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A Results from Matrix Algebra and Calculus

The following results can be found in Magnus (1988). The vec operator stacks the columns of a

(k� k) matrix into a (k2� 1) vector. The vech operator stacks the lower triangular part including
the main diagonal of a (k � k) symmetric matrix into a (k� � 1) vector, k� = k(k + 1)=2.

For any matrices A(k�l), B(l�m) and C(m�n), vec(ABC) = (C 0
A)vec(B). For any (k�k)
symmetric matrix A, the (k��k2) elimination matrix Lk is de�ned such that vech(A) = Lkvec(A),
and the (k2 � k�) duplication matrix Dk is de�ned such that vec(A) = Dkvech(A). Let �ij be

a (k � k) matrix with 1 in its (i; j)th position and zeros elsewhere. Then Lk and Dk can be

obtained using Lk =
X

i�j
vech(�ij)(vec(�ij))

0 and Dk =
X

i>j
vec(�ij + �ji)(vech(�ij))

0 +X
i=j
vec(�ij)(vech(�ij))

0.
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The above results can be combined to give the following result for any (k � k) matrices A and
B, with B being symmetric

vech(ABA0) = Lkvec(ABA
0) = Lk(A
A)vec(B) = Lk(A
A)Dkvech(B): (A.1)

For a (k� l) matrix function F (X) and a (m�n) matrix of variables X, the derivative of F (X)
with respect to X, denoted by the (kl �mn) matrix DF (X), is given by

DF (X) =
@vec(F (X))

@(vec(X))0
:

Also for any (k � k) matrix A,

@A�1

@A
= �((A�1)0 
A�1); @ log jAj

@A
= (vec((A�1)0))0; and

@tr(AX)

@X
= (vec(A0))0:

B The Wishart Distribution: An Overview

The Wishart distribution is the matrix-variate generalization of the �2 distribution. It is the sam-

pling distribution of the sample covariance matrix for random draws from the multivariate normal

distribution; see Gupta and Nagar (2000) for a detailed treatment. We begin our overview by

relating the Wishart distribution to the multivariate normal and the matrix-variate normal. Let

x1; :::; xn be independent random vectors drawn from the (centered) multivariate normal distribu-

tion where each (k� 1) vector xi � Nk(0;�), i = 1; :::; n. Then the (k� n) matrix X = (x1; :::; xn)

has a matrix variate normal distribution denoted as X � Nk;n(0;�
 In). If n � k, then S = XX 0

is a positive de�nite (k � k) matrix and follows a (centered) Wishart distribution, denoted as S �
Wk(n;�), where n is integer degrees of freedom and � is the scale matrix. The unconditional

moments of S are given by E(S) = n�, and Var(vec(S)) = 2nDkD
+
k (�
 �).

The density of S is given by

Wk(n;�) =
jSj

n�k�1
2

2
nk
2 �k(

n
2 ) j�j

n
2

exp

�
�1
2
tr(��1S)

�
; n � k;

where �k
�
n
2

�
= �k(k�1)=4

Yk

j=1
�
�
n
2 + (1� j)=2

�
is the multivariate gamma function. It is also

useful to de�ne a standardized Wishart distribution such that if S � SWk(n;�), where SWk denote

a standardized Wishart distribution of dimension k, we have E(S) = � instead of E(S) = n� under

the non-standardized Wishart. Note that SWk(n;�) is equivalent to Wk(n; n
�1�). In this case,

the density of S is given by

SWk(n;�) =
n
nk
2 jSj

n�k�1
2

2
nk
2 �k(

n
2 ) j�j

n
2

exp
�
�n
2
tr(��1S)

�
; n � k: (B.1)
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If the (k � n) matrix X does not have full column rank (i.e. n < k), S = XX 0 follows instead

a singular Wishart distribution. Srivastava (2003) derives the density of the singular Wishart as

SINGWk(n;�) =
�(�kn+n

2)=2
��� eS���n�k�12

2
nk
2 �n(

n
2 ) j�j

n
2

exp

�
�1
2
tr(��1S)

�
; n < k; (B.2)

where eS is a diagonal matrix containing the non-zero eigenvalues of S along the main diagonal.
One of the key results onWishart distributions is that if S �Wk(n;�), thenASA0 �Wk(n;A�A

0)

for any (k�k) nonsingular matrix A. Srivastava (2003) extends this result to the singular Wishart
case. Based on the ranks of Pt and Vt, we use this result in specifying the distribution of the

innovation matrices "t and �t as discussed in Section 3.1.

C Further Empirical Results

C.1 Bivariate Scalar HEAVY Model: Other Asset Pairs

We estimate the scalar HEAVY model for other pairs of assets selected from the ten DJIA stocks.

The pairing of the assets is chosen by selecting companies in the same sector (e.g. BAC-JPM and

IBM-MSFT), where we expect more persistent correlation dynamics, and also pairs of companies

in di¤erent sectors. The objective is to track the HEAVY model�s performance in each case. Table

1 includes the parameter estimates for the HEAVY, GARCH and GARCH-X models. One notable

feature is that the estimates do not display large variation across the di¤erent pairs. As in the

SPY-BAC case, inclusion of the realized measure crowds out the outer product of returns as the

coe¢ cient DGX is statistically insigni�cant in all cases.

The decomposition of the log-likelihood gains shows that the HEAVY model gains are obtained

for each pair with respect to both margins and the copula with only one exception. The HEAVY

model log-likelihood gain for the joint distribution is uniform across all pairs. The predictive ability

test results indicate that the HEAVY model performs better than GARCH for all asset pairs, with

the gains being particularly signi�cant at short forecast horizons. We do not report the margins-

copula decomposition for these tests in the interest of brevity, but they show that the HEAVY

model gains are maintained for some of the margins and also for the copula of some of the pairs.

In no case was the GARCH model signi�cantly favoured at any horizon except for the BAC and

JPM margins towards the end of the forecast horizon.

C.2 Bivariate Diagonal HEAVY Model: SPY-BAC and Other Asset Pairs

We discuss the estimation and forecast evaluation results only for the diagonal HEAVY and GARCH

models. We exclude the GARCH-X model results to improve presentation noting that its results are

in line with those of the scalar model. The top panel of Table 2 presents estimates of the diagonal

elements of the parameter matrices in (5)-(6), in order, along with those of the corresponding

3



HEAVY-P GARCH GARCH-X HEAVY-V

AH BH AG BG AGX BGX DGX AM BM

BAC - JPM 0.260 0.639 0.062 0.938 0.180 0.702 0.046 0.450 0.550

IBM - MSFT 0.179 0.762 0.051 0.941 0.135 0.794 0.026 0.309 0.676

XOM - AA 0.188 0.737 0.057 0.935 0.114 0.804 0.034 0.315 0.667

AXP - DD 0.201 0.743 0.045 0.951 0.183 0.754 0.010 0.357 0.638

GE - KO 0.220 0.727 0.039 0.957 0.205 0.740 0.007 0.344 0.651

HEAVY-P log-likelihood gains/losses (+/-) relative to GARCH

Margin 1 Margin 2 Copula Joint LL

BAC - JPM 44 58 8 110

IBM - MSFT 30 37 17 84

XOM - AA 44 31 -7 69

AXP - DD 56 49 16 121

GE - KO 47 34 9 90

Joint distribution predictive ability tests at di¤erent forecast horizons (days)

(1) (2) (3) (5) (10) (22)

BAC - JPM -4.09 -3.41 -2.78 -1.98 0.45 1.32

IBM - MSFT -2.92 -2.60 -2.38 -1.94 -1.56 -0.46

XOM - AA -2.76 -2.09 -2.05 -1.76 -1.32 -0.80

AXP - DD -3.46 -3.09 -2.84 -2.39 -1.28 0.18

GE - KO -2.80 -2.66 -2.41 -2.21 -0.91 1.00

Table 1: Scalar HEAVY estimation and forecast evaluation results for other pairs of assets. Top panel: parameter

estimates of HEAVY, GARCH and GARCH-X. BAC-JPM HEAVY-V estimates add up to 1 due to rounding. All

coe¢ cients are statistically signi�cant at the 5 percent signi�cance level. Middle panel: HEAVY-P log-likelihood

gains/losses relative to GARCH. Bottom panel: t-statistics of the predictive ability tests for HEAVY versus

GARCH.
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HEAVY-P GARCH HEAVY-V

AH BH AG BG AM BM

SPY-BAC
(st. error)

0:447
(0:048)

0:477
(0:057)

0:858
(0:033)

0:844
(0:041)

0:238
(0:023)

0:262
(0:035)

0:968
(0:006)

0:964
(0:010)

0:632
(0:025)

0:663
(0:033)

0:768
(0:022)

0:748
(0:028)

AH BH AG BG AM BM

Var. eqn. (SPY) 0.200 0.736 0.057 0.938 0.400 0.590

Var. eqn. (BAC) 0.228 0.713 0.069 0.929 0.439 0.560

Cov. eqn. 0.213 0.725 0.063 0.933 0.419 0.575

Log-likelihood decomposition (HEAVY-P versus GARCH)

HEAVY-P GARCH HEAVY-P gains

Margin 1 (SPY) -659 -713 54

Margin 2 (BAC) -1,592 -1,647 55

Copula 816 809 7

Joint distribution -1,435 -1,552 117

Predictive ability tests at di¤erent forecast horizons (days)

(1) (2) (3) (5) (10) (22)

Margin 1 (SPY) -3.86 -3.24 -2.77 -1.78 0.27 1.50

Margin 2 (BAC) -3.17 -2.45 -1.79 -0.80 0.89 1.90

Copula -3.29 -3.02 -3.04 -3.04 -2.99 -3.88

Joint distribution -4.38 -3.79 -3.27 -2.54 -0.46 0.70

Table 2: Diagonal HEAVY estimation and forecast evaluation results for SPY-BAC. Top panel: parameter

estimates of HEAVY and GARCH with standard errors reported in parentheses. Middle panel: decomposition of

the log-likelihood (excluding constant terms) at the estimated parameter values. Bottom panel: t-statistics of the

predictive ability tests for HEAVY versus GARCH.

GARCH model. These are easier to interpret when expressed in terms of the parameters of the

vech representation in (7)-(8), which are reported underneath. Note that if AH is, for instance, a

(2 � 2) diagonal matrix, then AH will be a (3 � 3) diagonal matrix. The �rst and third diagonal
elements of AH will be the squares of the diagonal elements of AH , and the second diagonal element

of AH will be the product of the two diagonal elements of AH .

The estimates of the diagonal elements are rather similar within each parameter matrix, except

for the HEAVY-V equation. Since the diagonal HEAVY model nests the scalar HEAVY model, we

can test for the restriction using a Wald test. The scalar restriction is not rejected for both the

HEAVY and GARCH models at the 5% signi�cance level. The log-likelihood decomposition results

are similar to the scalar model. The bottom panel of Table 2 shows that the diagonal HEAVY

model provides superior forecasts with the gains being particularly signi�cant at short forecast

horizons.

We also report estimation results for the diagonal model using other pairs of assets in Table

3. For brevity, we only report parameter estimates for the vech representation. The parameter

estimates show some variation within and across pairs. The Wald test results indicate that the

scalar model restrictions are rejected at the 5% signi�cance level only for the XOM-AA pair in
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HEAVY-P GARCH HEAVY-V

AH BH AG BG AM BM

Variance (BAC) 0.267 0.638 0.051 0.947 0.433 0.566

Variance (JPM) 0.256 0.634 0.074 0.925 0.473 0.526

Covariance (BAC-JPM) 0.262 0.636 0.061 0.936 0.452 0.546

Variance (IBM) 0.187 0.761 0.052 0.939 0.331 0.652

Variance (MSFT) 0.172 0.764 0.049 0.945 0.291 0.695

Covariance (IBM-MSFT) 0.180 0.763 0.050 0.942 0.311 0.673

Variance (XOM) 0.175 0.713 0.073 0.907 0.338 0.644

Variance (AA) 0.180 0.784 0.043 0.952 0.285 0.698

Covariance (XOM-AA) 0.178 0.748 0.056 0.929 0.310 0.670

Variance (AXP) 0.218 0.738 0.065 0.931 0.371 0.628

Variance (DD) 0.186 0.740 0.031 0.963 0.338 0.645

Covariance (AXP-DD) 0.201 0.739 0.045 0.947 0.354 0.636

Variance (GE) 0.211 0.750 0.042 0.956 0.354 0.645

Variance (KO) 0.283 0.610 0.037 0.957 0.331 0.653

Covariance (GE-KO) 0.245 0.676 0.039 0.956 0.342 0.649

Log-likelihood decomposition (HEAVY-P versus GARCH)

HEAVY-P GARCH HEAVY-P gains

BAC - JPM -2,828 -2,936 108

IBM - MSFT -2,295 -2,380 85

XOM - AA -3,415 -3,485 71

AXP - DD -3,155 -3,271 116

GE - KO -2,211 -2,304 93

Predictive ability tests at di¤erent forecast horizons (days)

(1) (2) (3) (5) (10) (22)

BAC - JPM -3.78 -3.13 -2.47 -1.68 0.69 1.84

IBM - MSFT -2.91 -2.59 -2.39 -1.94 -1.57 -0.49

XOM - AA -2.84 -2.15 -2.14 -1.87 -1.42 -0.93

AXP - DD -3.24 -2.94 -2.75 -2.33 -1.43 -0.24

GE - KO -2.87 -2.71 -2.50 -2.25 -1.04 0.83

Table 3: Diagonal HEAVY parameter estimates for other pairs of assets. Top panel: parameter estimates of

HEAVY and GARCH. All coe¢ cients are statistically signi�cant at the 5 percent signi�cance level. Middle panel:

HEAVY-P and GARCH log-likelihood (excluding constant terms) at the estimated parameter values. Bottom

panel: t-statistics of the predictive ability tests for HEAVY versus GARCH.
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the HEAVY-P equation, and only for the AXP-DD pair in the GARCH model. The scalar model

restrictions for the HEAVY-V equation are not rejected in any of the pairs. The �gures in the

middle panel shows that the HEAVY model gains over GARCH in terms of the joint distribution

log-likelihood are uniform across all pairs. The gains in the margins and the copula - not reported

for brevity - mirror the results of the corresponding scalar models; see middle panel of Table 1.

The t-statistics of the predictive ability tests in the bottom panel indicate that the HEAVY model

consistently outperforms the GARCH model.
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