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Abstract

This supplementary appendix provides a detailed account of the econometric methodol-
ogy of simulated maximum likelihood using importance sampling in the main text, Li and
Koopman (2019). Some more empirical results pertaining to the application of US quarterly
inflation are given in this appendix as well. Notations are the same as in the main text,
unless stated otherwise.

1 Details of ML estimation via multivariate NAIS

In this section we detail an efficient method for computing the Monte Carlo estimate of the
log-likelihood function for state space models with SV via a multivariate modification of NAIS
Koopman et al. (2015). In order to integrate out the high dimensional vector of SV series
to evaluate the log-likelihood function, we maximize a simulated Monte Carlo estimate of the
log-likelihood function based on the multivariate NAIS algorithm. Given the model parameter
vector θ the algorithm can be summarized by: 1) construct an importance density g; 2) draw
Monte Carlo samples of SV from g; 3) conditional on each draw, evaluate the likelihood p using
Kalman filter; 4) average the likelihood with weights p/g.

1.1 Likelihood function via importance sampling

In general, UCSV models can be cast into the following state space form:

yt = Zαt + εt, εt ∼ N(0,Ωt)

αt+1 = Tαt + ηt, ηt ∼ N(0, Qt),
(1)

for t = 1, ..., T with proper initialization of α1. Suppose in (1), one has unobserved linear states
αt ∈ Rm and the SV ht ∈ Rp+m going into Ωt and Qt. This means (2m + p) × T integrations
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have to be carried out in order to evaluate the data likelihood function. Naively doing so is
impossible as such high-dimensional integration makes function evaluations intractable.

The likelihood function of model (1) can be written as follows,

L(YT ; θ) =

∫
HT

p(YT , HT ; θ)

g(YT , HT ; θ)
g(YT , HT ; θ)dHT

= g(YT ; θ)

∫
HT

p(YT , HT ; θ)

g(YT , HT ; θ)
g(HT |YT ; θ)dHT

= g(YT ; θ)

∫
HT

ω(YT , HT ; θ)g(HT |YT ; θ)dHT , (2)

where g(YT ; θ) is the likelihood function of a Gaussian importance model to be determined and
where the importance weight function is given by

ω(YT , HT ; θ) =
p(YT , HT ; θ)

g(YT , HT ; θ)
=
p(YT |HT ; θ)

g(YT |HT ; θ)
.1 (3)

The last equality holds valid as the joint importance density g(YT , HT ; θ) is Gaussian in UCSV
models,indicating p(HT ; θ) = g(HT ; θ). Notice that there is no need to integrate out {α1, ..., αT }.
Given a realized sequence of HT , Kalman filter can efficiently evaluate p(YT |HT ; θ) via prediction
error decomposition, which is a Rao-Blackwellisation procedure.

Direct maximization of (2) using numerical integration is near impossible, we estimate state
space models with SV via Monte Carlo simulated maximum likelihood. Under regularity condi-
tions specified in Geweke (1989) which we discuss in Section 4, one has the following unbiased
and consistent estimator for the likelihood

L̂(YT ; θ) = g(YT ; θ)ω̄, ω̄ =
1

M

M∑
j=1

ω(j), ω(j) = ω(YT , H
(j)
T ; θ), (4)

where ω(j) is the realized importance weight function in (2) for a draw of H
(j)
T from the im-

portance density g(HT |YT ; θ). Numerical optimizers such as L-BFGS can be used to maximize
the above Monte Carlo estimate of the likelihood function with respect to the parameter vector
θ, keeping a fixed random seed. In practice however, the log-likelihood function is maximized.
Because the logarithm of the estimate (4) does not converge in probability to the expected log-
likelihood function, we correct the bias in log L̂(YT ; θ) based on a second order Taylor expansion.
Similar to Durbin and Koopman (1997), we therefore maximize the bias-corrected Monte Carlo
estimate of the log-likelihood function

l̂(YT ; θ) = logL̂(YT ; θ) +
1

2M
ω̄−2s2ω

= logg(YT ; θ) + logω̄ +
1

2M
ω̄−2s2ω, (5)

where s2ω = (M − 1)−1
∑M

j=1(ω
(j) − ω̄)2 is the sample variance of importance weights.

1.2 Conditional likelihood function via Kalman filter

To evaluate the realized importance weight function ω(j) in (3), we have to calculate the like-

lihood p(YT |H(j)
T ; θ). Given a draw of the SV H

(j)
T from the importance density g(HT |YT ; θ),

1Importance sampling boils down to evaluate an expectation under a change of probability measure. Loosely
speaking, likelihood L(y) is equal to Ep(h)(L(y, h)) = Eg(h)(ωL(y, h)), and the importance weight ω is analogous
to the Radon-Nikodym derivative.
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model (1) reduces to a linear Gaussian state space model. Suppressing the dependence on H
(j)
T ,

we have the log-likelihood

logp(YT |H(j)
T ; θ) = −1

2

(
np log 2π +

n∑
t=1

log(|Ft|) +

n∑
t=1

v′tF
−1
t vt

)
, (6)

where vt ∈ Rp is the prediction error with its covariance matrix Ft. Both vt and Ft come from
the Kalman filter recursion

vt = yt − Zat − d, Ft = ZPtZ
′ +Ht

at+1 = Tat +Ktvt + c, Pt+1 = TPt(T −KtZ)′ +Q′t,
(7)

for t = 1, ..., n, and Kt = TPtZ
′F−1t is the Kalman gain. a1 and P1 are the mean vector and

covariance matrix of the initial state vector α1 which are initialised according to Section 2.1.
The above recursion comes from standard results of conditional expectation and covariance of
Gaussian random variables with

at = E(αt|y1:t−1), Pt = Var(αt|y1:t−1).

We use at, Pt, vt and Ft for forecasting and smoothing of the unobserved state. In the next

section, a linear Gaussian importance density g(H
(j)
T |YT ; θ) is constructed for drawing H

(j)
T ,

based on simulation smoothing (Durbin and Koopman, 2012) where those objects are also used.

1.3 Importance density via multivariate NAIS

To evaluate the Monte Carlo estimate of the log-likelihood function (5), we need to calculate

the conditional likelihood g(YT |H(ij)
T ; θ) to obtain the importance weights, and marginal log-

likelihood logg(YT ; θ). Moreover, we need an efficient way to draw samples H
(j)
T , j = 1, 2, ...,M

from g(HT |YT ; θ).
Richard and Zhang (2007) developed an efficient importance sampling (EIS) procedure for

evaluating high-dimensional numerical integrals. Numerically accelerated importance sampling
(NAIS) by Koopman et al. (2015) is a refinement of EIS. It takes advantage of Gaussian sam-
plers such as the simulation smoother developed by De Jong and Shephard (1995) and Durbin

and Koopman (2002) so that the sequence H
(j)
T can be simulated from an importance den-

sity g(HT |YT ; θ) as a whole block. Similar to EIS, original NAIS method assumes conditional
independence to hold such that, in light of (3) the density of YT conditional on HT can be
decomposed as

p(YT |HT ; θ) =
n∏
t=1

p(yt|ht; θ).

However, conditional independence assumption does not hold in the state space model with
SV. Given ht, we cannot evaluate p(yt|ht; θ) because of the unobserved states αt in (1), which
complicates the direct use of NAIS. To tackle this issue, we propose to use the prediction errors
v1:t the variance F1:t produced by Kalman filter. It follows from (6) that

p(YT |HT ; θ) =

n∏
t=1

p(vt|ht; θ), p(vt|ht; θ) ≡ N(0, Ft).

Then the importance weight function (3) factorizes

ω(YT , HT ; θ) =

n∏
t=1

ωt(yt, ht; θ) =

n∏
t=1

p(vt|ht; θ)
g(yt|ht; θ)

. (8)
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Using prediction errors to factorize p(YT |HT ; θ) enables us to use NAIS. NAIS represents the
Gaussian importance density as

g(YT , HT ; θ) =
n∏
t=1

g(yt|ht; θ)g(ht|ht−1; θ),

where g(ht|ht−1; θ) specifies the Markov structure of ht and where

g(yt|ht; θ) = exp

(
rt + b′tht −

1

2
h′tCtht

)
. (9)

rt is an integrating constant. bt ∈ Rm and Ct ∈ Rm×m for t = 1, 2, ..., n are defined (implicitly) as
functions of data YT and parameter vector θ. So our objective is to choose the set of importance
sampling parameters bt and Ct, t = 1, ..., T .

Similar to Koopman et al. (2012), we can write the density function (9) as the one associated
with observation equation y+t = C−1t bt in the following linear Gaussian state space model,

y+t = ht + ε+t , εt ∼ N(0, C−1t ), t = 1, 2, ..., n, (10)

where state equation for ht. One can easily verify the equivalence of (9) with the Gaussian
log-density logg(y+t |ht; θ) for y+t in (10) by

logg(y+t |ht; θ) = −1

2
log(2π)k +

1

2
log |Ct| −

1

2
{(C−1t bt − ht)′Ct(C−1t bt − ht)}

= at + b′tht −
1

2
h′tCtht,

(11)

where the constant at = −1
2(k log(2π) − log(|Ct|) + b′tCtbt) collects all the terms that are not

associated with ht. It follows that g(yt|ht; θ) ≡ g(y+t |ht; θ) for all t. Hence, we have

g(YT , HT ; θ) ≡ g(Y +
T , HT ; θ), with y+t = C−1t bt.

SPDK method by Shephard and Pitt (1997) and Durbin and Koopman (1997) essentially chooses
bt and Ct, t = 1, ..., T , such that g(HT |Y +

T ; θ) forms a second order local approximation to
p(HT |YT ; θ).

Geweke (1989) gave conditions for a central limit theorem of importance sampling. Im-
portantly, the importance weights should have finite second moment. Notice that minimizing
the variance of log-weights instead of weights is easier as it preserves the linear structure of
log-Gaussian density. Therefore we choose the importance parameters bt and Ct for all t to
minimize the variance of the logarithm of the importance weights, i.e.

min
{bt,Ct}Tt=1

∫
HT

λ2(YT , HT ; θ)ω(YT , HT ; θ)g(HT |Y +
T ; θ)dHT , (12)

where
λ(YT , HT ; θ) = logp(YT |HT ; θ)− logg(Y +

T |HT ; θ)− constant.

The last term is a normalizing constant such that the mean of λ(YT , HT ; θ) is set to zero.
Using the factorization (8), we can approximate the above minimization problem by consid-

ering a minimization problem for each t separately, i.e. for t = 1, 2, ..., n

min
bt,Ct

∫
λ2t (yt, ht; θ)ωt(yt, ht; θ)g(ht|Y +

T ; θ)dht, (13)

where

λt = logp(vt|ht; θ)− logg(y+t |ht; θ)− constant,

ωt(yt, ht; θ) =
p(vt|ht; θ)
g(y+t |ht; θ)

.
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A natural way to solve (13) is by replacing the integral with a Monte Carlo average, i.e.

min
bt,Ct

1

S

S∑
j=1

λ2t (yt, h
(j)
t ; θ)ωt(yt, h

(j)
t ; θ), h

(j)
t

i.i.d∼ g(ht|YT ; θ). (14)

Notice that in (1), the SV ht ∈ Rp+m is still multidimensional, a multidimensional summation

is thus needed in (14). Monte Carlo averaging here is not ideal as draws of h
(j)
t scatter around

in the multidimensional space. So efficiency depends on a large number of draws. Furthermore,

simulation smoother used for drawing h
(j)
t from importance density (11) not only increases

computational burden but also introduces Monte Carlo noise.
We notice that the importance density g(ht|Y +

T ; θ) is Gaussian, or

g(ht|Y +
T ; θ) ≡ N(ĥt, Vt) =

1√
(2π)k|Vt|

exp

{
− 1

2
(ht − ĥt)′V −1t (ht − ĥt)

}
, (15)

where ĥt and Vt are the smoothed mean and variance from Kalman filter smoother applied to the
linear Gaussian state space model (10). Gaussianity implies exponential functional form, based
on which we can use Gauss-Hermite (GH) quadrature to accurately approximate the integral in
(13). Related techniques are discussed in the main text.

To construct the importance density g(ht|Y +
T ; θ) for t = 1, 2, ..., n one starts with a given

set of importance sampling parameters, i.e. {b+1 , b
+
2 , ..., b

+
n , C

+
1 , C

+
2 , ..., C

+
n }. g(ht|Y +

T ; θ) then

follows from (15) where we obtain the smoothed mean ĥt and variance Vt applying Kalman
filter smoother to the importance model (10). Consequently, the minimization problem (13) can
be approximated by

min
bt,Ct

S∗∑
j=1

λ2t (h̃tj , yt; θ)ωtj , (16)

where

λt(h̃tj , yt; θ) = logp(vt|h̃tj ; θ)− logg(y+t |h̃tj ; θ)− constant, ωtj =
p(vt|h̃tj ; θ)
g(y+t |h̃tj ; θ)

,

and where S∗ is the total number of GH nodes combinations after pruning, and h̃tj is constructed
from GH nodes

h̃tj = ĥt + Ltzj , LtL
′
t = Vt, for j = 1, 2, ..., S∗.

The above shows that matrix Lt from Cholesky decomposition of the smoothed variance Vt
serves as a rotation operator to the vector of GH nodes zj such that correlation among the SV
components h̃tj are taken into account. It follows from (9)

g(h̃tj |Y +
T ; θ) =

1√
(2π)k|Vt|

exp

{
− 1

2
z′jzj

}
, t = 1, 2, ..., n.

The linear form of our log Gaussian importance density (11) simplifies the minimization
problem (16) to a weighted least square (WLS) procedure which has the vector of dependent
variables

Yt = (logp(vt|h̃t1; θ), logp(vt|h̃t2; θ), ..., logp(vt|h̃tS∗ ; θ))′.

For j = 1, 2, ..., S∗, the jth row of the matrix of regressors Xt is

(1, h̃tj,1, ..., h̃tj,k,−
1

2
h̃2tj,1, ...,−

1

2
h̃2tj,k,−h̃tj,1h̃tj,2, ...,−h̃tj,k−1h̃tj,k).
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Together with a diagonal weighting matrixWt whose jth diagonal element equals ωtj , the solution
of the WLS procedure is thus given by

(X ′tWtXt)−1X ′tWtYt. (17)

We obtain the minimum in (16) by choosing bt to be the vector of WLS coefficients associated
with linear terms h̃tj,i and Ct to be the matrix whose diagonal elements equal to WLS coefficients
associated with quadratic terms −1

2 h̃
2
tj,i and off-diagonal elements equal to quadratic terms

−h̃tj,ih̃tj, i, with i = 1, 2, ..., S∗ and i 6= i. The minimization of (16) takes place iteratively
in order to find the “optimal” importance density which minimizes the variance of log-weights.
Once the updated set of {b1:t, C1:t} is obtained via the WLS, it is used as {b+1:t, C

+
1:t} in the next

iteration. The iterative procedure terminates after some convergence criteria are met.
A pathology in NAIS one may encounter is that Ct in some part of WLS iterations might

become negative definite2 making (9) not well-defined, but Kalman filter smoother can still be
applied and a modified Kalman filter simulation smoother is available (Jungbacker and Koop-
man, 2007).

1.4 Algorithm of simulated ML estimation

In an algorithmic way, the Monte Carlo simulated ML estimation via multivariate NAIS carries
out the following steps:

1. Set m = 1. Apply Kalman filter and prediction error decomposition to model (1) without
SV. Form the initial set of importance parameters bt each of which equals the estimated
constant volatility and Ct is set to identity matrix for all t = 1, 2, ..., n.

2. Construct approximating linear Gaussian model according to (10) using {b(m)
t , C

(m)
t }Tt=1.

Apply Kalman filter and smoother to obtain ĥt and Vt. For each t, construct a vector of
auxiliary dependent variables Yt and a matrix of regressors Xt via GH nodes and Cholesky
decomposition as described in the previous section.

3. Together with the weighting matrix Wt
3, calculate the WLS solution given by (17), for

t = 1, ..., T . Collect all estimated WLS coefficients in {b(m+1)
t , C

(m+1)
t }Tt=1. Set m = m+1.

If {b(m)
t , C

(m)
t }Tt=1 is close to {b(m−1)t , C

(m−1)
t }Tt=1 pointwise, go to the next step; otherwise

go to step 2.

4. Apply prediction error decomposition to the linear Gaussian importance model (10) and
calculate its log-likelihood logg(YT ; θ). Apply a simulation smoother to draw M samples
from g(HT |YT ; θ) with a fixed random seed.

5. Calculate the importance weights ω(j) = exp(logp(YT |H(j)
T ; θ) − logg(YT |H(j)

T ; θ)) for j =
1, ...,M , the sample mean ω̄ and the sample variance s2ω. Compute the Monte Carlo
estimate of log-likelihood l̂(YT ; θ) given by (5).

6. Maximize l̂(Yn; θ) w.r.t. the parameter vector θ using a numerical optimizer such as L-
BFGS.

The above procedure is numerically stable and all the computational results in the main text
are obtained using the object-oriented matrix programming language Ox 7.00 (see Doornik, 2009)
with the state space functions in the Ox library SsfPack by Koopman et al. (1999) on a quad-
core computer. Besides the use of matrix programming language, a multicore processor makes

2This happens rarely. In the empirical study in Section 5 of the main text, 4 out of 695 data points lead to
negative definite covariance matrix, harmless to log-weights variance minimization.

3To increase numerical stability, Richard and Zhang (2007) proposed to set the diagonal elements of the diag-
onal weighting matrix Wt or ωtj in (16) to be exp( 1

2
z′jzj) for j = 1, ..., S∗. We can also adopt this simplification.
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parallel computing feasible and brings further computational gain in several steps of the proposed
estimation procedure. Firstly, because in each iteration, the WLS procedure in Step 3 is done
for each t = 1, ..., T separately, the T least square regressions can be done in parallel. Lastly,
the L-BFGS algorithm adopted by Ox 7.00 automatically calculates directional derivatives of
the objective function l̂(YT ; θ) in parallel. This is in stark contrast to Bayesian approach such
as Shephard (2015)’s particle MCMC method, because an MCMC chain is recursive by nature
rendering parallelization difficult.

1.5 Inference via importance sampling

An importance sampling estimator of E(h(x)) with x ∼ p(x)4 and h(.) ∈ L1 follows from

1
M

∑M
j=1

p(x(j))

g(x(j))
h(x(j))

1
M

∑M
j=1

p(x(j))

g(x(j))

=

∑M
j=1 ω(x(j))h(x(j))∑M

j=1 ω(x(j))

p−→ E(h(x)), M →∞,

where ω(x(j)) = p(x(j))/g(x(j)), j = 1, ...,M is the importance weight. Convergence holds
under the weak law of large numbers when x(j), j = 1, ...,M are sampled from the importance
density g(.) independently. In Bayesian settings as comparison, samples drawn based on MCMC
approaches are dependent, as a result convergence holds under ergodic law of large numbers.

In the Monte Carlo study and empirical study of main text, we give smoothed mean estimate
of latent processes including SV exp(ht/2) and stochastic level or trend µt with confidence bands.
Inference is valid if ω(x(j)) or ω(j) has a finite variance (Geweke, 1989). Firstly, we calculate the

normalised weights by ωj = ω(j)∑M
j=1 ω

(j)
. Let EY (.) and VY (.) denote the smoothed estimate of the

mean and variance, respectively, e.g. EY (.) = E(.|YT ; θ̂); and let H
(j)
T collect the j-th draw of

all SV processes from the importance density. It follows that for the SV process we have

EY [exp(ht/2)] =

M∑
j=1

ωj exp(h
(j)
t /2), VY [exp(ht/2)] =

M∑
j=1

ωj exp(h
(j)
t )−

(
EY (exp(h

(j)
t /2))

)2
,

where all entities are evaluated at the simulated ML estimate θ̂. For a dynamic component zt,
such as a trend or seasonal component, we have

EY (zt) =
M∑
j=1

ωjEp(zt|H(j)
T ),

VY (zt) =

M∑
j=1

ωjVp(zt|H(j)
T ) +

M∑
j=1

ωj
(
Ep(zt|H(j)

T )
)2 − (EY (zt)

)2
,

where Ep(zt|H(j)
T ) and Vp(zt|H(j)

T ) are the smoothed mean and variance of zt derived from the

Kalman smoother applied to the UCSV model conditional on H
(j)
T . The last equation comes

from the law of total variance.

1.6 Filtering via particle filter

Smoothing delivers estimates of SV and dynamic components conditional on all observations.
It is however important to have estimates of SV and states at time t conditional on information
up to time t, i.e. the filtered estimates, which we use to produce point and density forecast and
calculate prediction errors for diagnostics.

4It suffices to know the density function p(.) up to an integrating constant, i.e. the density kernel.
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Any particle filter methods can be used to find filtered estimates of the SV ht and the state
αt, t = 1, ..., T , keeping system parameters at their ML estimates. For detailed discussions on
particle filter and sequential Monte Carlo method, readers can refer to Doucet et al. (2001).

In the following, we outline the bootstrap filter algorithm for the state space models with
SV (1)5. Suppose we have a particle system at time t

h
(j)
t = [hy,1t

(j)
, hy,2t

(j)
, · · · , hy,pt

(j)
, hα,1t

(j)
, hα,2t

(j)
, · · · , hα,mt

(j)
]′, j = 1, 2, ...,M,

where M is a preset number of forward particle draws at each t = 1, 2, ..., n. The particle filter
procedure is carried out conditional on the system parameter θ which is set to its ML estimate
obtained via the proposed simulated ML method. Algorithmically, one carries out the following.

1. Set t = 1, draw h
(j)
1 based on the initialisation discussed in Section 1, or from an ad

hoc chosen prior p0(h1). Set a
(j)
1 and P

(j)
1 to their initialised values. For j = 1, 2, ...M ,

sample h
(j)
2 ∼ p(h2|h

(j)
1 ; θ) and, compute a

(j)
2 and P

(j)
2 according to (7), and set log-weights

ω
(j)
t = 0.

2. Set t = t+ 1. For j = 1, ...,M , form H
(j)
t and Q

(j)
t based on h

(j)
t . Calculate v

(j)
t and F

(j)
t

according to (7). Record

l
(j)
t = −1

2

(
log(|F (j)

t |) + v
(j)
t

′
F

(j)
t v

(j)
t

)
.

Update the log-weights ω
(j)
t+1 = ω

(j)
t + l

(j)
t and compute a

(j)
t+1 and P

(j)
t+1 according to (7).

Then simulate the forward particle state h
(j)
t+1 ∼ p(ht+1|h(j)t ; θ).

3. For j = 1, 2, ...M compute the normalized weights ω∗t
(j) = exp(ω

(j)
t )/

∑M
j=1 exp(ω

(j)
t ).

Record the particle filter estimates of the log-likelihood contribution

log L̂(yt|Yt−1; θ) = log

 M∑
j=1

ω∗t
(j) exp(l

(j)
t )

 , (18)

and record the following particle filter estimates of f(βt),

M∑
j=1

ω∗t
(j)f(β

(j)
t ), (19)

where f is a measurable function6, and βt can be the SV or the states. So depending on f ,
the above can give the filtered estimate of mean, variance, quantiles, forecasts, standardised
prediction errors and other functions of interest. So the residual or one-step prediction
error is difference between yt and the particle filter estimate of the mean component.

4. Check efficient sample size and resample with replacement from the following set of triples,

{h(1)t , a
(1)
t , P

(1)
t }, {h

(2)
t , a

(2)
t , P

(2)
t }, ..., {h

(M)
t , a

(M)
t , P

(M)
t },

with probability ω∗t
(1), ω∗t

(2), ..., ω∗t
(M). Set ω

(j)
t = 0 for j = 1, 2, ...,M .

5Scharth and Kohn (2016) develop a highly efficient particle filter algorithm using the EIS importance density.
We can also incorporate the NAIS importance density in the particle filter using their sequential method. It can be
shown that their importance sampler is identical to ours when the state transition of SV is linear and Gaussian.
But their method replies on simulation to construct the importance density, whereas ours uses high-precision
Gauss-Hermite numerical integration, which is fast and stable.

6We need f(.) ∈ Lp to have a consistent estimator of the p-th moment.
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5. Go to 2.

Finally, the particle filter estimate of the data likelihood function is given by

L̂(YT ; θ) = exp

(
n∑
t=2

log L̂(yt|y1:t−1; θ)

)
.

Though the above is the basic particle filtering algorithm, namely the bootstrap filter, the
main text has compared the simulated maximum likelihood method to several particle filters
in literature in terms of evaluating the unbiased estimate of the intractable likelihood function
L̂(YT ; θ̂) with the parameter vector evaluated at the SML estimates (i.e. particle Monte Carlo
Markov chain, see for example Andrieu et al., 2010). Those alternative particle filters are
designed for making the basic algorithm more efficient in terms of variance of the likelihood
estimates, including the auxiliary particle filter of Pitt and Shephard (1999) and the tempered
particle filter of Herbst and Schorfheide (2017). In addition to the results in main text, Figure
1 shows the distribution of log-likelihood used for computing the Monte Carlo estimate.
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Figure 1: Distribution of Log-Likelihood Estimates. Left: Distribution of L̂(YT ; θ̂) estimated by SML

with M = 50 simulations and particle methods with M = 1000 particles. Right: Distribution of L̂(YT ; θ̂) estimated

by SML with M = 200 simulations and particle methods with M = 5000 particles.

2 Three multivariate models

In the application of US quarterly inflation, we have considered three multivariate unobserved
components models with stochastic volatility: the factor model MUCSV-SW of Stock and Wat-
son (2016) and a stochastic equicorrelation model MUCSV-EC and a dynamic factor model
MUCSV-DF proposed by us. In these models, the dimension k of ht is 36, rendering direct
construction of importance density difficult. We outline the two-step procedure of constructing
importance density for MUCSV-SW and MUCSV-EC used in the main text as an illustration.

In the first step, we run the UCSV model of Stock and Watson (2007) using our SML method
series by series. Thus we obtain 18 estimated series of trends πi,t and cycles ψi,t, i = 1, ..., 18.
Now we have the following sing-factor model with SV for the trends π1,t

...
π18,t

 =

 a1
...
a18

πc,t +

 π∗1,t
...

π∗18,t

 , (20)

where πc,t and π∗i,t, i = 1, ..., 18, are independent random walks with SV. Namely, denoting
zt = (πc,t, π

∗
1,t, ..., π

∗
18,t)

′, we have

zj,t+1 = zj,t + exp
hj,t
2
ηj,t, hj,t+1 = hj,t + σjζj,t,
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where ηj,t and ζj,t are i.i.d. standard normal variates, for j = 1, ..., 18 and all t. The second step
is to write model (20) as an equivalent univariate model; that is

πi,t = aiz1,t + zi+1,t, i = 1, ..., 18, t = 1, ..., T,

zi+1,t+1 = zi+1,t + exp
hi+1,t

2
ηi+1,t,

z1,t = z1,t, i = 1, ..., 17,

z1,t+1 = z1,t + exp
h1,t
2
η1,t, i = 18,

(21)

which is a univariate UCSV model with 18T observations. Building importance density for
this model simply replies on a two-dimensional Gauss-Hermite grid. Similarly, we apply this
univariate treatment to ψi,t, i = c, 1, ..., 18. This “scalablity” is quite general in multivariate
UCSV models, and can be incorporated in our SML method straightforwardly.

For MUCSV-EC, two-step procedure is implemented as follows. Firstly, we run the standard
UCSV model series by series as in MUCSV-SW, and collect filtered estimate of standardised
cycle components ψ∗t = (ψ∗1,t, ..., ψ

∗
18,t) with

ψ∗i,t = E(ψi,te
−

hi,t
2 |Yt), i = 1, ..., 18.

This is modelled by a stochastic equicorrelation model; that is

ψ∗t ∼ N(0, Rt), Rt = (1− ρt)I18 + ρt1181
′
18,

ρt =
1− exp(lt)/17

1 + exp lt
, lt+1 = lt + σlζt,

(22)

for t = 1, ..., T ; ζt is standard normal variate and the link function of ρt is such that ρt ∈
(−1/17, 1) and ensures positive definiteness of Rt. Construction of importance density for lt
(thus ρt) can be carried out using the least square algorithm as in the SML method. The
“dependent variable” in the regression is given by

log p(ψ∗t |lt) = −1

2

(
18 log 2π + 17 log(1− ρt) + log(1 + 17ρt) +

ψ∗t
[
I18 − ρt

1+17ρt
1181

′
18

]
ψ∗t
′

1− ρt

)
,

where ρt = (1−exp(lt)/17)/(1+exp lt). The construction of importance density for the stochastic
equicorrelation among trends is done similarly.

3 Data used for MUCSV models

The sectoral inflation series we use is summarised in Table 1. Estimated permanent volatility
and transitory volatility for each series from MUCSV-SW, including the common ones, are
illustrated in Figure 2 and 3, respectively. Estimated stochastic equicorrelation among trend
components and among cycle components from MUCSV-EC are shown in Figure 4.
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Table 1: Sectoral Inflation Used in MUCSV-SW And MUC-SEC

Sector Acronym

Durable goods
Motor vehicles and parts MVP
Furnishings and durable household equipment FRHE
Recreational goods and vehicles RGV
Other durable goods ODG

Nondurable goods
Food and beverages purchased for off-premises consumption FBOPC
Clothing and footwear CF
Gsoline and other energy goods GOEG
Other nondurable goods ONDG

Services
Housing and utilities

Household consumption expenditures (for services) HCES
Housing and utilities HU

Health care HC
Transportation services TS
Recreational services RS
Food services and accommodations FSA
Financial services and insurance TSI
Other services OS
Final consumption expenditures of nonprofit institutions

serving households NPISH
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Figure 2: MUCSV-SW permanent volatility
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Figure 3: MUCSV-SW transitory volatility
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Figure 4: MUCSV-EC Stochastic equicorrelation among permanent and transitory shocks
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