Technical Appendix

A. 1 Distribution of the maximum belief

The dynamic model outlined in the paper involveg ttistribution, F, of the

contestant’s assessment of her chance of answénmgquestion successfully. Without

lifelines, F =F is the distribution ofn%?x(x) if X has the probability density function,

¥, (x). Indeed szA;lx(x) measures the individual assessment of her liketihaf answering

the question correctly when faced withalternatives. In this section, we describe forraula

for the distribution of the highest order statisfi¢(z) = Pr[ﬂi”:l{ X, < z}] given thatX is

distributed with density functiog , . In particular we can show that

0 iz< %
F(z)=120[4-1 if < z<1,
1 otherwise.

and, as a consequence, the density functip(z) has suppor{%,l} where is satisfies

f,(z)=2¢[ 7 . The distribution function at higher orders can bktained from F,

recursively.  Whenever1(0,1), we have F,(z)=2 11_2 F{é} w(y) dy, and
1

F(2) :7 11_2 5[3 Y'o( y) dy, and the relevant density functions, sfyand f,, can be
2

shown to exist and to be continuous everywherad@ngd,1). For example, in the uniform

case wherep(x) =1 for x0[0,1], and 0 elsewhere, we find that

0 if0z< ¥,
(4z-2)° ipa< 2<%
Fi(2)= ~447° + 607 - 24z+ 3 if%< =¥
1-4(1-2)° if,< z< 1

In this latter case it is easy to verify that thensity function is continuous and that the

derivatives match at the boundaries of each segriatdistribution functions-, do depend

on the densityp in an important fashion. We interprgt as a description of the individual's
[



knowledge. Wheng is diffuse over[O,l] (e.g. uniform) all points on the simpleX, are

equally likely and in some instances the individwél have the belief that she can answer
the question correctly while in some cases theetselill be relatively uninformative, while

if @ is concentrated around, or in the limit at, %zitidividual is always indecisive. Finally,

when @’s modes are located around O and 1, the individualways relatively informed

about the correct answer.

A. 2 Lifelines

Extending the model above to allow for the lifeBrmaakes the analysis more difficult
but also enables us to exploit more aspects ofisii@. We show how, in the first sub-section
below, the model can be modified when only ondititeis allowed for. In a second sub-
section we show how the model can be modified fothaee lifelines. We then present the

precise assumptions that allow the modelling ohddeline in particular.
A. 2.1 The complete game

There are three lifelines available which can kay@ll at most once. As above each
lifeline generates a new belief, which is used in the decision process. Givenititgl

belief p, the new belief is drawn from a separate distidufor each lifeline, sayH, (q|p)

for 50:50, H,(q|p) for ATA and H,(q|p) for PAF. We writey =(y,,y,,y,) for the
“lifeline state” vector whergy; =0 if thei™ lifeline has been played and 1 otherwise. We use
W, (p;y) to denote the optimal expected value of the gaimstage n, when the probability
vector of the current question isand the lifeline state i§y,,y,,y,). As above\V, (p) is
used as a shorthand foNn(p;(0,0,0)) and V, (p) satisfies the recursive dynamic
programming equations set out in section 5.1 abd®elow we write the dynamic
programming equations using the notati(ﬁp((yl,yz,ys)): E[Wn(Pn;(yl,yz,ys))], where
the expectation is with respect K, the distribution of the belief vectprat stagen. When

there are one or more lifeline left, i.g.+ ), + ), =1, the contestant has three options: (i) quit,

(i) answer the question, (iii) use one of the remmg lifelines. The recursive equation is
W, (py)=max{a.,.p( f.(v)- b)+ b.k(pw)} where k, (piy) denotes the maximum

expected value from using a lifeline when the aBep and the lifeline state vector is.



Here, k, ( max{ EHW,(Q,v-e) |p]} where | () :{j e sv} usinge to denote the

iol

M unit vector inR® and Q, is distributed according téi, (q|p). This formulation does not
preclude an individual from using more than onelilife on the same question, a behaviour
we observe in some contestants.

A. 2.2 "50:50”

This is the simplest lifeline to model. It providése contestant with “perfect
information” since two incorrect answers are renmtbvex-ante (i.e. before the lifeline is
played) the contestant believes that the correstvanis i (=1,...,4) with probabilityp,. The
50:50 lifeline removes two of the incorrect answemstaining j #i, say, with equal
probability (1/3). By Bayes Theorem, the probabithhat answersj survive this elimination
process isp./3. The answers andj can also be retained jfis correct and survives

elimination. This occurs with probability, /3. Applying Bayes Theorem gives the updated

belief vector g}, whereg!” equalsL i1k:i,L ilk=j,and O otherwise.
(VIR Y R+ R
Hence H,(q;p) is a discrete distribution with suppon{tq }{i,j}u{l,z,s,4 such that

Hl(q{"j};p) =(p +p)/3, and 0 elsewhere.

A. 2.3 “Ask the Audience”

Modelling ATA requires more than simply applyingy@a’ rule to the current belief
draw. In particular we must allow the contestantetarn from the information provided by
the lifeline, i.e. here the proportions of the aundie’s votes in favour of each alternative
answer. The difficulty here is to understand whyl drow should a “perfectly informed”
rational individual revise his/her prior on the isasf someone else’s opinion? The route we
follow here was proposed by French (1980) in thetext of belief updating after the opinion
of an expert is made available. French suggestshkraupdated belief that some event A is
realised after some information inf has been reacahould be obtained from the initial

belief, Pr[A], the marginal probability that a given realisatiof the information is
revealed,Pr[inf], and the individual's belief about the likelihotlat the information will
arise if A subsequently occur®r[inf | A] according to the following rule, related to Bayes



theorem:Pr[ A |inf] = P inf |A] Pr{A]/ Pr[inf]. In this expressiorPr[inf | A] is understood
as another component of the individual’'s beliefer lassessment of the likelihood of the
signal given that the relevant event subsequentburs. IntroducingA, A’s alternative

event, this is rewritten as

Prinf | A] Pr{A]
Pr[inf | A] Pr{A]+ P inf |A] PrA]

Pr{A]inf] =

In our context we treat asking the audience aspgeal to an expert, and assume that the
events of interest are the four events “answeas correct”, k=1,2,3,4. We assume that
contestants “learn” some information about the igpabf the expert in particular the

distribution of the quantitie®r{ q=(q,0,.0.q,) |answelk is correft §,, whereg, is the

proportion of votes allocated to thd" alternative. Following French’s proposal, thi8

4
component of the updated belief given the information q isz, =6, p, ZHJ. p,. Let us
j=1

assume for now that each contestant knows the jdistribution of the vector

6=(6,6,.6,,6,). In fact the above expression implies that, withiess of generality, we
can normalise thef, to sum to one. Denoté(6) the density function o given some

initial belief p. Given p, the density of the upetbelief H,(7;p) can be calculated as
4 4 4 _ Py .

Hz(n',p):l(e(n:p))(ﬂ pkj(anpk‘lj , with g (mp)=7p™*/> 7 p™". The term
= k=1 k=1

4 4 4
U:l pkjtzﬂ] arises because of the change of variable fébto 77.

k=1 Py

The quantities Pr[q=(0,,0,.0.0,) |answek is corrept 6, represent the added

information obtained from using the lifeline ande arstimable from the data provided we
assume a form of conditional independence. In @adr we require that the contestant’s
choice to ask the audience does not influenceubdeace’s answer. Furthermore, we assume
that there is no information contained in the posibf the correct answer, hence we expect

the following symmetry restrictions to hold :



Pr[q =(9.9,.%.q,) |answer 1 is corre};t i:q:( %y 9 G geg)) | answes Qorrecﬂ

=Prlq

(qa,(l) %y ,q,qj,(a) | answer 3 is corregt

=Pr|q

(qgn(l) 0193 ) | answer 4 is corre}:l

where (0(1),0(2).0(3), (¢'(1).0(2).0(3) and (0'(2),0'(2),0"(3) are some
permutations of (2,3,4). The symmetry restrictions, the conditional indegence

assumption, and the uniform random allocation efdbrrect answer among four alternative
answers allow us to estimate the likelihood of thi®rmation given the position of the

correct answer, and therefore provide empirical  imedes for

Pr[q:(ql,qz,oe,q) | answelk is corre}. In practice we assume that, given answes

correct, informatiorg has a Dirichlet densityp (q;yk (A,v)) ,k=1...4, defined ove\, such

3v+/1

that D(q;yk(/l,u)) (” q lj A where the symmetry assumption is

imposed through the parameter vectgy(A,v)=v +e, (4 -v) with € _is a vector of zeros

with a 1 in positiork. This vector of parameters for the Dirichlet dgngiepends on two free
parameters onlyl andv . These two parameters can be estimated (indepiéydem the
other parameters of the model) by maximum likeltholmom the observation of the
information obtained from the audience (i.e. thetdgrams) whenever the lifeline is used,
and the observation of which answer is the comastver (even when the contestant chooses

an incorrect answer, the compére always revealsdirect one). For completeness note that

4
g,can be defined in terms of the elements of gdas qk”/z q,"" . The information

=1
density which the contestant expects is therefoeemixtureD(q;p,/l,v) of the previous

densitiesD(q;yk (A,v)) , k=1...4, conditional on a given answer being correa, lvave:

D(Q;p,A,V)=iZ;:piD(q;yi(/Lv))— "(¥+4) (I‘Jq j(gpq”‘vj, where the mixing

weights are the initial beliefg,,i =1...4.



A. 2.4 “Phone a Friend”

To use this lifeline the contestant determinesadhd the game, six potential experts
(“friends”) and when she plays the lifeline she ab®s one from this list of six. We imagine
that the contestant engages in some diversificatiben drawing up the list (i.e. the range
and quality of “expert knowledge” of the friends e list is in some way optimised), and at
the time of playing the lifeline the contestant abes the expert to call optimally. There is
however little information available to us abousthrocess. As a consequence our model for
this particular lifeline is somewhat crude. We assuhat the entire process can be modelled
as an appeal to an expert who knows the answersaitte probabilityx’, and is ignorant
with the probability 1-x. We assume that the expert informs the contesténhis
confidence (contestants invariably ask the friemav iconfident they feel — although the
answer is usually not quantitative). Hence eitlier ¢ontestant knows the answer and her
opinion “swamps” the contestant's belief, or thepext is ignorant and conveys no

information and the contestant’s belief is left bacged. The density of the updated belief is

thereforeH, (7p) =K, 50 g7 + (1) Ly

A. 3 Proposition (factorisation of yx, (x, X,, X, X,)):

. . 2 X, X, o
The joint densityy, (X, X,, X;, X,) =—@ go[ jgo( j such that » x =1,
4 (%0 %0 %0 %,) m (%) 1-x )\ 1= %- % ;X

x =0 for all I, can be factorised as follows:
Xa (%0 %% %) = 1, (%) B, (% %) 80,00 % % 9,

fo, (U),  fup (vu),  fyu., (Wuv), are (conditional) densities such that

(1-u)’ ()

U ]'[Osusl] , With My = I:(l_ X)2 ¢( X) dx,
2

fu, (u) =

l-u-v v
1:U2|U1 (V’ U) = 2((1_ u)2 ) (0(1_ ujl[OSvsl—u] and

1 w
fU3|Ul,U2 (VV; u’ V) = 1_u _ Vw(l_ u- Vj l[OSWSl—U—V] "

Proof: It is easy to verify, by simple integration fdy_ (u), f v;u), and by construction

U,U, (
for £, ., (W u,v), all three are well defined densities over thevaht ranges. Moreover

Vi



their product is equal tg, (.) . This implies that ilU;,U, andU, are three random variables

each distributed with densitieg, (u), f,, (vu), andf,, , (wu,v), then the random

vector P=(U, OU, U0, U0 P ), with U, =1-U, for all i=1..3, is distributed with

2 1=-x) (1I=x-X%

P'e=1, and P>0. Since y,(x) and ¢,(x) share the same joint density for the order

joint density: x, (x,, X, %, X,) :ﬂiq)( x) go( X Jgo[ a2 J Note that, by construction,

statistics, i.e4!y, (x) whereX has elements in descending order, to sample #an) (%)

we sample first fromy, () and sort the resulting vector in descending order.

A.4  Probabilities and Simulated Likelihood

Here we describe the evaluation of some of the ghibties that lead to the log
likelihood. A complete description of the calcutatts can be obtained from the authors.

Calculating the probabilities when only one lifaiis available.

When the contestant has used all her lifelines,etfents of interest are quitting or
losing (and, for the last question, the event that contestant wins the million prize). The
probabilities of these events can be calculateglctir from the analytical expressions given
in section 5.1 using the formulation fér we derive in section 5.3. When one or more
lifelines are available the calculations are madeentomplicated because of the information
which is gained when the lifeline is used and wtattbws the contestant to update her belief.
Hence, given the initial draw of the belief we detge whether this particular draw leads to
the use of the lifeline and, if so, whether the atpd belief, or the original belief, if the
lifeline is not played, is informative enough tadeto an answer attempt. Finally, we evaluate
the probability that the answer is correct (undher original or the updated belief). We will

write Q} (p) as the probability that givem at stagen eventk (which is defined precisely

below) is observed, given that the contestant thénlifeline-statajk, wherei, (respectively
or k) is one if the first (respectively second or dhirlifeline is yet to be played and zero

otherwise. Let,Q} be the expected value of), (p) over all possible realisations pf i.e.
QX = E[Qi{(‘fn(P)] Finally Q}/1*'(p) stand for the probability that givgnat stagen event

k is observed given that the contestant starts tlestopn in the lifeline-statigk and transit to

lifeline-statei’j’k’ . We consider below representative events for &tadime.
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“50:50” is the only lifeline available at stage n.

The contestant uses “50:50", plays and wins (mdeethe next stage or wins the million

prize).

First, define the probability that 50:50 is usebe lays and wins, given a draw

(ordered in  decreasing order)p from the Dbelief distribution, as

Pr[{50:5¢ n{ playsn{ wins{| stagé p] _

Qﬂo (p) = ]‘[kﬁ(p,o,o,c)z A fra( 10.0-b)+ by Qﬂo’ooo(p) s where

13 4 .
Q0 *p)==>"p, z 1[77jk (p)(f,.(0,0,0-b,)+h = qﬂj ., with
P + R
answers after using the lifeline. Hence, the una@rail probability satisfies
Pr{{50:50 n{ playsn{ wins{| stagg |=Qi%

= ,[54 l[k}](p,o,o,qg A fra(2,0.0-1)+ bn] Qﬂo‘ooo(p)wz (p) dp,

T, . This last expression is the probability that,egip, the contestant correctly

where A, is the subset of the 4-simplex whepe= p, 2 p,= p,20. In order to determine

the probabilities we have used the fact that aestant with a lifeline available will either

use it (and perhaps then quit), or play. It isigtrdiorward to verify that the five expressions
above sum to unity; in particular the sum of thetfthree expressions is the probability that
the contestant uses the lifeline and this is themgtement of the sum of the last two

probabilities. Each term of the sum that determigg® (p) (and similarly Q}*°(p)and
Q3 (p)) is the product of the probability that a giverotef the four options remain after the
lifeline is played, with probability( p; + p()/3, multiplied by the probability that the

remaining alternative with the largest updated dfelis correct, with probability

. (p) = . E)r‘ 0 with p, = p., multiplied by the indicator that, given the upethbelief, the
j

contestant decides to play.
“Ask the Audience” is the only lifeline left at g&n.

The contestant uses “Ask the Audience”, plays asdd,
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Pr{{ ATA} n{playg n{ lose} { staggd |=Q3}) = j Q%(p)ws(p)dp where
Q7 (p) =1 k7 (p.0.0,9> py(f,.(0.1.9-h))+ Q]Qi?ﬂ""’“(p), and

Q3 (p) =, (1-7m(a:p))1| 7 (a:p)(f,-4(0.0.9-b,)+b 2 a,, [ Dap A v) &t where

m(q;p) stands for the revised belief after informatiorctee q is made available and

m,(q;p) is the largest element in(q;p) .

“Phone a Friend” is the only lifeline left at stage

The contestant uses “Phone a Friend” and quits,

Pr[{PAR n{ quit} { stagg |=Q%= J: Q%Y(p)y’ (p) dp where Q% (p) = ]'[ka(p,0,0,Q>Q( (oyov)-_qw)quJQg'(:]l,ODO(p)

and Q3 (p) =(1-K) L 00g-a)enea

General Case: all the lifelines are available

When more than one lifeline is available at a gigtage, the number of elementary
events of interest increases, since not only canctintestants decide to play one lifeline
among many but the contestant can play more tharifaline to answer a single question.
Hence while there are only five elementary evehisterest when only one given lifeline is
left there are nine such events when two lifeliags available and seventeen when all three
lifelines are available, ignoring the order in whithe contestant uses the lifeline and not
counting events with zero probability ex-ante (Bample observing an event such as
quitting while the three lifelines are availabldi this section we present the relevant
expressions needed to obtain the probabilities fefraselected elementary events. All other

probabilities can be obtained in a similar fashion.
The contestant uses the three lifelines (in angyglays and loses.

Pr[{ uses all life lingsn{ plays{ lode$ | stape= QL

lll Oll( p)

‘I 1[kn (p.019> mafp( fya 1J0) b, B(p 10K 23] 2

111, 101(

p)
Q7" (p)ws (p) dp.

Hiepa0ge mafa( . (1330)01, ko 03k 19

+l[k2(p,1,102 maf py( foa( LAJEDL) 4, Ki(p 0920 104



QLIo(p) = ZZQ A(7(p). 7, (p).0.0). @2*(p) = [, @25{(aip)) D (g, Av) .

'-lk j+1

and Q3}2°(p) =xQ,191,0,0,0 +( +«)Q,+{p). Inspection of these expressions reveals that

the probabilities of events in which more than difedine is available, hereQ}’;, can be

defined recursively in terms of the conditional pability of events with one fewer lifeline,

given the initial belief draw, her@3'(p), QY (p) and Q3}'’(p). In turn, each of these

conditional probabilities can be calculated frormaitional probabilities involving only one

lifeline, i.e. Q3% (p), Q37 (p) and Q3 (p) . This property is a consequence of the recursive

definition of the value function over the lifelingart of the state space (see section 5.4.b).
Recall, however, that the number of events of @gewhen the three lifelines are available is
larger than when only two or less are availablendéethe definition of 17 probabilities with

three lifeline at stage, i.e. Q;.;, m=1...17, will involve the 27 conditional probabili§evith
two lifelines, i.e.Q%' (p), Q1% (p) and QLY (p), m=1...9. In turn each of these conditional
probabilities will depend on the 15 probabilitieghvone lifeline as defined in the previous

section, i.eQ'% (p), Q¥%(p) andQ:(p) m=1...5.

The three lifelines are available, the contestapsii50:50” , plays and wins.

Pr[{ 50:50 only n{ playsn{ wirs{] stag}a] Qi

= J.& 1[@(}:),0,1,])2 ma)E i oo 1))+ b, K(p 1,01K(p 1])}(] 1(1)::1011( )l//4 ( )

with Q™) = ZZ Q(77;, (p). 75, (p)0.0)) where Q% (p) is the probability that

'-lk j+1

with ATA and PAF available, for some beligfthe individual plays and wins.

Three lifelines are available, the contestant dm#sise any, plays and loses.

Pr[{ does not use any of the 3 life lihes{  play§  Ipsfesages} |=Qj7,
= o ot annamafio oo sonip 19 (L P (P) 0P
Simulation and smoothing
The evaluation of the probabilities, (p), n=1..15,m=1..17, (r,s,t)0{0,3” and of

the conditional expectation! (p,r,s,t), n=1..15,j=1..3, and(r,s,t) { 0,1}3 requires the

X



use multidimensional integration techniquesQIf', is not defined for somen, and some
rs,t we assumeQ =0. Simulation methods (as described in Gouriéroud ®tonfort

(1996) and Train (2003)) are well suited and haeenbapplied successfully in similar

context (see the examples discussed in Adda andeZo@003)).

Clearly the specification of the belief lends ifstl a simulation based likelihood
methodology since simulations of Beta variates ao&ined simply from Gamma variates
(see for example Poirier (1995)). In turn, Gammaatas can be obtained directly, using the
inverse of the incomplete Gamma function. Numelycatcurate methods to evaluate the
inverse of the incomplete Gamma function are dedaih Didonato and Morris (1996). This
is implemented in Gauss in the procedgaenmaii (contained in the file cdfchic.src). The
main advantage of their results is that it allows simulations that are continuous in the
parameters of the Gamma distributions. Evaluatisiimulation of an integral involving the

density of a 4 dimensional Dirichlet random vectDr(,q; p,A ,v) , Is obtained directly by the

simulation of each of its component. For example

Q= IB4 Q:x(p)ea(p)dp = .[54 l[kg(p,o,o,qE B fra( 10.0-5,)+b] Q7 *(p)ws (p) dp, can be

approximated b)ﬁﬂo( )__ZQNO Q1%%%(p ), wherep,

Zl]:klp 0,002 py o fra1,0.9-by)+ by =10

is one of S (the number of simulations) independeatvs from the distribution of the order

statistics of the belief,s] (.). In fact the accuracy of this simulated probapiland of all
others which involve draws fronwj(.), can be improved through antithetic variance

reduction techniques which involve the permutatiohthe gamma variates used to generate
each individual beta variate (as explained, forngxa, in Train (2003)). Moreover,

111 111 011,

lOn _[ l[knp01])>ma% o 11)1'bn)+hqif1p 10)1k?np ljbq 10n ( )‘//4( )dp |S a quant|ty that can

be evaluated using the simpler formula

18
Qicl)ln (S) g;l[kﬁ(Ps,O,lﬂ)z magp, fra( LD +by Bp o LOKYP o 13|d ié1r1011(p3) ' or any

improvement of it. SimilarlyQ3:%(p) j Q,; 1(n q; p D(q;p,4,v)dg can be evaluated by

éjé%r::_,lol(p;s):éi Pi[ n(a,.p ))] where g, is one ofS independent draws from

i=1
D(; ¥ (A,v)). In practice, we use S=96.
Xi



Finally all quantitiesk?(p,r,s,t)=E, [W,(0,r,s,9 p] which involve a multi

dimensional integral and the joint densiD)(q;p,/l,v) can be obtained in a similar fashion:

for example, usingzj(p,r,s,t; S) :éi Pi W(qs,i’ I s), whereq,; is one of S independent

=1 s=1

draws fromD(q;Vi (A,v)). In practice these expression are modified in otdesmooth out

the discontinuities that are created by the indica&rms. Hence, the indicator functions

Ysmafvsgl’  Taemouug)r OF Lusyp @€ replaced by their smoothed versions,
1 1 , and__ L respectively, where} is a
1+ éﬂ(vz‘vl))_}_ éﬂ(v3_vl))+ é”(VA_Vl)) ! 1+ éﬂ(Vz‘Vl))+ éﬂ(V3‘V1)) 1+ é’](Vz‘Vl))

smoothing constant. In the limit gs— +co the smoothed versions tend to the indicators.

References

Adda, J. and R. Cooper (2003), Dynamic Economid3, Rtess: Cambridge, MA.

Didonato, A. and A.H. Morris (1986), “Computatiohtbe Incomplete Gamma Function Ratios and
their Inverse”, ACM Transactions on Mathematical ft®are, 12, 377-393.
DOI:10.1145/22721.23109.

French, S. (1980), “Updating of Belief in the LigiftSomeone Else’s Opinion”, Journal of the Royal
Statistical Society, 143, 43-48. DOI:10.2307/298&.76

Gouriéroux, C. and A. Monfort (1996), Simulationdgal Econometric Methods, Oxford University
Press: Oxford.

Poirer, D. (1995) Intermediate Statistics and Eooetoics: A Comparative Approach, Cambridge,
MA: MIT Press.

Train, K.E. (2003) Discrete Choice Methods with 8iation, Cambridge University Press:
Cambridge.

Xii



Figure Al Observed versus Predicted Use of Liéslin

Frequencies

O 10 20 30 40 50 60 70 80 90

Frequencies

O 10 20 30 40 50 60 70 80 90

f

Frequencies

O 10 20 30 40 50 60 70 80 90

Use of 5050

[J Observed Use
[ Predicted Use

[ L [ m—\

1000 125 64 32 16 8 4 2 1

Value (stlg ,000) of last question seen

Use of PAF

[J Observed Use
[ Predicted Use —

[
500 250 125 54

1000 32 16 8 4 2 1

Value (stlg ,000) of last question seen

Use of ATA

[J Observed Use
[ Predicted Use

L T
2% 64 32 1
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Value (stlg ,000) of last question seen

Note: Predicted frequencies shown as shaded Hassneed frequencies as empty bars.
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