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S.1. Proof of Likelihood Function (2)

Mathematically, this HMM is described by
Pr(H¢|H-1)) = Pr(H |H,—y) and  Pr(X;|X(—1y, Hey) = Pr(X;|Hy).
Since Pr(X(Hl),H(Hl)) =Pr(X;4q1|Hppq)Pr(Hep,|He) Pr(X(t),H(t)), the joint distribution of X(;) and

H () can be written as
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It can be rewritten in a matrix in the form of n, ; = n,I'P(x¢44). In addition, n; = u; P(x;). Therefore,
we can compute the likelihood function in (2) recursively in terms of the forward probabilities as follows

L(®|x(r)) = 71 = np_1TP(x7)1 = uy P(xy)TP(x)TP(x3) - TP (xp) 1.



S.2. Estimation of the HMM by the Expectation and Maximization Algorithm

We apply the Baum-Welch algorithm (see Baum et al, 1970) to estimate the HMM. It is an
iterative method for maximum likelihood estimation when there are missing data. It exploits the fact that
the Complete-Data Log-Likelihood (CDLL) can be directly applied to maximization even if the
likelihood of the observed data cannot be applied. In our case, we regard the hidden states as missing data
while the CDLL is the log-likelihood of parameter set ® based on observed time series of buy and sell
order flows and the unobservable time series of states, i.e. log(Pr(X 1y = x(r), Hiry = h(1)|®)), where
h(ry 1s a time series realization of state variable H, with 7 ranging from 1 to 7. Denote n,, , as the vector
of forward probabilities, whose ((i —1n+ j)-th element is

Nyjierr = Pr(Xesn) = X(erny Hosewr = U Hgen = 1)
We have n; = u;P(x;) and n; =n,_1IP(x;) for t =2,3,...,T. To apply the Expectation and
Maximization (EM) algorithm, we also define {; = I'P(x;,1)T;+4 as the vector of backward probabilities
fort =1,2,..,T — 1 with {; = 1', where the ((i — 1)n + j)-th element of {, is
Gijit = Pr(Xes1 = Xe41, Xew2 = Xe4o, oo, Xr = x7|Hpe = i, Hge = ).

Further, let z; ;.- and z; j,x ;.- be zero-one variables that

zi ;¢ = 1 ifand only if Hp,s = i, Hg;y = J,
Zi,j;k,l;t == 1 lfand Only ibe;t—l = i, HS;t—l :j, Hb;t == k, HS;t == l.

With this notation, the CDLL of the HMM is given by

log(Pr(x(r), hry))
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We use the EM algorithm to estimate the HMM as follows:'

e E Step: Compute the conditional expectations of the missing data, given the observations x(7) and

the current estimate of @. Specifically, conditional expectations of z; j,» and z; ;i ;;; are estimated

! For details of the algorithm, see Cappé et al. (2005), and Zucchini and MacDonald (2009).
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e M Step: Maximize the CDLL, where the missing data are replaced by their conditional
expectations, to determine the estimate of @. Thus, we replace all z; j,; and z; ;. ;. in CDLL by
their conditional means Z; j,; and Z; j. 1+, and maximize it with respect to u,, I', and A;,;; and Ag;;.
The solution to the maximization problem consists of
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The above E and M steps are repeated many times until some convergence criterion has been satisfied, for
instance the improvement in the CDLL is less than 10°. This EM algorithm provides us with three sets of
parameter estimates: u,, I', and A;,;; and A, ;. Once u; and I' are estimated, we have u; = u, et

Applying Bayes’ rule, the posterior distribution of states H, in (1) can be calculated by

Pr(Xery = xry, Hye = 1, Hye = )
Pr(Xer) = xn)) (A1)
_ ni,j;l:qi,j;t =
" L(@lxgry)
When implementing the EM algorithm for estimating the HMM, it is relatively convenient to find

Pr(Hp, = i, Hee = j|X(r) = x(ry) =

plausible starting values for the initial distribution of states and the transition matrix. One strategy is to

assign a uniform starting value to all the elements of the initial state distribution and the transition matrix.

If the number of states is N, we assign u; = %1' and I’ = %N, where N is the matrix of size N X N with
all elements equal to 1. In order to improve the convergence speed, we run an N-means clustering on the

observed buys and sells and then use the centers of the clusters as the initial starting values of the state-

dependent order arrival rates.



S.3. K-means Clustering Analysis and the Jump Method in Finding the Number of Clusters
In modeling information-based trading, the concept of clusters is mentioned in Duarte and Young (2009)
in describing the sample distribution of order flows. With evidence from the T-bill market, Akay et al.
(2012) conclude that PIN identifies trading clusters and clustering depends on the market conditions.
Trading activities of a particular day depend on the information environment of the market. Therefore,
trading days with common features are very likely to have a similar information environment. Clustering
analysis is an iterative process of knowledge discovery that group a set of objects in such a way that
objects in the same group (called cluster) are more similar to each other than to those in other groups
(clusters). We use k-means clustering (see MacQueen, 1967) as it is one of the simplest and widely-
adopted algorithms that solve clustering problems. Given a set of observations y = (y41,¥2, ", Y1),
where each observation is a d-dimensional vector, k-means clustering partitions the 7" observations into k&
groups G = {G4, Gy, *+, Gy} to minimize the within-cluster sum of squares
k
argming > Y Ily; - aill®,
i=1 y;€G;

where c; is the mean of points in G;, called the center of cluster i. Based on the centers of the & clusters,
any out-of-sample observation is assigned to the cluster with the shortest distance to the center. In the
case of our application, the observations are the daily numbers of trading imbalances or balanced trades,
which are partitioned into & clusters. Each cluster represents a regime of trading activities and therefore is
associated with certain information characteristics. For each hidden state in the HMM, its associated
expected number of trading imbalances or balanced trades is treated as an out-of-sample observation,
which can be assigned to the cluster with the nearest center. Consequently, each hidden state is classified
into a unique cluster.

The difficulty in cluster analysis is identifying the number of clusters £. Sugar and James (2003)

develop a simple, yet powerful nonparametric method for choosing the number of clusters based on a so-



called jump method with a rigorous theoretical justification.” They demonstrate its effectiveness not only
for choosing the number of clusters but also for identifying the underlying structure on a wide range of
simulated and real world datasets. We therefore adopt this jump method for clustering and choosing the

number of clusters in our application.

S.4. State Prediction, Forecast Distribution of Order Flows and Forecast Pseudo-Residual
In the HMM approach, it is feasible to perform state prediction by deriving the conditional

distribution of states H; for t > T as follows
Pr(Hyren = & Hyren = i)

_ i X Pr(Hyiren = b Hyran = j|Hysr = k, Hyr = 1) Pr(Hy;r = k Hgr = L))
L(®xn))

)

where Pr(Hb;TJrh =1, Hgryp :j|Hb;T =k Hyr = l) is an element of the /-step transition matrix [,
Pr(Hyr =k, Her = L, x(T)) is the((k — 1)n + )-th element of the forward probability n; defined in
Appendix S.1, and L(G)|x(T)) the likelihood function of the HMM defined in (2). The forecast conditional

distribution of the order flows with forecast horizon of / can be derived through

Y Y Pr(Hpr = k, Her = Lxy) T"P(x74p)1
L(®]x(ry)

Pr(Xryn = Xren|xny) =

Based on this forecasted conditional distribution, we can appropriately define the forecast pseudo-residual
to perform the out-of-sample analysis as illustrated in Dunn and Smyth (1996) and Zucchini and
MacDonald (2009). Let ® be the cumulative distribution function of the standard normal distribution and
Y a random variable with cumulative distribution function F, then Z = ®~1(F(Y)) is a standard normal
variable. In our HMM, the random variable X, is discrete and the forecast normal pseudo-residual

segment is defined as

2 We thank Gareth M. James for making the R code of implementing the jump method available on his personal website.



(27415 Zr4n] = [¢—1 (FXT+h(x?+h)) ;o (FXT+h(xT+h))]

= [(I)‘l (Pr(XT+h < xT+h|X(T) = x(T))) ;o1 (Pr(XT+h < xT+h|X(T) = x(T)))],
where x7,, denotes the greatest realization that is strictly less than xr,,. This forecast pseudo-residual
segments can be interpreted as interval-censored realizations of a standard normal distribution, if the
fitted HMM model is valid in the out-of-sample period. If the forecast pseudo-residual segment is

extreme, say lying entirely within the top or bottom 0.5% of the standard normal distribution, i.e.
min(lz;+h|, |zT+h|) > 2.576 = ®~1(0.995), the observation X7, = X7, is an outlier or the candidate

model no longer provides an acceptable description of the series.

S.5. Characteristics of the Hidden States

It may be interesting to know the main characteristics of the hidden states of the HMM for the
120 sample stocks. Limited by the length of the paper, we report them in this appendix.

Important quantities associated with a Markov chain are transition probabilities. The transition
probabilities between hidden states in the HMM provide us with a forward-looking indicator of the
information evolution. Although there are on average 26.27 states, some of them have common features
and therefore can be grouped into the same aggregate state. As discussed in the last subsection, we
consider four aggregate states and each of them includes only one type of states. For notation convenience
we label liquidity, private information, public information, and private and public information aggregate
states from 1 to 4, respectively. Then, we can introduce average transition probability from a state in

aggregate state J to aggregate state K:

1
= - ik forJand K =1,2,3,4,
number of states in set J Viju for]
(i,j) € aggregate state J
(L,k) € aggregate state K

a]K

where y; ;. i i an element in the original transition matrix I' denoting the probability of state being (I, k)

on day ¢+ 1 conditional on it being (i,j) on day t and X(; k) e aggregate state k Vi j;Lk » denotes the



transition probability from state (i, ) to aggregate state K. Roughly speaking, a;k reflects the probability
of being aggregate state K on day t + 1 conditional on being aggregate state / on day t. Figure S-1 below
uses boxplots to show the statistical characteristics of these average transition probabilities across the 120
sample stocks. They exhibit strong cross-sectional variations. For instance, the first boxplot in Figure S-1
(I) depicts the descriptive statistics of @, of the 120 sample stocks, i.e. the statistics of 120 average
transition probabilities from a liquidity state to liquidity aggregate state. The central rectangle shows the
first quartile and the third quartile are 0.25 and 0.5352, respectively, while the segment inside the
rectangle shows the median is 0.3839. The "whiskers" above and below the rectangle indicate the
minimum and maximum of a4, are 0.1805 and 0.6712, respectively. We can also see that there are
outliers of a;x labelled by circles in the first, third and fourth boxplots in Figure S-1 (II), the second and
third boxplots in Figure S-1 (III), and the first, second and fourth boxplots in Figure S-1 (IV).

In these cases, the whisker on the appropriate side is taken to be 1.5 times of interquartile range
(the interval between the first quartile and the third quartile). We can see that the average transition
probabilities to and from liquidity states are non-trivial in the HMM. Therefore, the HMM can
accommodate jumps in liquidity states that neither static models nor AR-type dynamics can capture. As
shown in the second boxplot of Figure S-1 (II), there is a significant probability for two consecutive
trading days being associated with privately informed trading, i.e. a5, > 0. It is consistent with the
information diffusion hypothesis of Hong and Stein (1999) that private information diffuses gradually
across the investing public. The HMM also identifies non-trivial transition probabilities from a private
information state to a public information state (i.e. @y3 > 0) and from a public information state to a state
with private and public information (i.e. a3, > 0). It therefore empirically supports the existence of pre-
announcement and event-period private information, which are theoretically introduced by Kim and

Verrecchia (1997).



It is also interesting to know the stationary distribution of states, which can be calculated based
on the transition matrix I' through the relationship 6T' = §. The stationary probability of being aggregate

state K can be calculated by:

1

" number of states in set K
(i,j) eaggregate state K

Dy 8, forK =1,2,3,4,

where §; ; is the stationary probability of being state (i,j). Figure S-2 (I) below provides the
boxplots of the stationary probabilities of being the four aggregate states for the 120 sample stocks.
Figure S-2 (II) shows the boxplots of the sample kurtosis of buy and sell orders under the stationary state
distribution. For about half of the sample stocks, buy and/or sell order flows exhibit fat tails, as evidenced
by their positive excess kurtosis. Thus, even in equilibrium (stationary states) the order flows are mixed
with liquidity, private information, and SOS trading. The endogenous switching across information states

causes fat tails in order flows to appear.
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Figure S-1. Descriptive statistics of average transition probabilities. This figure shows the boxplots of
the average transition probabilities to the four aggregate states for the 120 sample stocks. Liquidity,
private information, public information, and private and public information aggregate states are labeled
by 1, 2, 3 and 4, respectively. The average transition probabilities from a state in aggregate state ] to
aggregate state K is estimated by

1
" number of states in set |

ax Yijk forJand K =1,2,3,4,

(i,j) € aggregate state J
(k) € aggregate state K

where y; . i is an element in the original transition matrix I' denoting the probability of state being (I, k)

on day t 4+ 1 conditional on it being (i, j) on day t.
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(I) Stationary distribution of four aggregate states () Kurtosis of buys and sells under stationary state distribution
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Figure S-2. Descriptive statistics of stationary state distribution and stationary kurtosis of buy and
sell orders. The stationary probability of states being aggregate state K is calculated through
number of s:ates insetK Z(i'j) € aggregate state K 6i'j ’
(i,)). Figure S-2 (I) provides the boxplots of the stationary probabilities of four aggregate states, where
liquidity, private information, public information, and private and public information aggregate states are
labeled by 1, 2, 3 and 4, respectively. Figure S-2 (II) shows the boxplots of the sample kurtosis of buys
and sells under the stationary state distribution.

where §; ; is the stationary probability of being state
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S.6. Tables and Figures of Simulation Results

This section of appendix presents figures and tables discussed in Section 3.
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Absolute error of daily PIN estimates in the first replication
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Figure S-3. Absolute error of daily PIN and PSOS estimates. The hypothetical trading data over 63
trading days are simulated according to the DY model with parameters a = 0.28, § = 0.3, y, = 132,
e = 133, ¢, =121, e, =123,0 = 0" = 0.1, v, = 139, vg = 131 (Scenario 2.1 of Table S-I). The

PTNt(l) - PINt(1)|, and the lower part

upper part plots the absolute errors in daily PIN estimates, i.e.,
plots the absolute errors in daily PSOS estimates, i.e., |PSOSt(1) —PS OSt(1)|, where PINt(l) and PS OSt(l)

are the true daily PIN and PSOS of day ¢ in the first replication, and PTNt(l) and PS OSt(l) denote the
estimates based on the candidate estimation approach.
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Mean absolute error (MAE) of daily PIN estimates for each replication
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Figure S-4. Mean absolute error of the daily estimates of PIN and PSOS over 100 replications. The
hypothetical trading data of 63 trading days are simulated according to the DY model with parameters
a=028, §=03, u, =132, pu, =133, ¢, =121, ¢, =123,0=06"=0.1, v, = 139, vy = 131
(Scenario 2.1 of Table S-I). In the rt" replication, the mean absolute error is given by MAEIZ?VE"'T] =

1

2 |PING = PINT|, and MAET oy = 231, |PSOS{"” - PS0S.™|, where PIN™ and PSOS{"

os!
are the true values and PTNt(r) and PSOStm denote the estimates based on the candidate estimation

approach. The upper part plots the MAE of daily PIN estimates for each replication and the lower part
plots the MAE of daily PSOS estimates.
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Absolute error in the volatility of daily PIN and PSOS estimates for each replication
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Figure S-5. Absolute error of standard deviation of daily PIN and PSOS estimates in each

replication. The hypothetical trading data of 63 trading days are simulated according to the DY model

with parameters a = 0.28, 6§ = 0.3, y, = 132, puy =133, ¢, =121, e,=123,0=0"=0.1, v, =

139, vy = 131 (Scenario 2.1 of Table S-I). The standard deviations (SD) of daily PIN and PSOS

th

estimates in the r replication are computed respectively by

1 — 1 — 2 1 S 1 J— 2
SDpyy = \/;zgl(mwﬁ) — 237 PINT)". SDpsos = \/;zle (PSO5{ - 231, PSOS") . where

PTNt(r) and PS OSt(T)denote the daily estimates of the HMM or EEOW approach. The absolute error is
computed based on comparing the volatility of the daily estimates of the candidate approaches with the
sample volatility of the true daily measures.
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Figure S-6. Estimated PIN and PSOS over a time interval [0, ¢] for t = 1,2, ...,63. The hypothetical
trading data of 63 trading days are simulated according to the DY model with parameters a = 0.28,
§=0.3, y, =132, ug =133, ¢, =121, e, =123,0 =0 = 0.1, v, = 139, v, = 131 (Scenario 2.1
of Table S-I). The upper and lower parts plot the cumulative PIN and PSOS estimates respectively.
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Table S-1
Simulation results of state identification by the HMM

The hypothetical trading data of Scenarios 1.1 to 1.4, 2.1 to 2.4, 3.1 to 3.4, and 4.1 to 4.4 are generated based on the
EHO, DY, EEOW, and extended EEOW models, respectively, over 63 or 252 trading days with 100 replications.
For each replication, the mode of the conditional likelihood of hidden state for each trading day is compared with its
true state realization so that we can count for misclassification rate over the whole estimation of 63 or 252 trading
days. Panel A of this table reports the average misclassification rate of the 100 replications. Panel B reports the
percentage of replications with initial hidden state correctly identified. The parameters of each simulation scenario
are detailed in Panel C.

Panel A: Average misclassification rate over 100 replications

T =63 T =252

AIC BIC AIC BIC
Scenario 1.1 1.84% 2.04% 0.77% 0.72%
Scenario 1.2 3.09% 2.93% 0.41% 0.15%
Scenario 1.3 2.17% 1.98% 0.24% 0%
Scenario 1.4 3.77% 2.92% 0.38% 0.01%
Scenario 2.1 0.98% 1.55% 0.6% 0.82%
Scenario 2.2 5.41% 7.33% 2.13% 4.13%
Scenario 2.3 2.22% 2.38% 0.75% 0.91%
Scenario 2.4 4.61% 6.94% 1.38% 2.06%
Scenario 3.1 4.57% 2.95% 1.27% 0.84%
Scenario 3.2 3.47% 3.13% 1.55% 1.05%
Scenario 3.3 2.01% 1.14% 0.76% 0.17%
Scenario 3.4 1.86% 0.1% 0.23% 0.06%
Scenario 4.1 4.89% 4.48% 2.53% 2.14%
Scenario 4.2 7.92% 8.60% 6.54% 6.92%
Scenario 4.3 7.25% 9.46% 3.43% 5.23%
Scenario 4.4 7.05% 7.86% 2.14% 4.29%
Panel B: Percentage of replications with initial hidden state correctly identified

T =63 T = 252

AIC BIC AIC BIC
Scenario 1.1 96% 99% 96% 100%
Scenario 1.2 98% 100% 98% 100%
Scenario 1.3 100% 100% 99% 99%
Scenario 1.4 99% 100% 100% 100%
Scenario 2.1 96% 95% 94% 94%
Scenario 2.2 85% 81% 87% 87%
Scenario 2.3 90% 91% 96% 97%
Scenario 2.4 89% 89% 93% 93%
Scenario 3.1 92% 94% 90% 95%
Scenario 3.2 95% 98% 98% 98%
Scenario 3.3 81% 82% 82% 82%
Scenario 3.4 86% 85% 87% 86%
Scenario 4.1 89% 88% 87% 86%
Scenario 4.2 94% 91% 99% 97%
Scenario 4.3 93% 90% 95% 91%
Scenario 4.4 83% 82% 83% 83%
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Table S-1-Continued

Panel C: Parameters of each simulation scenario

Scenario 1.1: a« = 0.28,8 = 0.33,u = 31,¢, = 23,&, = 24
Scenario 1.2: ¢ = 0.2,8 = 0.65,u = 45,¢, = 30,&, = 31
Scenario 1.3: & = 0.35,8 = 0.5,u = 192, ¢, = 205,¢5 = 205
Scenario 1.4: « = 04,8 = 0.5,u = 100,¢, = 62,&, = 62

Scenario 2.1: « = 0.28,6 = 0.3,u, = 132, u, = 133,¢, = 121,&, = 123,60 = 6’ = 0.1,v, = 139,v, = 131
Scenario 2.2: @ = 0.45,8 = 0.6,y = 32,4, = 33,&, = 21,6, = 23,0 = 6’ = 0.15,v,, = 39,v, = 31
Scenario 2.3: « = 04,6 = 0.56,u;,, = 240, u, = 250,¢, = 100,&, = 100,60 = 6’ = 0.2,v;, = 130,v, = 120
Scenario 2.4: « = 0.3,6 = 0.5, u;,, = 50,5 = 50,¢, = 40,&, = 40,0 = 6' = 0.3,v, = 80,v, = 80

Scenario 3.1: « =0.3,6 =0.5,g = (0) w = ( 3 ),CD = ( 0.22 0'15),‘1’ = (0'12 0_09)’(0:#0) = ( 8 )

0 10 -0.35 0.13 0.06 0.10/°\2& 16
Scenario 3.2: a = 0.2,8 = 0.4,g = (4E ),w (142) = 003032 8%11) g = (8:1; g}é)(;;‘)’) - (143)
Scenario 3.3: @ = 04,8 = 0.6,9 = (E(;S),w =(2) 2=} %300 w = (% 210 (%) =(2)
Scenario 3.4: « = 0.2,§ = 0.55,g = (ZE(')_S)'w = ( ) ( gg% 88;) Y = (882 88;), (62“‘:2) = (460)

Scenario 4.1: @ = 0.2,6 =0.5,0 =0’ = 02,6, = 50,9 = ( ) (112) ® = (0-03 0-02)

0.08 0.06 o 0.04 028/
v =(Zo01 0.01) (2, + 2600,) = (113)

Scenario 4.2: o = 03,6 = 04,0 = 0 = 0.3,¢, = 40,9 = (2 55), = (
- (g:(z)g 0(5936)'(2% iﬂgeuo) - (gg)
Scenario 4.3 @ = 04,6 =05,0 = ' = 02,0, = 40,9 = (£ )0 = (33),0 = (47 0%
¥= (8(2)2 8:(2);)'(25()1#36”0) - (ig)
Scenario 4.4: @ = 0.45,8 = 0.6,0 = 0’ = 0.15,v, = 10,g = (E_S ),w = ( 2 )@= ( 0.31 _0'13),

0.19 0.18 ao 3 2w N o
¥ = (026 022) (26, + 200) = (5)

20)? = (So26 030
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Table S-11
Simulation results of daily estimates of PIN and PSOS
The hypothetical trading data of Scenarios 1.1 to 1.4, 2.1 to 2.4 3.1 to 3.4, and 4.1 to 4.4 are generated based on the
EHO, DY, EEOW, and extended EEOW models, respectively, over 63 or 252 trading days. The mean absolute
error (MAFE) is given by

) sy (1) @) @) ® )
MAE, \for = XL |PINS - PINT), MAED, (o =3 2i=1| PSOS” - PSOS,”)],

where Pl Nt(r) and PS OSt( ) are respectively the true daily PIN and PSOS on day t in the " replication, and PTNt(T)
and PS OSt(T) are daily estimates in the r** replication obtained by using the candidate approach. Over 100
replications, we report the mean of MAFE defined by

) =1 y100 pr (r) ™) = 1 y100 gy )
Mean (MAEPINE"'TJ = 1002 E Nl Mean (MAEpsos,EO'T]) 1002 psos[" -

The mean of the standard deviation of daily PIN or PSOS estimates over the 100 replications is,

1 . 2
310 J SI (PINS =237, PIND)

Q)]
Mean (SDPIN[OT] =10

™ _1 scpe™)’
L5109 \/ SI, (PS0s" - 131, P50S) .

Each row is associated with a candldate approach. The true values are given in the last row of each scenario denoted
by TRUE.

Mean (SD ") [OT] =700

Mean (MAEgLiO,ﬂ) Mean (MAEP(’S)OSEO T]) Mean (SDSLEO,T]) Mean (SDP?OSP T])

T=63 T=252 T=63 T=252 T=63 T=252 T=63 T=252
Scenario 1.1: Trading data generated by the EHO model of a« = 0.28,6 = 0.33,u = 31,¢, = 23,&, = 24
HMM 0.0182 0.0103 0.0000 0.0000 0.1687 0.1718 0.0000 0.0000
EHO 0.1758 0.1775 0 0 0 0 0 0
DY 0.1752 0.1772 0.0000 0.0000 0 0 0 0
EEOW 0.1739 0.1775 0 0 0.0373 0.0128 0 0
TRUE 0 0 0 0 0.1762 0.1732 0 0
Scenario 1.2: Trading data generated by the EHO model of « = 0.2,6 = 0.65,u = 45,¢, = 30,¢, = 31
HMM 0.0133 0.0074 0.0000 0.0000 0.1654 0.1669 0.0000 0.0000
EHO 0.1574 0.1602 0 0 0 0 0 0
DY 0.1567 0.1599 0.0021 0.0010 0 0 0 0
EEOW 0.1683 0.1635 0 0 0.0376 0.0136 0 0
TRUE 0 0 0 0 0.1706 0.169 0 0
Scenario 1.3: Trading data generated by the EHO model of « = 0.35,6 = 0.5, = 192, &, = 205, &, = 205
HMM 0.0069 0.0028 0.0000 0.0000 0.1495 0.1506 0.0000 0.0000
EHO 0.1515 0.1531 0 0 0 0 0 0
DY 0.1515 0.1531 0.0000 0.0000 0 0 0 0
EEOW 0.1547 0.1548 0 0 0.013 0.0057 0 0
TRUE 0 0 0 0 0.1521 0.152 0 0
Scenario 1.4: Trading data generated by the EHO model of « = 0.4,6 = 0.5,u = 100, &, = 62,&5 = 62
HMM 0.0094 0.0041 0.0000 0.0000 0.2157 0.2173 0.0000 0.0000
EHO 0.2235 0.2264 0 0 0 0 0 0
DY 0.2235 0.2264 0.0000 0.0000 0 0 0 0
EEOW 0.2263 0.2265 0 0 0.0203 0.0073 0 0
TRUE 0 0 0 0 0.2186 0.2188 0 0

Scenario 2.1: Trading data generated by the DY model of &« = 0.28,6 = 0.3, = 132, 4, = 133,¢, = 121,¢, =
123,06 =6' =0.1,v, = 139,v, = 131

HMM 0.0107 0.0065 0.0068 0.0044 0.1484 0.1522 0.1385 0.1404
EHO 0.1602 0.1622 0.0502 0.0499 0 0 0 0
DY 0.143 0.1454 0.1184 0.1202 0 0 0 0
EEOW 0.1719 0.171 0.0502 0.0499 0.0358 0.0163 0 0
TRUE 0 0 0 0 0.1518 0.153 0.1478 0.1467
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Table S-11-Continued

() Q) Q) Q)
Mean (MAEPINEO'T]) Mean (MAEPSOSEO'T]> Mean <S DPINEO'T]) Mean (SDPSOSEO'T])

T=63 T=252 T=63 T=252 T=63 T=252 T=63 T=252

Scenario 2.2: Trading data generated by the DY model of « = 0.45,6 = 0.6, u;,, = 32,us = 33,¢&, = 21,&5 =
23,6 =60' =0.15,v, = 39,v; = 31

HMM 0.0226 0.015 0.0183 0.0166 0.195 0.1933 0.175 0.1793
EHO 0.2072 0.2098 0.0817 0.084 0 0 0 0
DY 0.1956 0.1976 0.1843 0.1897 0 0 0 0
EEOW 0.2156 0.2171 0.0817 0.084 0.067 0.0393 0 0
TRUE 0 0 0 0 0.2017 0.2016 0.1961 0.197

Scenario 2.3: Trading data generated by the DY model of « = 0.4,8 = 0.56, u,, = 240, u, = 250,¢, = 100, &, =
100,86 =6’ = 0.2,v, = 130,v, = 120

HMM 0.0126 0.0075 0.0143 0.0166 0.2517 0.2519 0.1815 0.185
EHO 0.2698 0.2702 0.1778 0.1817 0 0 0 0
DY 0.2577 0.2592 0.0943 0.0966 0 0 0 0
EEOW 0.2638 0.2677 0 0 0.0508 0.0234 0 0
TRUE 0 0 0 0 0.2552 0.2549 0.1948 0.1959

Scenario 2.4: Trading data generated by the DY model of « = 0.3,8 = 0.5, u;, = 50, us = 50, ¢, = 40, &5 =
40,60 = 6' = 0.3,v, = 80,u; = 80

HMM 0.0193 0.0084 0.022 0.0073 0.1487 0.1546 0.2691 0.283
EHO 0.1925 0.1912 0.1901 0.187 0 0 0 0
DY 0.1341 0.1381 0.3176 0.3217 0 0 0 0
EEOW 0.1964 0.1992 0.1901 0.187 0.0947 0.0364 0 0
TRUE 0 0 0 0 0.1553 0.1569 0.2909 0.29

Scenario 3.1: Trading data generated by the EEOW model of ¢ = 0.3,§ = 0.5,g = (0), W= ( 3 ),dJ =

0 10
Cozs 013 = (6o 010)-(2) = (55)

HMM 0.0197 0.0114 0.0000 0.0000 0.326 0.3336 0.0000 0.0000

EHO 0.3679 0.3959 0 0 0 0 0 0

DY 0.3448 0.3802 0.0195 0.0338 0 0 0 0

EEOW 0.3448 0.3987 0 0 0.066 0.0422 0 0

TRUE 0 0 0 0 0.3289 0.3351 0 0

S s . _ _ _(AET% (4 _
cenario 3.2: Trading data generated by the EEOW model of « = 0.2,6 = 0.4,g = ( £ ),w = (12),4) =
033 -01 0.14 0.12\ (@Ho 4

(—0.02 0.01)’LP B (0.18 0.18)'(250) B (13)

HMM 0.0149 0.0028 0.0000 0.0000 0.2764 0.2863 0.0000 0.0000

EHO 0.312 0.3466 0 0 0 0 0 0

DY 0.2123 0.2571 0.0354 0.051 0 0 0 0

EEOW 0.3335 0.3406 0 0 0.0576 0.0301 0 0

TRUE 0 0 0 0 0.2828 0.2856 0 0

Scenario 3.3: Trading data generated by the EEOW model of @« = 0.4,§ = 0.6,g = (EOS), w= (639) LD =
—-0.08 0.36 0.13 0.10\ (@Ho 2

( 0.01 —0.02)"}' - (—0.19 0.20)'(280) - (69)

HMM 0.0253 0.0052 0.0000 0.0000 0.2778 0.2789 0.0000 0.0000

EHO 0.2762 0.278 0 0 0 0 0 0

DY 0.2907 0.2934 0.0005 0.0003 0 0 0 0

EEOW 0.291 0.2951 0 0 0.0667 0.0664 0 0

TRUE 0 0 0 0 0.2818 0.2798 0 0
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Table S-11-Continued

() Q) Q) Q)
Mean (MAEPINEO'T]) Mean (MAEPSOSEO'T]> Mean <S DPINEO'T]) Mean (SDPSOSEO'T])

T=63 T=252 T=63 T=252 T=63 T=252 T=63 T=252

Scenario 3.4: Trading data generated by the EEOW model of &« = 0.2,6 = 0.55,g = (ZE(')_S) , W = (12) , P =
(—0.01 0.03)’4, _ (0.08 0.07)’(0‘#0) _ ( 6)

—0.07 0.02 0.03 0.03/’\2¢ 40
HMM 0.0138 0.0054 0.0000 0.0000 0.2659 0.2703 0.0000 0.0000
EHO 0.2623 0.2714 0 0 0 0 0 0
DY 0.2947 0.3073 0.0112 0.01 0 0 0 0
EEOW 03112 0.312 0 0 0.0411 0.0281 0 0
TRUE 0 0 0 0 0.2699 0.2705 0 0

Scenario 4.1: Trading data generated by extended EEOW model of « = 0.2,§ = 0.5,0 =6’ =0.2,¢, = 50,9 =

(8)"" = (11122)'4) = (8:82 g:gé),w = (—0(.)(.)(?1 8:8?)'(250 iﬂgevo) = (11123)

HMM 0.0193 0.0099 0.0106 0.0048 0.2017 0.2127 0.2840 0.2713
EHO 0.2334 0.243 0.1337 0.1421 0 0 0 0
DY 0.1888 0.1912 0.3093 0.3279 0 0 0 0
EEOW 0.2687 0.2732 0.1337 0.1421 0.0734 0.0437 0 0
TRUE 0 0 0 0 0.2083 0.2133 0.2792 0.2852

Scenario 4.2: Trading data generated by extended EEOW model of @« = 0.3,8§ =0.4,0 =0' = 03,5, =40,g =
(ZE_S)’(U _ (40)’(15 _ ( 0.13 —0.19)’11, _ (0.09 0.06)’( 220 ) _ (40)

E—S 28 —-0.26 0.20 0.23 0.3 2&9 + 26v, 60
HMM 0.0235 0.0144 0.0384 0.0338 0.2663 0.2734 0.1920 0.1840
EHO 0.265 0.2691 0.1010 0.1011 0 0 0 0
DY 0.2922 0.2967 0.1535 0.1551 0 0 0 0
EEOW 0.2981 0.3023 0.1010 0.1011 0.0618 0.0454 0 0
TRUE 0 0 0 0 0.2751 0.2758 0.1827 0.1829

Scenario 4.3: Trading data generated by extended EEOW model of a = 0.4,§ = 0.5,0 =0’ = 0.2,v, = 40,g =

(5-2)0= ()2 = (52 029) % = (02 0.22)(ze, + 200,) = (o)

HMM 0.0255 0.016 0.0362 0.0269 0.2162 0.2232 0.2153 0.2152
EHO 0.2293 0.2312 0.1047 0.1012 0 0 0 0
DY 0.2229 0.2254 0.2060 0.2042 0 0 0 0
EEOW 0.2381 0.2391 0.1047 0.1012 0.0506 0.0241 0 0
TRUE 0 0 0 0 0.2264 0.227 0.2279 0.2268

Scenario 4.4: Trading data generated by extended EEOW model of « = 0.45,6 = 0.6,60 =0’ = 0.15,v, = 10,9 =

(o) o=(15)2=Cosa 6 )% =026 020) (2o +3000) = (1)

HMM 0.0237 0.0119 0.0328 0.0275 0.2115 0.2188 0.1925 0.1918
EHO 0.2159 0.2217 0.0777 0.0764 0 0 0 0
DY 0.2121 0.2143 0.1938 0.1898 0 0 0 0
EEOW 0.2222 0.221 0.0777 0.0764 0.0704 0.0435 0 0
TRUE 0 0 0 0 0.2227 0.2221 0.1874 0.1867
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Table S-111
Simulation results of estimated PIN and PSOS over a certain time interval
The hypothetical trading data of Scenarios 1.1 to 1.4, 2.1 to 2.4, 3.1 to 3.4, and 4.1 to 4.4 are generated based on the
EHO, DY, EEOW, and extended EEOW models, respectively, over 252 trading days. For 100 replications, the bias
(BIAS) between the estimates and the corresponding true values over the interval of day O through day t are
calcualted by

__1 s100 (p7y™ _ ) _ 1 5100 (pcpec®™ _ )
BIASPIN[OVT] ~ 100 Xr=1 (PIN[O,T] PIN [O.T]) ’ BIASPSOS[O_T] ~ 100 Xr=1 (PSOS[O.T] PSOS[O,T])’

where PIN[(O?] and PSOS [(Or )T] are respectively the true PIN and PSOS over the period [0, ] in the 7" replication and
P/I\N[(Or;] and PS 05[((; )T] are the estimates obtained by a candidate approach. The corresponding root mean squared
errors (RMSE) reported in parentheses are calcualted by
1 1

— (L y100[pv®. _ prv® 1212 — (1 s100[pcpge® _ ™ 11?2
RMSEPIN[O,T] - {100 Zr:l[PIN[O.T] PINpz } ’ RMSEPSOS[O_T] - {100 Z"7”=1[PSO‘S‘[0,T] PSOS[OIT]] } )

BIAS BIAS

PIN[o.7 PS0S[o 1
(RMS E ) (RMSE
PIN[o.7] PSOS[g 4
T=5 T=21 7=63 T =252 T=5 7=21 T=63 T =252
Scenario 1.1: Trading data generated by the EHO model of a« = 0.28,6 = 0.33,u = 31,¢, = 23,&, = 24
HMM 0.01 0.0065 0.0056 0.0047 0.0000 0.0000 0.0000 0.0000
(0.0166) (0.0091) (0.0074) (0.0061) (0.0000) (0.0000) (0.0000) (0.0000)
EHO 0.0727 0.0365 0.0204 0.004 0 0 0 0
(0.0881) (0.0435) (0.0261) (0.0049) 0) (0) (0) 0)
DY 0.0727 0.0365 0.0204 0.0042 0.0011 0.0011 0.0011 0.0011
(0.0883) (0.0434) (0.0262) (0.0052) (0.0026) (0.0026) (0.0026) (0.0026)
EEOW 0.0723 0.0362 0.0215 0.0047 0 0 0 0
(0.0884) (0.0435) (0.027) (0.0061) (0) (0) (0) (0)
Scenario 1.2: Trading data generated by the EHO model of « = 0.2,6 = 0.65,u = 45,¢, = 30,5, = 31
HMM 0.0054 0.0056 0.0049 0.0046 0.0000 0.0000 0.0000 0.0000
(0.0143) (0.0082) (0.0072) (0.0066) (0.0000) (0.0000) (0.0000) (0.0000)
EHO 0.0865 0.0351 0.0195 0.0028 0 0 0 0
(0.1021) (0.0442) (0.0235) (0.0034) 0) (0) (0) 0)
DY 0.0859 0.0348 0.0187 0.003 0.0006 0.0006 0.0006 0.0006
(0.1019) (0.0441) (0.0231) (0.0037) (0.0022) (0.0022) (0.0022) (0.0022)
EEOW 0.0904 0.0419 0.0264 0.0083 0 0 0 0
(0.1129) (0.0648) (0.0463) (0.0254) (0) (0) (0) (0)
Scenario 1.3: Trading data generated by the EHO model of « = 0.35,6 = 0.5,y = 192, ¢, = 205,¢5 = 205
HMM 0.0028 0.0026 0.0025 0.002 0.0000 0.0000 0.0000 0.0000
(0.0047) (0.0036) (0.0034) (0.0027) (0.0000) (0.0000) (0.0000) (0.0000)
EHO 0.0596 0.0264 0.0146 0.0013 0 0 0 0
(0.0728) (0.0325) (0.0184) (0.0017) 0) 0) (0) 0)
DY 0.0596 0.0264 0.0146 0.0013 0.0000 0.0000 0.0000 0.0000
(0.0728) (0.0325) (0.0184) (0.0017) (0.0000) (0.0000) (0.0000) (0.0000)
EEOW 0.0726 0.0334 0.0192 0.0063 0 0 0 0
(0.0909) (0.0423) (0.0268) (0.015) (0) (0) (0) (0)
Scenario 1.4: Trading data generated by the EHO model of a« = 0.4,6 = 0.5,u = 100, &, = 62,&, = 62
HMM 0.0044 0.0038 0.0039 0.0029 0.0000 0.0000 0.0000 0.0000
(0.0057) (0.0048) (0.0048) (0.0038) (0.0000) (0.0000) (0.0000) (0.0000)
EHO 0.0881 0.0405 0.02 0.0021 0 0 0 0
(0.1061) (0.05) (0.0257) (0.0027) 0) 0) 0) 0)
DY 0.0881 0.0405 0.02 0.0021 0.0000 0.0000 0.0000 0.0000
(0.1061) (0.05) (0.0257) (0.0027) (0.0000) (0.0000) (0.0000) (0.0000)
EEOW 0.085 0.041 0.0205 0.0032 0 0 0 0
(0.1058) (0.0503) (0.0261) (0.0045) (0) (0) (0) (0)
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Table S-111-Continued

BIAS BIAS
PIN[o.7 PS0S[o 1
(RMSE (RMSE
PINjo.7) PSOS[o.11
T=5 T=21 T=63 T =252 t=5 t=21 T=063 T =252
Scenario 2.1: Trading data generated by the DY model of « = 0.28,8 = 0.3, u, = 132, u, = 133,¢, = 121, ¢, =
123,06 =6' = 0.1,v, = 139,v, = 131
HMM 0.0122 0.0144 0.0127 0.01 0.0199 0.0108 0.0107 0.0096
(0.0208) (0.018) (0.0165) (0.0131) (0.0172) (0.0174) (0.0142) (0.0106)
EHO 0.0903 0.0586 0.0567 0.057 0.136 0.1417 0.149 0.1492
(0.1163) (0.0692) (0.0617) (0.0578) (0.202) (0.1572) (0.1539) (0.1504)
DY 0.079 0.0322 0.0193 0.004 0.1352 0.057 0.0287 0.0036
(0.0961) (0.0436) (0.024) (0.0049) (0.1481) (0.0691) (0.036) (0.0048)
EEOW 0.0955 0.0583 0.0535 0.049 0.136 0.1417 0.149 0.1492
(0.1186) (0.0709) (0.0615) (0.0519) (0.202) (0.1572) (0.1539) (0.1504)
Scenario 2.2: Trading data generated by the DY model of « = 0.45,8 = 0.6, u, = 32,u, = 33,5, = 21,¢&, =
23,6 =0' =0.15,v, = 39,v; = 31
HMM 0.0073 0.0048 0.0042 0.0031 0.0042 0.0044 0.0043 0.0043
(0.0136) (0.0075) (0.0057) (0.0043) (0.0092) (0.006) (0.0053) (0.0103)
EHO 0.0758 0.045 0.0392 0.0375 0.078 0.0863 0.0846 0.0885
(0.0881) (0.0575) (0.044) (0.0378) (0.1313) (0.1025) (0.0894) (0.0894)
DY 0.063 0.0297 0.0163 0.0014 0.1015 0.0425 0.0196 0.0016
(0.0801) (0.0399) (0.0204) (0.0018) (0.107) (0.0524) (0.0238) (0.0019)
EEOW 0.1028 0.0688 0.0591 0.0535 0.078 0.0863 0.0846 0.0885
(0.1296) (0.0985) (0.0924) (0.0602) (0.1313) (0.1025) (0.0894) (0.0894)
Scenario 2.3: Trading data generated by the DY model of « = 0.4,8 = 0.56,u,, = 240, u, = 250,¢, = 100, &, =
100,60 = 6' = 0.2,v, = 130,v, = 120
HMM 0.0067 0.0041 0.0034 0.0032 0.008 0.0076 0.0077 0.0081
(0.009) (0.0054) (0.0044) (0.0039) (0.0127) (0.0097) (0.0099) (0.0106)
EHO 0.1141 0.0681 0.0533 0.0542 0.1331 0.147 0.1435 0.1448
(0.1495) (0.0813) (0.0609) (0.0546) (0.1789) (0.157) (0.147) (0.1458)
DY 0.1038 0.0472 0.026 0.0015 0.0965 0.0437 0.0229 0.0018
(0.1339) (0.0597) (0.0312) (0.0019) (0.1153) (0.0513) (0.028) (0.0022)
EEOW 0.1037 0.062 0.0496 0.0464 0.1331 0.147 0.1435 0.1448
(0.1365) (0.0757) (0.0582) (0.0491) (0.1789) (0.157) (0.147) (0.1458)
Scenario 2.4: Trading data generated by the DY model of « = 0.3,8 = 0.5, u;, = 50, us = 50, ¢, = 40, &5 =
40,60 = 6' = 0.3,v, = 80,u; = 80
HMM 0.0081 0.0048 0.0045 0.0041 0.0089 0.0086 0.0088 0.0085
(0.0127) (0.0067) (0.0059) (0.0052) (0.0131) (0.011) (0.0115) (0.011)
EHO 0.1087 0.1104 0.1118 0.111 0.2831 03111 0.3296 0.3317
(0.1278) (0.1163) (0.114) (0.112) (0.3319) (0.3211) (0.3334) (0.3324)
DY 0.0711 0.0268 0.0135 0.0025 0.1361 0.0606 0.0361 0.0035
(0.0877) (0.0334) (0.0177) (0.0031) (0.1776) (0.0785) (0.0449) (0.0043)
EEOW 0.1141 0.1062 0.1149 0.1166 0.2831 03111 0.3296 0.3317
(0.1429) (0.118) (0.1231) (0.1287) (0.3319) (0.3211) (0.3334) (0.3324)
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Table S-111-Continued

BIAS BIAS
PIN[g 1 PSOS[g.7
(RMSE (RMSE
PIN[4 PSOS[g 4
T=5 T=21 T=63 T =252 t=5 t=21 T=063 T =252
Scenario 3.1: Trading data generated by the EEOW model of « = 0.3,§ = 0.5,g = (8) ,W = (130) , P =
0.22 0.15 _(0.12 0.09\ (%Ho\ _ (8
(—0.35 0.13)"# B (0.06 0.10)'(250) B (16)
HMM 0.0219 0.0206 0.0105 0.0083 0.0000 0.0000 0.0000 0.0000
(0.0307) (0.0256) (0.0132) (0.0109) (0.0000) (0.0000) (0.0000) (0.0000)
EHO 0.1845 0.0914 0.046 0.0152 0 0 0 0
(0.2404) (0.1188) (0.058) (0.0236) (0) 0) 0) 0)
DY 0.1809 0.0956 0.0531 0.0315 0.0371 0.0371 0.0371 0.0371
(0.2385) (0.118) (0.0642) (0.0407) (0.0483) (0.0483) (0.0483) (0.0483)
EEOW 0.1711 0.0761 0.0374 0.0086 0 0 0 0
(0.2282) (0.1005) (0.0475) (0.0111) (0) 0 (0) (0)
-5
Scenario 3.2: Trading data generated by the EEOW model of « = 0.2,6 = 04,9 = (45_5 ), W= (142) , D =
033 —0.1\ ,, _ (0.14 0.12\ (QHo\ _ (4
(—0.02 0.01)'1{, B (0.18 0.18)'(250) B (13)
HMM 0.0187 0.0139 0.0087 0.0066 0.0000 0.0000 0.0000 0.0000
(0.03) (0.0183) (0.0112) (0.008) (0.0000) (0.0000) (0.0000) (0.0000)
EHO 0.1878 0.0878 0.0457 0.0183 0 0 0 0
(0.2312) (0.1089) (0.061) (0.0242) (0) 0) 0) (0)
DY 0.183 0.0841 0.0615 0.0415 0.0766 0.0766 0.0766 0.0766
(0.2195) (0.1086) (0.0793) (0.0601) (0.0816) (0.0816) (0.0816) (0.0816)
EEOW 0.1636 0.0778 0.0422 0.0093 0 0 0 0
(0.2041) (0.0991) (0.0533) (0.0113) (0) 0 (0) 0)
5
Scenario 3.3: Trading data generated by the EEOW model of @« = 04,6 = 0.6,g = (EO ), W= (639) , P =
— a
Conr Zo02)* = Cono 020)(26) = (60)
HMM 0.017 0.0109 0.0051 0.0031 0.0000 0.0000 0.0000 0.0000
(0.0238) (0.0136) (0.0065) (0.0038) (0.0000) (0.0000) (0.0000) (0.0000)
EHO 0.1419 0.0857 0.0781 0.0766 0 0 0 0
(0.1719) (0.1001) (0.0859) (0.0768) 0) 0) (0) 0)
DY 0.1413 0.055 0.0287 0.0034 0.0003 0.0003 0.0003 0.0003
(0.1763) (0.0677) (0.0382) (0.0043) (0.0021) (0.0021) (0.0021) (0.0021)
EEOW 0.1261 0.0486 0.026 0.0057 0 0 0 0
(0.1573) (0.0599) (0.0344) (0.0072) (0) ()] (0) (0)
Scenario 3.4: Trading data generated by the EEOW model of ¢ = 0.2, = 0.55,g = (25_5) , W = (411553) , D =
—0.01 0.03 _70.08 0.07\ (@Ho\ _ (6
(—0.07 0.02)'41 B (0.03 0.03)' (250) B (40)
HMM 0.0078 0.0092 0.0078 0.005 0.0000 0.0000 0.0000 0.0000
(0.013) (0.012) (0.0104) (0.0062) (0.0000) (0.0000) (0.0000) (0.0000)
EHO 0.1928 0.0867 0.0822 0.0693 0 0 0 0
(0.2126) (0.1118) (0.097) (0.08) (0) 0) 0) 0)
DY 0.1744 0.0635 0.0433 0.0097 0.01 0.01 0.01 0.01
(0.2098) (0.0847) (0.0545) (0.0126) (0.014) (0.014) (0.014) (0.014)
EEOW 0.1679 0.06 0.04 0.0071 0 0 0 0
(0.2071) (0.0803) (0.0507) (0.0099) 0) ) (0) 0
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Table S-111-Continued

BIAS BIAS
PIN[g 1 PSOS[g.7
(RMSE (RMSE
PIN[4 PSOSg,q7
T=5 T=21 T=063 T =252 7=5 T=21 T=063 T =252

Scenario 4.1: Trading data generated by extended EEOW model of « = 0.2,§ = 0.5,0 =6’ =0.2,¢, =50,g =

0 12 0.03 0.02 0.08 0.06 oy 12
(o)"" a (112)'4) B (0.04 0.28)'[1” B (—0.01 0.01)'(250 + 29vo) B (113)
HMM 0.0163 0.0112 0.0061 0.003 0.0143 0.0095 0.0069 0.0069
(0.0289) (0.0148) (0.0078) (0.0039) (0.0250) (0.0205) (0.0148) (0.0131)
EHO 0.1354 0.1 0.091 0.0844 0.2353 0.2791 0.3076 0.3143
(0.1662) (0.1146) (0.0983) (0.0888) (0.3196) (0.3015) (0.3126) (0.3154)
DY 0.1115 0.0518 0.0249 0.0019 0.1912 0.0941 0.0407 0.0028
(0.133) (0.0623) (0.0309) (0.0025) (0.2248) (0.1171) (0.0504) (0.0036)
EEOW 0.1771 0.1458 0.1386 0.1315 0.2353 0.2791 0.3076 0.3143
(0.2037) (0.1591) (0.1432) (0.1335) (0.3196) (0.3015) (0.3126) (0.3154)
Scenario 4.2: Trading data generated by extended EEOW model of @ = 0.3,8§ = 0.4,0 =0' =0.3,¢;, = 40,9 =
2E75 40 0.13 -0.19 0.09 0.06 Qg 40
( ES )"” B (28)'¢' B (—0.26 0.20 )’lp B (0.23 0.3 )'(250 + 29vo) - (60)
HMM 0.0205 0.0115 0.0069 0.0036 0.0164 0.0152 0.0143 0.0124
(0.0284) (0.0144) (0.0084) (0.0044) (0.0185) (0.0154) (0.0135) (0.0110)
EHO 0.1542 0.0729 0.0644 0.0711 0.1214 0.138 0.1364 0.1317
(0.1881) (0.086) (0.0722) (0.0724) (0.1542) (0.1447) (0.139) (0.1325)
DY 0.1462 0.054 0.0286 0.003 0.0821 0.0375 0.0237 0.0121
(0.1795) (0.0672) (0.0365) (0.004) (0.0948) (0.0464) (0.0315) (0.0132)
EEOW 0.1318 0.0534 0.0329 0.0159 0.1214 0.138 0.1364 0.1317
(0.1674) (0.0675) (0.0417) (0.0189) (0.1542) (0.1447) (0.139) (0.1325)
Scenario 4.3: Trading data generated by extended EEOW model of « = 0.4,6§ = 0.5,0 =68’ =0.2,v, = 40,9 =
E~S 18 0.07 —0.04 0.05 0.07 ) 20
(E'S)'w B (38)'¢ B (—0.28 0.29 )'lp B (0.25 0.22)’(260 + 29“0) a (40)
HMM 0.0269 0.0102 0.0078 0.0046 0.0320 0.0275 0.0222 0.0217
(0.032) (0.0124))  (0.0095) (0.0057) (0.0366) (0.0287) (0.0259) (0.0214)
EHO 0.0949 0.0406 0.0271 0.025 0.1375 0.1573 0.155 0.16
(0.1173) (0.0492) (0.0333) (0.0267) (0.1916) (0.1685) (0.158) (0.1607)
DY 0.0974 0.0361 0.0209 0.0049 0.124 0.05 0.0268 0.0123
(0.121) (0.043) (0.0254) (0.0059) (0.1392) (0.0627) (0.0328) (0.015)
EEOW 0.1081 0.0662 0.0546 0.0565 0.1375 0.1573 0.155 0.16
(0.1392) (0.0779) (0.0609) (0.0572) (0.1916) (0.1685) (0.158) (0.1607)

Scenario 4.4: Trading data generated by extended EEOW model ofa = 0.45,6 = 0.6,0 = 0' = 0.15,v; =

E-S 2
10.9= (25—5)"" = (15
HMM 0.0249
(0.0209)
EHO 0.1036
(0.1296)
DY 0.092
(0.1152)
EEOW  0.1109
(0.137)

0.0199
(0.0184)
0.0612
(0.0777)
0.057
(0.0695)
0.0546
(0.0677)

o=

0.31 -0.13 0.19 0.18 apo 3

—0.54 0 )’l‘u B (0.26 0.22)'(280 + 26vo) N (16)
0.0137 0.0071 0.0350 0.0308 0.0249 0.0256
(0.0116)  (0.0126)  (0.0328)  (0.0295)  (0.0282)  (0.0266)
0.0459 0.0368 0.0779 0.1226 0.1279 0.1284
(0.056) (0.0431)  (0.1391)  (0.1361)  (0.1316)  (0.1292)
0.0404 0.0283 0.1334 0.0618 0.0396 0.0339
(0.0499)  (0.032) (0.1454)  (0.0751)  (0.0485)  (0.0398)
0.0372 0.0291 0.0779 0.1226 0.1279 0.1284
(0.0458)  (0.0311)  (0.1391)  (0.1361)  (0.1316)  (0.1292)
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