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 arises because of the change of variable from θ  to π . 

The quantities ( )1 2 3 4Pr , , , | answer  is correct θ= ≡   kq q q q kq  represent the added 

information obtained from using the lifeline and are estimable from the data provided we 

assume a form of conditional independence. In particular we require that the contestant’s 

choice to ask the audience does not influence the audience’s answer. Furthermore, we assume 

that there is no information contained in the position of the correct answer, hence we expect 

the following symmetry restrictions to hold : 
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( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 2 3 4 11 2 3

11 2 3

11 2 3

Pr , , , | answer 1 is correct Pr , , , | answer 2 is correct

Pr , , , | answer 3 is correct

Pr , , , | answer 4 is correct ,

σ σ σ

σ σ σ
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′′ ′′ ′′
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 

 = =
 
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q q q q

q q q q
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where ( ) ( ) ( )( )1 , 2 , 3σ σ σ , ( ) ( ) ( )( )1 , 2 , 3σ σ σ′ ′ ′   and ( ) ( ) ( )( )1 , 2 , 3σ σ σ′′ ′′ ′′   are some 

permutations of ( )2,3,4 . The symmetry restrictions, the conditional independence 

assumption, and the uniform random allocation of the correct answer among four alternative 

answers allow us to estimate the likelihood of the information given the position of the 

correct answer, and therefore provide empirical estimates for 

( )1 2 3 4Pr , , , | answer  is correct=  q q q q kq . In practice we assume that, given answer k is 

correct, information q has a Dirichlet density ( )( ); ,γ λ νkD q  , k=1…4, defined over 4∆  such 

that ( )( ) ( )
( ) ( )

4
1

3
1

3
; , ,ν λ νν λ
γ λ ν

λ ν
− −

=

Γ +  =  Γ Γ  
∏k i k
i

D q qq  where the symmetry assumption is 

imposed through the parameter vector  ( ) ( ),γ λ ν ν λ ν= + −k ke  with ke  is a vector of zeros 

with a 1 in position k. This vector of parameters for the Dirichlet density depends on two free 

parameters only,λ  and ν . These two parameters can be estimated (independently from the 

other parameters of the model) by maximum likelihood from the observation of the 

information obtained from the audience (i.e. the histograms) whenever the lifeline is used, 

and the observation of which answer is the correct answer (even when the contestant chooses 

an incorrect answer, the compére always reveals the correct one). For completeness note that 

θk can be defined in terms of the elements of q as 
4

1

λ ν λ νθ − −

=
= ∑k k j

j

q q . The information 

density which the contestant expects is therefore the mixture ( ); , ,λ νD q p  of the previous 

densities ( )( ); ,γ λ νkD q  , k=1…4, conditional on a given answer being correct, we have: 

( ) ( )( ) ( )
( ) ( )

44 4
1

3
1 11

3
; , , ; , ,ν λ νν λ

λ ν γ λ ν
λ ν

− −

= ==

Γ +    = =    Γ Γ   
∑ ∑∏i i i i i
i ii

D p D q p qq p q  where the mixing 

weights are the initial beliefs , 1...4=ip i . 
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A. 2.4 “Phone a Friend” 

To use this lifeline the contestant determines, ahead of the game, six potential experts 

(“friends”) and when she plays the lifeline she chooses one from this list of six. We imagine 

that the contestant engages in some diversification when drawing up the list (i.e. the range 

and quality of “expert knowledge” of the friends on the list is in some way optimised), and at 

the time of playing the lifeline the contestant chooses the expert to call optimally. There is 

however little information available to us about this process. As a consequence our model for 

this particular lifeline is somewhat crude. We assume that the entire process can be modelled 

as an appeal to an expert who knows the answer with some probability κ , and is ignorant 

with the probability 1 κ− . We assume that the expert informs the contestant of his 

confidence (contestants invariably ask the friend how confident they feel – although the 

answer is usually not quantitative). Hence either the contestant knows the answer and her 

opinion “swamps” the contestant’s belief, or the expert is ignorant and conveys no 

information and the contestant’s belief is left unchanged. The density of the updated belief is 

therefore ( ) ( ) ( ) [ ]3 1,0,0,0
; 1 πππ κ κ ==  

= + −H pp 1 1 . 

A. 3  Proposition (factorisation of ( )4 1 2 3 4, , ,χ x x x x ): 

The joint density: ( ) ( ) 32
4 1 2 3 4 1

2 1 1 2

2
, , ,

1 1
χ φ φ φ

µ
   

=    − − −   

xx
x x x x x

x x x
, such that 

4

1

1
=

=∑ i
i

x , 

0≥ix  for all i, can be factorised as follows: 

( ) ( ) ( ) ( )
1 2 1 3 1 24 1 2 3 4 1 | 2 1 | , 3 1 2, , , ; ; ,χ = U U U U U Ux x x x f x f x x f x x x ,  

( )
1Uf u , ( )

2 1| ;U Uf v u , ( )
3 1 2| , ; ,U U Uf w u v , are (conditional) densities such that 

( ) ( ) ( )
[ ]1

2

0 1
2

1 φ
µ ≤ ≤

−
=U u

u u
f u 1 , with ( ) ( )1 2

2 0
1µ φ= −∫ x x dx, 

 ( ) ( )
( ) [ ]2 1| 0 12

1
; 2

11
φ ≤ ≤ −

− −  =  − −
U U v u

u v v
f v u

uu
1  and 

 ( ) [ ]3 1 2| , 0 1

1
; ,

1 1
φ ≤ ≤ − −
 =  − − − − 

U U U w u v

w
f w u v

u v u v
1 . 

Proof: It is easy to verify, by simple integration for ( )
1Uf u , ( )

2 1| ;U Uf v u ,  and by construction 

for ( )
3 1 2| , ; ,U U Uf w u v , all three are well defined densities over the relevant ranges. Moreover 
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their product is equal to ( )4 .χ . This implies that if 1 2,U U  and 3U  are three random variables 

each distributed with densities ( )
1Uf u , ( )

2 1| ;U Uf v u ,  and ( )
3 1 2| , ; ,U U Uf w u v , then the random 

vector ( )1 1 2 1 2 3 1 2 3=P U U U U U U U U U , with 1= −i iU U  for all i=1..3, is distributed with 

joint density: ( ) ( ) 32
4 1 2 3 4 1

2 1 1 2

2
, , ,

1 1
χ φ φ φ

µ
   

=    − − −   

xx
x x x x x

x x x
. Note that, by construction, 

' 1=P e , and 0≥P . Since ( )4χ x  and ( )4ψ x  share the same joint density for the order 

statistics, i.e. ( )44!ψ ɶx  where ɶx  has elements in descending order, to sample from ( )44!ψ ɶx  

we sample first from ( )4 .χ  and sort the resulting vector in descending order. 

A.4   Probabilities and Simulated Likelihood 

Here we describe the evaluation of some of the probabilities that lead to the log 

likelihood. A complete description of the calculations can be obtained from the authors. 

Calculating the probabilities when only one lifeline is available. 

When the contestant has used all her lifelines, the events of interest are quitting or 

losing (and, for the last question, the event that the contestant wins the million prize). The 

probabilities of these events can be calculated directly from the analytical expressions given 

in section 5.1 using the formulation for F we derive in section 5.3.  When one or more 

lifelines are available the calculations are made more complicated because of the information 

which is gained when the lifeline is used and which allows the contestant to update her belief. 

Hence, given the initial draw of the belief we determine whether this particular draw leads to 

the use of the lifeline and, if so, whether the updated belief, or the original belief, if the 

lifeline is not played, is informative enough to lead to an answer attempt. Finally, we evaluate 

the probability that the answer is correct (under the original or the updated belief). We will 

write ( ),Ω ijk
k n p  as the probability that given p at stage n event k (which is defined precisely 

below) is observed, given that the contestant is in the lifeline-state ijk, where i, (respectively j 

or k)  is one if the first (respectively second or third)  lifeline is yet to be played and zero 

otherwise. Let, ,Ω ijk
k n  be the expected value of ( ),Ω ijk

k n p  over all possible realisations of p, i.e. 

( ), ,E  Ω = Ω 
ijk ijk
k n k n P . Finally ( ),

,
′ ′ ′Ω ijk i j k

k n p  stand for the probability that given p at stage n event 

k is observed given that the contestant starts the question in the lifeline-state ijk and transit to 

lifeline-state i’j’k’ . We consider below representative events for each lifeline.  
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“50:50” is the only lifeline available at stage n.  

The contestant uses “50:50”, plays and wins (moves to the next stage or wins the million 

prize). 

First, define the probability that 50:50 is used, she plays and wins, given a draw 

(ordered in decreasing order) p from the belief distribution, as 

{ } { } { } { }nPr 50:50 plays wins | stage ,∩ ∩  p   

( ) ( ) ( )( ) ( )1
1 1

100 100,000
1, 1,,0,0,0 1,0,0

,
− ≥ − + 

Ω = Ω
n n n n

n nk p f b bp
p 1 p  where 

 ( ) ( ) ( )( )
3 4

100,000
1, 1 1

1 1

1
0,0,0

3
π − +

= = +

 Ω = − + ≥ ∑ ∑n j jk n n n n
j k j

p f b b ap 1 p ,  with

π =
+

j
jk

j k

p

p p
. This last expression is the probability that, given p, the contestant correctly 

answers after using the lifeline. Hence, the unconditional probability satisfies 

{ } { } { } { }

( ) ( )( ) ( ) ( )1
1 1

100
n 1,

100,000
1, 4,0,0,0 1,0,0

Pr 50:50 plays wins | stage 

,ψ
− ≥ − +∆  

∩ ∩ ≡ Ω  

= Ω∫ n n n n

n

o
nk p f b b

d
p

1 p p p
4

 

where 4∆  is the subset of the 4-simplex where 1 2 3 4 0≥ ≥ ≥ ≥p p p p . In order to determine 

the probabilities we have used the fact that a contestant with a lifeline available will either 

use it (and perhaps then quit), or play. It is straightforward to verify that the five expressions 

above sum to unity; in particular the sum of the first three expressions is the probability that 

the contestant uses the lifeline and this is the complement of the sum of the last two 

probabilities. Each term of the sum that determines ( )100
1Ω p  (and similarly ( )100

2Ω p and 

( )100
3Ω p ) is the product of the probability that a given two of the four options remain after the 

lifeline is played,  with probability ( ) / 3+j kp p , multiplied by the probability that the 

remaining alternative with the largest updated belief is correct, with probability 

( )π =
+

j
jk

j k

p

p p
p  with ≥j kp p , multiplied by the indicator that, given the updated belief, the 

contestant decides to play. 

“Ask the Audience” is the only lifeline left at stage n. 

The contestant uses “Ask the Audience”, plays and loses, 
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{ } { } { } { } ( ) ( )010 010
n 2, 2, 4Pr ATA plays loses | stage ,ψ

∆
∩ ∩ ≡ Ω = Ω   ∫

o
n n dp p p

4

 where 

( ) ( ) ( )( ) ( )010 2 010,000
2, 1 1 2,,0,0,0 0,1,0− Ω = ≥ − + Ω n n n n n nk p f b bp 1 p p , and 

( ) ( )( ) ( ) ( )( ) ( )010,000
2, 1 1 1 11 ; ; 0,0,0 ; , ,π π λ ν− +∆

 Ω = − − + ≥ ∫n n n n nf b b a D dp q p 1 q p q p q
4

 where 

( );π q p  stands for the revised belief after information vector q  is made available and 

( )1 ;π q p  is the largest element in ( );π q p .  

“Phone a Friend” is the only lifeline left at stage n. 

The contestant uses “Phone a Friend” and quits, 

{ } { } { } ( ) ( )001 001
n 3, 3, 4Pr PAF quits | stage ,ψ

∆
∩ ≡ Ω = Ω   ∫

o
n n dp p p

4

where ( ) ( ) ( )( ) ( )3
1 1

001 001,000
3, 3,,0,0,0 0,0,1− ≥ − +

 
Ω = Ω

n n n n
n nk p f b bp

p 1 p  

and ( ) ( ) ( )( )1 1 1

001,000
3, 0,0,0

1 κ
− + − + < 

Ω = −
n n n n

n p f b b a
p 1 . 

General Case: all the lifelines are available 

When more than one lifeline is available at a given stage, the number of elementary 

events of interest increases, since not only can the contestants decide to play one lifeline 

among many but the contestant can play more than one lifeline to answer a single question. 

Hence while there are only five elementary events of interest when only one given lifeline is 

left there are nine such events when two lifelines are available and seventeen when all three 

lifelines are available, ignoring the order in which the contestant uses the lifeline and not 

counting events with zero probability ex-ante (for example observing an event such as 

quitting while the three lifelines are available). In this section we present the relevant 

expressions needed to obtain the probabilities of a few selected elementary events. All other 

probabilities can be obtained in a similar fashion. 

The contestant uses the three lifelines (in any order), plays and loses. 

{ } { } { } { }

( ) ( )( ) ( ) ( ){ } ( )

( ) ( )( ) ( ) ( ){ } ( )
1 2 3

1 1

2 1 3
1 1

111
n 2,

111,011
2,,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0

111,101
2,,1,0,1 max 1,1,1 , ,0,1,1 , ,1,1,0

Pr uses all life lines plays loses | stage

−

−

 ≥ − +∆  

 ≥ − +
 

∩ ∩ ≡ Ω  

= Ω

+ Ω

+

∫
n n n n n n

n n n n n n

n

nk p f b b k k

nk p f b b k k

k

p p p

p p p

1 p

1 p

1

4

( ) ( )( ) ( ) ( ){ } ( ) ( )3 1 2
1 1

111,110
2, 4,1,1,0 max 1,1,1 , ,0,1,1 , ,1,0,1

.ψ
−

 ≥ − +
 

Ω
n n n n n n

o
np f b b k k

d
p p p

p p p

  



x 

 

( ) ( ) ( )( )( )
3 4

111,011 011
2, 2, , ,

1 1

1
, ,0,0

3
π π

= = +

Ω = Ω∑ ∑n n j k k j
j k j

p p p , ( ) ( )( ) ( )111,101 101
2, 2, ; ; , ,π λ ν

∆
Ω = Ω∫n n D dp q p q p q

4

, 

and ( ) ( ) ( ) ( )111,110 110 110
2, 2, 2,1,0,0,0 1κ κΩ = Ω + − Ωn n np p . Inspection of these expressions reveals that 

the probabilities of events in which more than one lifeline is available, here 111
2,Ω n , can be 

defined recursively in terms of the conditional probability of events with one fewer lifeline, 

given the initial belief draw, here ( )011
2,Ω n p ,  ( )101

2,Ω n p  and ( )110
2,Ω n p . In turn, each of these 

conditional probabilities can be calculated from conditional probabilities involving only one 

lifeline, i.e. ( )001
2,Ω n p ,  ( )100

2,Ω n p  and ( )010
2,Ω n p  . This property is a consequence of the recursive 

definition of the value function over the lifeline part of the state space (see section 5.4.b). 

Recall, however, that the number of events of interest when the three lifelines are available is 

larger than when only two or less are available. Hence the definition of 17 probabilities with 

three lifeline at stage n, i.e. 111
,Ωm n, m=1…17, will involve the 27 conditional probabilities with 

two lifelines, i.e. ( )011
,Ωm n p , ( )101

,Ωm n p  and ( )110
,Ωm n p , m=1…9. In turn each of these conditional 

probabilities will depend on the 15 probabilities with one lifeline as defined in the previous 

section, i.e. ( )100
,Ωm n p ,  ( )010

,Ωm n p  and ( )001
,Ωm n p  m=1…5. 

The three lifelines are available, the contestant uses “50:50” , plays and wins. 

{ } { } { } { }

( ) ( )( ) ( ) ( ){ } ( ) ( )1 2 3
1 1

111
n 10,

111,011
10, 4,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0

Pr 50:50 only plays wins | stage

.ψ
−

 ≥ − +∆  

∩ ∩ ≡ Ω  

= Ω∫
n n n n n n

n

o
nk p f b b k k

d
p p p

1 p p p
4

           

with  ( ) ( ) ( )( )( )
3 4

111,011 011
10, 8, , ,

1 1

1
, ,0,0

3
π π

= = +
Ω = Ω∑∑n n j k k j

j k j

p p p  where ( )011
8,Ω n p  is the probability that 

with ATA and PAF available, for some belief p, the individual plays and wins. 

Three lifelines are available, the contestant does not use any, plays and loses. 

{ } { } { } { }

( )( ) ( ) ( ) ( ){ } ( ) ( )1 2 3
1 1

111
17,

1 41,1,1 max ,0,1,1 , ,1,0,1 , ,1,1,0

Pr does not use any of the 3 life lines plays loses | stage n

1 .ψ
−

 − + ≥∆  

∩ ∩ ≡ Ω  

= −∫
n n n n n n

n

o

p f b b k k k
p d

p p p
1 p p

4

 

Simulation and smoothing  

The evaluation of the probabilities ( ),Ω rst
m n p , n=1..15, m=1..17,  ( ) { }3

, , 0,1∈r s t  and of 

the conditional expectations ( ), , ,j
nk r s tp , n=1..15, j=1..3, and ( ) { }3

, , 0,1∈r s t   requires the 
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use multidimensional integration techniques. If ,Ω rst
m n is not defined for some m, and some 

r,s,t  we assume , 0Ω =rst
m n . Simulation methods (as described in Gouriéroux and Monfort 

(1996) and Train (2003)) are well suited and have been applied successfully in similar 

context (see the examples discussed in Adda and Cooper, (2003)). 

Clearly the specification of the belief lends itself to a simulation based likelihood 

methodology since simulations of Beta variates are obtained simply from Gamma variates 

(see for example Poirier (1995)). In turn, Gamma variates can be obtained directly, using the 

inverse of the incomplete Gamma function. Numerically accurate methods to evaluate the 

inverse of the incomplete Gamma function are detailed in Didonato and Morris (1996). This 

is implemented in Gauss in the procedure gammaii (contained in the file cdfchic.src). The 

main advantage of their results is that it allows for simulations that are continuous in the 

parameters of the Gamma distributions. Evaluation by simulation of an integral involving the 

density of a 4 dimensional Dirichlet random vector, ( ); , ,λ νD q p , is obtained directly by the 

simulation of each of its component. For example 

( ) ( ) ( ) ( )( ) ( ) ( )1
1 1

100 100 100,000
1, 1, 4 1, 4,0,0,0 1,0,0

,ψ ψ
− ≥ − +∆ ∆  

Ω = Ω = Ω∫ ∫
n n n n

o o
n n nk p f b b

d d
p

p p p 1 p p p
4 4

 can be 

approximated by � ( ) ( ) ( ) ( )( ) ( )1
1, 1

100
100 100,000

1, 1, 1,,0,0,0 1,0,0
1 1

1 1
,

− ≥ − + = =

Ω = Ω = Ω∑ ∑
n s s n n n

S S

n n s n sk p f b b
s s

S
S S p

p 1 p  where sp  

is one of S (the number of simulations) independent draws from the distribution of the order 

statistics of the belief,  ( )4 .ψ o . In fact the accuracy of this simulated probability, and of all 

others which involve draws from ( )4 .ψ o , can be improved through antithetic variance 

reduction techniques which involve the permutations of the gamma variates used to generate 

each individual beta variate (as explained, for example, in Train (2003)).  Moreover, 

( ) ( )( ) ( ) ( ){ } ( ) ( )1 2 3
1 1

111 111,011
10, 10, 4,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0

.ψ
−

 ≥ − +∆  

Ω = Ω∫
n n n n n n

o
n nk p f b b k k

d
p p p

1 p p p
4

 is a quantity that can 

be evaluated using the simpler formula 

( ) ( ) ( )( ) ( ) ( ){ } ( )1 2 3
1, 1

111 111,011
10, 10,,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0

1

1ˆ
−

 ≥ − +
 =

Ω = Ω∑
n s s n n n n s n s

S

n n sk p f b b k k
s

S
S p p p

1 p ,  or any 

improvement of it. Similarly ( ) ( )( ) ( )111,101 101
2, 2, ; ; , ,π λ ν

∆
Ω = Ω∫n n D dp q p q p q

4

 can be evaluated by 

( ) ( )( )
4

111,101 101
2, 2, ,

1 1

1ˆ ; ;π
= =

 Ω = Ω
 ∑ ∑

S

n i n s i
i s

S p
S

p q p , where ,s iq  is one of S independent draws from 

( )( ); ,γ λ νiD q . In practice, we use S=96. 
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Finally all quantities ( ) ( )
2

2
|, , , E , , , |π≡ Π  ɶ

n nk r s t W r s tpp p  which involve a multi 

dimensional integral and the joint density ( ); , ,λ νD q p  can be obtained in a similar fashion: 

for example, using ( ) ( )
4

2
,

i=1 1

1ˆ , , , ; = , , ,
S =
∑ ∑

S

n i n s i
s

k r s t S p W r s tp q , where ,s iq  is one of S independent 

draws from ( )( ); ,γ λ νiD q . In practice these expression are modified in order to smooth out 

the discontinuities that are created by the indicator terms. Hence, the indicator functions 

{ }1 2 3 4max , ,
,

 ≥ v v v v
1  { }1 2 3max ,

,
 ≥ v v v

1  or [ ]1 2
,≥v v1  are replaced by their smoothed versions,

( )( ) ( )( ) ( )( )3 12 1 4 1

1
,

1 e e eηη η−− −+ + +v vv v v v ( )( ) ( )( )3 12 1

1

1 e e
ηη −−+ + v vv v

, and 
( )( )2 1

1

1 eη −+ v v
 respectively, where η  is a 

smoothing constant. In the limit as η → +∞   the smoothed versions tend to the indicators. 
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Figure A1  Observed versus Predicted Use of Lifelines 

 
Note: Predicted frequencies shown as shaded bars, observed frequencies as empty bars. 

 

 


