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This appendix proceeds as follows. Section A.1 describes the data sources. Several subsequent sections

provide more details on the estimation procedure. Section A.2 describes how we link the model forecast to

the survey inflation forecasts; Section A.3 explains the Gibbs sampler for model M3 that discards survey

data; Section A.4 briefly describes how the algorithm changes for the baseline model and model M2, and

Section A.5 discusses the convergence results. In Section A.6, we describe additional estimation results.

Finally, we provide more details concerning the model evaluation exercises in Section A.7 and discuss our

sensitivity analyses to the priors and inflation expectations data in Section A.8.

A.1 Data

The macroeconomic series are sourced from the ECB’s Statistical Data Warehouse database (SDW)1 and

correspond to the series published in the ECB’s Economic Bulletin. We backdate these series using historical

data from the Area Wide Model database (AWM).2 Specifically, we follow the AWM procedure and backdate

price indexes and the unemployment rate using growth rates (Fagan et al., 2001, Annex 2). Before backdating,

we seasonally adjust the AWM HICP price index with the X13 procedure using JDemetra+.3 Details are

given in Table A1 below.4

∗E-mail addresses: arnoud.stevens@nbb.be and joris.wauters@nbb.be
1http://sdw.ecb.europa.eu/
2https://eabcn.org/page/area-wide-model
3https://ec.europa.eu/eurostat/cros/content/software-jdemetra en
4All tables, figures, and several equations in this Online Appendix are labeled as A1, A2, etc. All reference labels without

an 'A' thus refer to elements from the main text.
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Table A1: Data

Variable Source (and codes)

Headline inflation
SDW (ICP.M.U2.Y.000000.3.INX )

AWM (HICP)

Unemployment rate
SDW (STS.M.I8.S.UNEH.RTT000.4.000)

AWM (URX )

GDP deflator
SDW (MNA.Q.Y.I8.W2.S1.S1.B.B1GQ. Z. Z. Z.IX.D.N )

AWM (YED)

Import price inflation
SDW (MNA.Q.Y.I8.W1.S1.S1.C.P7. Z. Z. Z.IX.D.N )

AWM (MTD)

Inflation expectations ECB SPF website

We retrieve the inflation expectations series from the ECB’s SPF webpage.5 More specifically, we collect

the aggregate probability distributions for inflation at the one-year, two-years, and five-years ahead horizons,

and compute the mean from these distributions at each point in time. Note that these are discrete prob-

ability distributions with bins such as [1.5%, 1.9%] , [2%, 2.4%], etc. To gauge the mean of the probability

distribution at each point in time, we compute a weighted sum of the means of the bins. The weights are

the probabilities assigned to the bins by the forecasters, and the mean value of each bin is the mean of the

two outer points in the interval (e.g., for the [2%, 2.4%] interval it is (2%+2.4%)/2). The resulting series are

shown in Figure A1.

Figure A1: SPF inflation expectations data
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Note: The SPF expectations are the rolling horizon one-year and two-years ahead expectations and the five-years
ahead calendar year inflation expectations. In all three cases, we report the computed mean from the aggregate
probability distribution for year-on-year headline inflation. Sample: 1999Q1 - 2020Q1.

5https://www.ecb.europa.eu/stats/ecb surveys/survey of professional forecasters/html/index.en.html
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A.2 Linking the survey expectations with the model forecast

. Notation

Our estimation sample ranges from 1990Q1 to 2019Q1, but the SPF inflation expectations data is only

available from 1999Q1 onwards. We denote the starting date of the SPF with t̄, such that 1 < t̄ < T , with

T denoting the final observation. We explain below how the estimation algorithm differs for periods t < t̄

without the survey data compared to periods t ≥ t̄ which include it.

Starting with some notation, denote Yt = (πt, ut, πmt )′ and Y T =(Y ′1 , ..., Y ′T )′ as the vectors which stack

the macro data, and let Zt = (πet+h1|t, ..., π
e
t+hn|t)

′ and ZT = (Z ′
t̄
, ..., Z ′T )′ denote the vectors which stack

the survey expectations data collected in periods t̄, ..., T . Similarly, the time-varying parameters are stacked

as, e.g., λT = (λ1, ..., λT )′, the trends as τT = (τ ′1, ..., τ ′T )′, where τt = (τπt , τut , τmt )′. We define θt =(
τ ′t , τ

′
t−1, ρ

π
t , λt, γt, ρ

u
1 , ρ

u
2 , ρ

m
1 , ρ

m
2
)′

as a vector that collects the relevant parameters for forecasting inflation

using data up to period t. Finally, the detrended (or ‘gap’) variables are π̃t = πt − τπt , ũt = ut − τut , and

π̃mt = πmt − τmt ; they are collected in the vector Ỹt = (π̃t, ũt, π̃mt )′ .

. Rewriting the macro block in VAR / state-space form

Measurement equations (22) to (23) from the main text link survey expectations to the model forecast. To

generate this model-consistent forecast, we rewrite equations (5) to (7) as a vector autoregressive model

(VAR):


1 −λt −γt

0 1 0

0 0 1


︸ ︷︷ ︸

A0,t


π̃t

ũt

π̃mt

 =


ρπt 0 0

0 ρu1 0

0 0 ρm1


︸ ︷︷ ︸

A1,t


π̃t−1

ũt−1

π̃mt−1

+


0 0 0

0 ρu2 0

0 0 ρm2


︸ ︷︷ ︸

A2


π̃t−2

ũt−2

π̃mt−2



+


επt

εut

εmt

 .

This VAR, which describes our macroeconomic series, can be cast in state-space form as

Xt = FtXt−1 + et, (A1)

where the detrended variables are collected in the state vector Xt =
(
π̃t, ũt, π̃

m
t , π̃t−1, ũt−1, π̃

m
t−1
)′

, the trans-

ition dynamics are given by

Ft =

 A−1
0,tA1,t A−1

0,tA2

I3 03×3

 ,

3



and the error terms are

et =

 A−1
0,t

03×3

 (επt , εut εmt )′ .

. Timing of the SPF data

Two remarks are in order concerning the data. First, the SPF expectations data are collected at the start

of each quarter. Since macroeconomic data is released with a lag, these expectations are based on data up

to a certain month in the previous quarter. For example, the one-year-ahead expected year-on-year inflation

rate in the SPF from Q1 refers to year-on-year inflation in December of the same calendar year. In turn,

the Q2 survey refers to the year-on-year inflation in March of the next calendar year, and so on. We follow

the ‘noise interpretation’ of Smets et al. (2014) and consider these series as noisy indicators of year-on-year

inflation in the quarter that contains the month of reference. Ergo, the Q1 SPF one-year-ahead year-on-year

expected inflation is taken as a measure for expected year-on-year inflation three quarters ahead, and so on.

Although the five-year-ahead forecast in the SPF is a calendar year forecast, we use it as a proxy for the

rolling horizon forecast of year-on-year inflation five years ahead.

Second, given that SPF data is collected at the start of the quarter, we consider this series to indicate

the forecasters’ views on the trends and coefficients from the previous quarter. As a result, in our empirical

application, we specify that each period t’s SPF expectations series for h periods ahead inflation, πet+h|t, is

informative about the trends and transmission coefficients from quarter t− 1 (see below).

. Defining point forecasts for year-on-year inflation

Inflation is defined as the annualised quarter-on-quarter growth rate of the price index: πt = 400ln(Pt/Pt−1),
where Pt is the price index and ln(.) is the natural logarithm. Denote πat as the year-on-year inflation in

quarter t, then πat = 1
4 (πt + πt−1 + πt−2 + πt−3) . We use equation (A1) of the detrended model to generate

forecasts of the inflation gap Et(π̃t+h). After rewriting this term as Et(πt+h − τπt+h)=Et(πt+h)−Et(τπt+h),
it follows that the point forecast for inflation, Et(πt+h), is the sum of the forecasted inflation gap Et(π̃t+h)
and expected trend Et(τπt+h).

. Model forecast function fh
(
θt−1, Y

t−1)
We generate model-consistent inflation forecasts by iterating equation (A1) forward. We invoke the anticip-

ated utility model (AUM) and keep the time-varying parameters fixed to their current states. Hence, when

forecasting future inflation using data up to period t, we set expected future trend inflation equal to τπt .

To match the survey expectations with the model forecast, we consider the forecasts for year-on-year infla-

tion one-, two-, and five years ahead. Recall that the SPF survey is conducted at the start of each quarter.

Hence, in our analysis, we link the one-year-ahead forecast πet+3|t with the model-implied three-quarter-ahead

forecast of year-on-year inflation using the previous period’s data and states, as given by

f3
(
θt−1, Y

t−1) = τπt−1 + e′1
1
4

(
X̂t|t + X̂t+1|t + X̂t+2|t + X̂t+3|t

)
= τπt−1 + e′1

1
4
(
Ft−1 + F 2

t−1 + F 3
t−1 + F 4

t−1
)
Xt−1

= τπt−1 + e′1
1
4Ft−1 (I6 − Ft−1)

−1 (
I6 − F 4

t−1
)
Xt−1,
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where X̂i|j stands for the forecast of the state vector in period i using the information known at the start

of quarter j, i.e., the SPF data from quarter j and the macroeconomic data up to period j − 1. The unit

vector e1, which has size 6×1 and contains 1 in row 1 and zero elsewhere, selects the element in the first row

as this corresponds to the inflation forecast. Given that the state vector contains the detrended annualised

quarter-on-quarter inflation rate, we construct the year-on-year detrended inflation rate as the four-quarter

moving average of the quarterly detrended inflation rates and add trend inflation to generate the overall

expected inflation rate. For the two-years- and five-years-ahead forecast of year-on-year inflation, we use

f7
(
θt−1, Y

t−1) = τπt−1 + e′1
1
4F

5
t−1 (I6 − Ft−1)

−1 (
I6 − F 4

t−1
)
Xt−1

f19
(
θt−1, Y

t−1) = τπt−1 + e′1
1
4F

17
t−1 (I6 − Ft−1)

−1 (
I6 − F 4

t−1
)
Xt−1.

It is important to note that fh
(
θt−1, Y

t−1) is non-linear in the parameters that are in θt−1 —that is, all

parameters except the time-varying trends. Since these parameters affect the likelihood function of the

survey data, they require additional attention in the Gibbs sampler, as explained below.

A.3 Gibbs sampler for model M3

This section describes in detail the Gibbs sampling algorithm for model M3 that disables forecast smoothing.

In the next section, we briefly explain the different steps for the baseline model, which allows for forecast

smoothing, and model M2, which discards the survey data, relative to the algorithm for model M3.

The aim is to draw from the joint posterior of all unknown parameters by drawing iteratively from the

conditional posterior distributions using a Gibbs sampling algorithm, which goes through the following steps:

Initialise: We initialise all state variables and time-invariant parameters at their prior means.

Step 1: Draw the error variances from their conditional posterior distribution:

p
(
σ2
u, ..., σ

2
ψ|Y T , ZT , τT , ρπ,T , λT , γT , ψT , ωT

)
. Observe that the error variances are conditionally independ-

ent given the data and the state variables. Therefore, we can draw them one by one from the appropriate

distributions as described in the appendix of Chan et al. (2016). There are two cases to consider: error vari-

ances related to unbounded states and measurement equation errors, and error variances related to bounded

states λT and ρπ,T .

. Error variances of measurement equations and unbounded states

Using standard linear regression results, it follows that the conditional posteriors follow standard inverse-

Gamma distributions. For example,

(
σ2
u|uT , τTu , ρu1 , ρu2

)
∼ IG

(
νu + T

2 ,Su + 1
2

T∑
1

(εut )2

)
,

where the prior is defined as σ2
u ∼ IG (νu,Su). The error variances σ2

m, σ2
h1

,..., σ2
hn

, σ2
τπ, σ2

τu, σ2
τm, σ2

γ ,

σ2
ψ, and σ2

ω are drawn similarly.

. Error variances σ2
ρ and σ2

λ of the bounded states
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The error variances related to the bounded states ρπ,T and λT require a different approach because the error

terms in those state equations are drawn from truncated normal distributions instead of normal distributions.

Therefore, the log-posterior density is

logp
(
σ2
ρ|ρπ,T

)
∝ logp

(
ρπ,T |σ2

ρ

)
+ logp

(
σ2
ρ

)
∝ −T − 1

2 logσ2
ρ −

1
2σ2

ρ

T∑
2

(
ρπt − ρπt−1

)2
{
−

T∑
2
log

(
Φ
(1− ρπt−1

σρ

)
− Φ

(
−ρπt−1
σρ

))}
−
(
νρ + 1

)
logσ2

ρ −
Sρ
σ2
ρ

,

with Φ(.) denoting the cumulative distribution function (CDF) of the standard normal distribution. This

is a non-standard density due to the part that goes in curly brackets. Following Chan et al. (2016), we

implement a Metropolis-Hastings step with proposal density

IG

(
νρ + T − 1

2 ,Sρ + 1
2

T∑
2

(
ρπt − ρπt−1

)2)
,

which is based on the above kernel, but discards the part in brackets. σ2
λ is drawn analogously.

Step 2: Sample the persistence parameters ρu1 , ρ
u
2 , ρ

m
1 , ρ

m
2 from

p
(
ρu1 , ρ

u
2 , ρ

m
1 , ρ

m
2 |Y T , ZT , λT , ρπ,T , γT , τT , ωT , σ2

u, σ
2
h1
, ..., σ2

hn

)
. Note that information for these parameters

is given by several measurement equations, i.e. the unemployment gap equation (6), the import price gap

equation (7), and the survey data equations (22) to (23). If we disregard the equations related to survey

data, we obtain standard regression results (see Chan et al., 2016). However, the inclusion of survey data

implies that these parameters enter non-linearly in the function fh(θt−1, Y
t−1) for each period t ≥ t̄.

To draw from ρ̃ ≡ (ρu1 , ρu2 , ρm1 , ρm2 )′, one approach would be to use maximisation routines to determine

the mode and hessian of the posterior distribution, and use this information to draw from a proposal normal

distribution. We have applied this approach at first, but found similar results at increased computational

speed using the following method. We apply an independent Metropolis-Hastings step where the proposal

distribution is based on an approximate model where the non-linear functions fh(θt−1, Y
t−1) are linear-

ised.6 Denote θt−1/ρ̃ as the vector θt−1 without the ρ̃ elements. We can then rewrite fh(θt−1, Y
t−1) as

fh(θt−1/ρ̃, ρ̃, Yt−1), and take a first order approximation of the latter in the point ρ̃0:

fh(θt−1/ρ̃, ρ̃, Y
t−1) ≈ fh(θt−1/ρ̃, ρ̃0, Y

t−1) +
(
∂fh(θt−1/ρ̃, ρ̃0, Y

t−1)
∂ρ̃0

)′
(ρ̃− ρ̃0)

≈ fh(θt−1/ρ̃, ρ̃0, Y
t−1)−

(
∂fh(θt−1/ρ̃, ρ̃0, Y

t−1)
∂ρ̃0

)′
ρ̃0︸ ︷︷ ︸

ch
t

+
(
∂fh(θt−1/ρ̃, ρ̃0, Y

t−1)
∂ρ̃0

)
︸ ︷︷ ︸ ′

x̃h,t
′

ρ̃.

In other words, we transform the measurement equations with survey data (22) to (23) into equations which

are linear functions of ρ̃. By decomposing the joint likelihood p(Y T , ZT |...) as the product p(ZT |Y T , ...)×
p(Y T |...), and using standard regression results, this approximate model delivers closed form solutions for

6Canova and Forero (2015, Appendix E) discuss how a non-linear state-space model can be estimated by creating an
approximate model through linearisation and then using this approximate model as proposal density.
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the conditional posterior of ρ̃, which is a normal distribution. Specifically, we rewrite the unemployment gap

equation (6) as

ũT = Xuρ̃+ εu,T ,

where Xu =


ũ0 ũ−1 0 0
...

...
...

...

ũT−1 ũT−2 0 0

 , with var(εu,T ) = σ2
uIT , and we rewrite the import price gap equation

(7) as

π̃m,T = Xmρ̃+ εm,T ,

where Xm =


0 0 π̃m0 π̃m−1
...

...
...

...

0 0 π̃mT−1 π̃mT−2

 , with var(εm,T ) = σ2
mIT . Next, we stack the linearised measurement

equations for the survey data as

ZT = C + X̃ρ̃+ εz,T ,

where C =
(
c′
t̄
, ..., c′T

)′
, ct =

(
ch1
t , ..., c

hn
t

)′
, X̃ =


x̃t̄
...

x̃T

 , x̃t =


x̃h1,t

′

...

x̃hn,t
′

, εz,T =
(
εz
t̄
′, ..., εzT

′)′ ,

εzt =
(
εh1
t , ..., ε

hn
t

)′
, and var(εz,T ) ≡ Ωz = IT−t̄+1⊗


σ2
h1

0
. . .

0 σ2
hn

. Combining the likelihood functions

with a normal prior p (ρ̃) ∼ N (ρ̃,V) leads to a normal conditional posterior
(
ρ̃|Y T , ZT , ...

)
∼ N

( ¯̃ρ, V̄
)
, where

V̄ =
(
V−1 +Xu ′Xu/σ2

u +Xm ′Xm/σ2
m + X̃ ′Ω−1

z X̃
)−1

¯̃ρ = V̄
(
V−1ρ̃+Xu ′ũT /σ2

u +Xm ′π̃m,T /σ2
m + X̃ ′Ω−1

z

(
ZT − C

))
.

Using these results, we take a candidate draw from a t-distribution with degrees of freedom 10, mean ¯̃ρ and

variance V̄ , to endow the proposal distribution with fatter tails. If the candidate draw is non-stationary,

we use the previous draw for ρ̃ as the current draw. However, if the candidate draw meets the stationarity

conditions, we accept it with a certain probability according to the Metropolis-Hastings procedure. We

select ρ̃0, the parameter values around which the function fh is linearised, as the previously accepted draw.7

In sum, we generate a candidate draw for the persistence parameters from an approximate model which

linearises the model forecast functions around the posterior mean from a model that discards the survey

data.8

7We have also experimented with setting ρ̃0 to the conditional posterior mean that is obtained when the measurement equa-

tions for the survey data are ignored: ρ̃0 =
(
V−1 +Xu ′Xu/σ2

u +Xm ′Xm/σ2
m

)−1 (
V−1ρ̃+Xu ′ũT /σ2

u +Xm ′π̃m,T /σ2
m

)
.

However, results were found to be similar.
8To set up the C and X̃ matrices, we use the symbolic toolbox in Matlab to derive the Jacobian of the functions fh and use

the matlabFunction() command to convert this symbolic expression into a vectorised Matlab function.
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Step 3: Sample the time-varying trends τπt , τ
u
t , τ

m
t for t = 1, ..., T . Conditional on the time-varying

coefficients ρπt , λt, γt, the model can be cast in a linear state-space form, and the trends can be drawn with

the Carter and Kohn (1994) algorithm. Building on the expressions from Section A.2, we consider the

following augmented state vector:

X̃t = (τ ′t , X ′t)
′

=
(
τπt , τ

u
t , τ

m
t , π̃t, ũt, π̃

m
t , π̃t−1, ũt−1, π̃

m
t−1
)′
.

The measurement equations, spelled out for our implementation with three survey expectations series for

inflation in periods t ≥ t̄, are built by stacking Yt and Zt+1 in the left-hand side:



πt

ut

πmt

πet+4|t+1

πet+8|t+1

πet+20|t+1


=



I3 I3 03×3

1 01×2 e′1Ft/4 (I6 − Ft)
−1 (

I6 − F 4
t

)
1 01×2 e′1F

5
t /4 (I6 − Ft)

−1 (
I6 − F 4

t

)
1 01×2 e′1F

17
t /4 (I6 − Ft)

−1 (
I6 − F 4

t

)


X̃t +



0

0

0

ε3t+1

ε7t+1

ε19
t+1


,

which builds on the previously defined functions f3
(
θt−1, Y

t−1), f7
(
θt−1, Y

t−1) and f19
(
θt−1, Y

t−1) that

define the model forecasts. For the periods t < t̄ without survey data, the left- and right-hand sides of

the above expression are left-multiplied with the matrix (I3 03×3) in order to abstract from the survey data

equations.

The state equations are given by

X̃t =

 I3 03×6

06×3 Ft

 X̃t−1 +


I3 03×3

03×3 A−1
0,t

03×6





ητπt

ητut

ητmt

επt

εut

εmt


.

Step 4: Sample the time-varying transmission coefficients ρπ,T , λT , γT for t = 1, ..., T . This block has two

complications. First, these time-varying parameters also enter non-linearly in the model forecast functions

fh1

(
θt−1, Y

t−1) , ..., fhn

(
θt−1, Y

t−1) for the survey expectations equations, which precludes setting up a

linear state-space model as in Step 3. Second, the states ρπ,T and λT are bounded to lie within certain

intervals. To accommodate both features, we implement a single-move sampler based on Cogley (2005) and

Koop and Potter (2011), where for each period t = j the time-varying coefficients are drawn conditional
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on the values for these coefficients in periods t 6= j, in addition to the other model parameters, using an

independent Metropolis-Hastings step.

Define δt = (ρπt , λt, γt)
′

as the vector collecting the time-varying coefficients, covariance matrix Q =
diag

(
σ2
ρ, σ

2
λ, σ

2
γ

)
, and θt/δt

as the vector θt excluding the δt elements. In each period t = t̄, ..., T − 1 the

single-move sampler draws from (see Koop and Potter, 2011, equation 15)9:

p
(
δt|δj 6=t, Y T , ZT , θt/δt

, τT , ψT , σ2
λ, σ

2
ρ, σ

2
γ , σ

2
h1
, ..., σ2

hn

)
∝

p
(
Zt+1|Yt, Yt−1, δt, θt/δt

, τt, τt−1, σ
2
h1
, ..., σ2

hn

)
{p
(
Yt|Yt−1, Yt−2, δt, θt/δt

, τt, τt−1, ψt, σ
2
h1
, ..., σ2

hn

)
(A2)

p (δt+1|δt, Q) p (δt|δt−1, Q)} 1 (δt ∈ A)
R (δt, Q) .

The two terms in the second line correspond to the likelihood function of the data, and the next three terms

in the third line to the prior distribution. To draw from this conditional posterior distribution, we derive a

proposal probability density function which is based on the parts between brackets in the above expression.

This is described in the following steps:

. The likelihood function

We decompose the joint likelihood p
(
ZT , Y T |δt, δj 6=t, ...

)
as p

(
ZT |Y T , δt, δj 6=t, ...

)
p
(
Y T |δt, δj 6=t, ...

)
. This

product can be further decomposed as
∏T
i=1 p

(
Zi|Zi−1, Y T , δt, δj 6=t, ...

) ∏T
i=1 p

(
Yi|Y i−1, δt, δj 6=t, ...

)
. From

this joint likelihood we only keep the parts which depend on δt, since the rest is absorbed by the integrating

constant. As a result, the only two remaining terms are

p
(
Zt+1|Yt, Yt−1, δt, θt/δt

, τt, τt−1, σ
2
h1
, ..., σ2

hn

)
p
(
Yt|Yt−1, Yt−2, δt, θt/δt

, τt, τt−1, ψt, σ
2
h1
, ..., σ2

hn

)
.

By decomposing the likelihood function in this way, we can exploit the fact that in the p (Yt|Yt−1, Yt−2, δt, ...)
component, Yt is a linear function of δt. In particular, we have

π̃t = (π̃t−1, ũt, π̃
m
t ) δt + επt

= Xδ
t δt + επt ,

as the only part that depends on δt. For the periods t < t̄ which do not contain survey data, p (Yt|Yt−1, Yt−2, δt, ...)
is the only likelihood term. Our proposal distribution uses this expression in combination with the prior

distribution. We now turn to the latter.

. The prior distribution under bound restrictions

Building on the notation and reasoning from Koop and Potter (2011), the restricted prior distribution of

δt consists of three terms: p (δt|δt−1, Q) 1 (δt ∈ A) /R (δt−1, Q) . The first term, p (δt|δt−1, Q), is the unres-

tricted prior distribution of δt. Due to the random walk process, this is a normal distribution centred on

δt−1 with variance Q. Since we apply constraints that ρπt and λt lie within certain bounds, an indicator

function 1 (δt ∈ A) is added which equals 1 if δt meets the bounds and is zero otherwise. Finally, the term

9In the final period t = T , there is no δT+1 to condition on, so the p (δt+1|δt, Q) /R (δt, Q) terms disappear from the
conditional posterior density. Furthermore, in each period t = 1, ..., t̄-1 for which we do not have survey data, the likelihood
term p (Zt+1|...) from the second line drops out.
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R (δt−1, Q) indicates the integrating constant that applies to the kernel of the restricted prior distribution

1 (δt ∈ 1) p (δt|δt−1, Q). Intuitively, the integrating constant measures the percentage of random draws from

the normal distribution p (δt|δt−1, Q) that would fall within the acceptance region (see Koop and Potter,

2011).

Note that in expression (A2) the terms 1 (δt+1 ∈ A) /R (δt−1, Q) are missing from the two restricted prior

distributions. This is because, conditional on (previously accepted) δt−1 and δt+1 values, these two terms

are absorbed by the integrating constant.

. Calculating the integrating constant R (δt, Q)

Assuming that the elements of δt evolve as independent random walks allows us to derive analytical expres-

sions for the integrating constant R (δt, Q). By decomposing the joint distribution as the product of three

independent distributions, we obtain

p (δt+1|δt, Q) = p
(
ρπt+1|ρπt , σ2

π

)
p
(
λt+1|λt, σ2

λ

)
p
(
γt+1|γt, σ2

γ

)
.

Therefore, the integrating constant of the restricted prior is

R (δt, Q) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

1 (δt+1 ∈ A) p (δt+1|δt, Q) dρπt+1dλt+1dγt+1

=
∫ 1

0

∫ 0

−1

∫ ∞
−∞

p (δt+1|δt, Q) dρπt+1dλt+1dγt+1

=
∫ 1

0

p
(
ρπt+1|ρπt , σ2

π

)
dρπt+1

∫ 0

−1
p
(
λt+1|λt, σ2

λ

)
dλt+1

∫ ∞
−∞

p
(
γt+1|γt, σ2

γ

)
dγt+1

=
(

Φ
(

1− ρπt
σπ

)
− Φ

(
0− ρπt
σπ

))(
Φ
(
−1− λt
σλ

)
− Φ

(
0− λt
σλ

))
1.

. Combining terms into a proposal density

Our proposal density combines the terms between brackets from expression (A2):

p (Yt|Yt−1, Yt−2, δt, ...) p (δt+1|δt, Q) p (δt|δt−1, Q) ,

because they lead to closed-form solutions for the candidate draw δ∗t (see Carlin et al., 1992, for the formulae).

Given a prior δ0 ∼ N (δ0,Q0), we obtain

(δ∗t |δj 6=t, Y T , ZT ...) ∼ N
(
δ̄t, Σ̄t

)
,

where

Σ̄t =
(
Q−1

0 +Q−1)−1
t = 0

=
(
Xδ
t
′Xδ

t /σ
2
π,t + 2Q−1)−1

t = 1, ..., T − 1

=
(
Xδ
t
′Xδ

t /σ
2
π,t +Q−1)−1

t = T ,

and
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δ̄t = Σ̄t
(
Q−1

0 δ0 +Q−1δ1
)

t = 0

= Σ̄t
(
Xδ
t
′π̃t/σ

2
π,t +Q−1δt−1 +Q−1δt+1

)
t = 1, ..., T − 1

= Σ̄t
(
Xδ
t
′π̃T /σ

2
π,t +Q−1δT−1

)
t = T .

With these ingredients, we generate a candidate draw δ∗t in each period and evaluate the Metropolis-

Hastings acceptance probability. This acceptance probability uses the remaining likelihood term for Zt+1,

the indicator function 1 (δ∗t ∈ A) and integrating constant R (δ∗t , Q). Notice that the Zt+1 term will only be

used in periods t̄− 1 ≤ t ≤ T − 1 for which survey data is applied in the estimation. In the periods t < t̄− 1,

the acceptance probability only depends on 1 (δ∗t ∈ A) and R (δ∗t , Q).

Step 5: Sample the stochastic volatility ψt and ωt for t = 1, ..., T conditional on all other parameters.

The stochastic volatility terms ψt and ωt of the error terms in the measurement equations (5) and (7) for

inflation and import price inflation are drawn separately using the multi-move sampler of Omori et al. (2007).

Their method is similar to the commonly used approach of Kim et al. (1998) for drawing stochastic volatility

states. However, it uses a 10-component mixture distribution to approximate a log χ2
1 distribution that is

more accurate than the 7-component mixture distribution of Kim et al. (1998).

Repeat: Go back to step 1 until the required number of draws is reached.

A.4 Gibbs sampler for the baseline and M2 models

. Baseline model (includes forecast smoothing)

Estimation of the baseline model which allows for forecast smoothing (see equations 19 to 20) is similar to

that of the previous section. In this case, we also draw from the conditional posterior of ξT and restrict

each ξt to lie in the interval (0, 1). We adjust Step 4 and jointly draw ρπt , λt, γt and ξt by adjusting the

expressions for the candidate draw δ∗t and the Metropolis-Hastings acceptance probability accordingly. For

instance, δt = (ρπt , λt, γt, ξt)
′
, Q = diag

(
σ2
ρ, σ

2
λ, σ

2
γ , σ

2
ξ

)
, and Xδ

t = (π̃t−1, ũt, π̃
m
t , 0).

Note that this model requires two consecutive survey observations for estimation (the likelihood term

for the survey data becomes p (Zt+1|Zt, Yt, Yt−1, ...)), which implies that survey data are used in periods

t̄ ≤ t ≤ T − 1.

. Model M2 (discards survey data)

In model M2 without survey data, the whole procedure becomes more straightforward. Steps 1 and 5

remain the same. Step 2 is now based on a normal conditional posterior distribution, for which acceptance-

rejection sampling can be used. Step 3 requires that the correction for the absence of survey data (by

left-multiplication) is applied in each period. The expressions for Step 4 require the removal of the likelihood

terms related to ZT .
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A.5 Convergence

We executed 250,000 replications of the Gibbs sampler and discarded the first 50,000. We then stored every

20th draw to break the autocorrelation and economise on storage size, after which we have 10,000 posterior

draws. We assessed convergence in several ways, first, through casual glances of the trace plots and by

verifying that re-estimating the models delivered similar results. Second, we inspected the recursive means

of the retained draws at every 20th draw, as shown in Figure A2. The fact that there is little evidence of

large fluctuations in the posterior means is taken as evidence in favour of convergence.

Finally, Table A2 reports the inefficiency factors of the estimated parameters. The inefficiency factor is

defined as

1 + 2
H∑
h=1

ρ(h),

where ρ(h) is the sample autocorrelation at lag h, with H chosen large enough to let the autocorrelation

taper off (Chan et al., 2013). As a rule-of-thumb, dividing the amount of Gibbs sampler replications S by the

inefficiency factor indicates the amount of independent posterior draws or “effective sample size” (ESS). For

instance, in case of independent draws
∑H
h=1 ρ(h) ≈ 0 and ESS = S. In the table, we report the inefficiency

factors for the time-varying parameters by sorting them and then taking the 25th, 50th, and 75th percentiles.

The values were calculated from the post-burn-in sample of 200,000 draws (before selecting each 20th draw)

and using H = 100.
As expected, the inefficiency factors are higher for the coefficients ρπ, λ, ξ, as well as their error variances,

due to imposing bounds and the use of a single-move sampler. Nevertheless, the values remain well below

200, which indicates that our large amount of posterior replications guarantees more than 1000 independent

draws.

Table A2: Summary inefficiency factors: baseline model

Persistence parameters ρu1 34.7 ρu2 35.0 ρm1 24.0 ρm2 13.3

Error variances σ2
u 2.6 σ2

1y 22.3 σ2
2y 9.3 σ2

5y 2.1

σ2
τπ 25.4 σ2

τu 7.5 σ2
τm 14.6

σ2
ρ 50.6 σ2

λ 60.1 σ2
γ 27.1 σ2

ξ 58.8

σ2
ψ 13.4 σ2

ω 11.8

Time-varying parameters τπ(25%) 22.4 τπ(50%) 30.9 τπ(75%) 41.9

τu(25%) 38.0 τu(50%) 40.2 τu(75%) 41.2

τm(25%) 12.6 τm(50%) 13.7 τm(75%) 15.0

ρπ(25%) 70.7 ρπ(50%) 87.4 ρπ(75%) 105.7

λ(25%) 96.2 λ(50%) 137.9 λ(75%) 152.8

γ(25%) 28.5 γ(50%) 39.8 γ(75%) 47.1

ξ(25%) 99.1 ξ(50%) 104.1 ξ(75%) 128.1

ψ(25%) 9.4 ψ(50%) 10.7 ψ(75%) 13.2

ω(25%) 4.3 ω(50%) 4.7 ω(75%) 5.2
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A.6 Additional estimation results

In the main text, we focus on the parameters of key interest and compare the baseline model with forecast

smoothing with model M2 that discards survey data. In this section, we report the main estimation results of

model M3, followed by the secondary results of the baseline, M2, and M3 models and, finally, a comparison

with the estimation results from models M4 and M5.

A.6.1 Model M3: main results

Model M3 features no forecast smoothing but aligns the model forecasts contemporaneously with the survey

expectations for inflation. This specification is in line with the approach in Kozicki and Tinsley (2012) and

several follow-up studies. Figures A3 and A4 compare the baseline model with model M3 in terms of the

estimated trend inflation and trend unemployment rates, as well as the time-varying transmission coefficients.

The main message is that model M3 puts an even stronger role for cyclical factors in explaining the

lowflation in the euro area. Compared to the baseline model estimates, trend inflation τπt is more stable

and somewhat higher at the end of the sample, and the trend unemployment rate τut trends downward more

strongly. As a result, this model points out that economic slack remained present during the entire lowflation

period. In our view, the highly dynamic trend unemployment rate and very tight uncertainty bands around

trend inflation are suspect results. Recall that our evidence against this model is that i) model M3 does not

feature forecast smoothing ξt, while the estimates from the baseline model find a high degree of sluggishness,

and ii) that model M3 is decidedly rejected against our baseline model in terms of a marginal likelihood

comparison.

In terms of the time-varying transmission coefficients, Figure A4 shows that the same qualitative results

tend to appear for λt, γt, and ρπt . The only exception is that the Phillips curve slope λt tends to steepen

again at the end of the sample for model M3, which was not found for the baseline and M2 models.
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Figure A3: Estimates of trend inflation τπt and trend unemployment τut

(a) Trend inflation τπt estimates
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(b) Trend unemployment τut estimates
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Note: The figures show estimates of trend inflation (panel a) and estimates trend unemployment (panel b). Trend
estimates from the baseline model (red dashed lines) are compared with those from model M3 that disables forecast
smoothing (blue shaded area). The bands depict the median and 68% credible set.
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Figure A4: Time-varying transmission coefficients: Baseline model and model M3

(a) −λt: Phillips curve slope
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(b) γt: Import price coefficient
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(c) ρπt : Inflation gap persistence
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Note: The figures show the estimated time-varying Phillips curve slope λt (panel a), import price coefficient
γt (panel b), and inflation gap persistence ρπt (panel c). The Phillips curve slope is shown as −λt to facilitate
comparison (an increase reflects a steepening of the slope). Estimates from the baseline model (red dashed lines)
are compared with those from model M3 that disables forecast smoothing (blue shaded area). The bands depict
the median and 68% credible set.
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A.6.2 Secondary results from baseline, M2 and M3 models

Trend relative import price inflation τmt : Instead of demeaning relative import price inflation πmt , we

also estimate a trend τmt in order to capture any slow-moving trend changes. Figure A5 shows that the trend

estimates evolve similarly across models; they creep upwards from negative figures in 1990 to values close to

zero at the end of the sample.

Error variances: Figures A6 and A7 show the evolution of eψt/2 and eωt/2, which are, respectively, the

time-varying standard deviations of the error terms επt and εmt in the inflation gap equation (5) and import

price equation (7). The volatility of residual shocks to headline inflation (eψt/2) trended broadly upward in

the period from about 1995 to 2008, and then declined afterwards. For import price inflation, the volatility

of shocks (eωt/2) undergoes stronger fluctuations and peaks in 2008. The estimates across the baseline model

and models M2 and M3, as shown by the medians, are very similar.

Table A3 shows the summary statistics (median, 16th and 84th percentiles) from the posterior distribu-

tions of the error variances that remain constant over time. Overall, the estimates tend to be similar across

the three models. The variance of the residuals of the survey expectations data, shown as σ2
1y, σ2

2y and σ2
5y for

one-year ahead, two-years ahead and five-years ahead expectations, are relatively small. Of all time-varying

parameters, the variances are the largest in the stochastic volatility series (σ2
ψ and σ2

ω), followed by trend

inflation (σ2
τπ) and trend import price inflation (σ2

τm).

Persistence parameters: Table A4 shows the estimated persistence parameters ρu1 , ρu2 , ρm1 , and ρm2 .

The euro area unemployment gap is found to be highly persistent, with the sum of AR coefficients close to

1. This sum is only about half as large for the more volatile import price inflation gap.
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Figure A5: Relative import price inflation πmt and its trend τmt

(a) Baseline model and model M2
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(b) Baseline model and model M3
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Note: The figures show the inflation rate of the relative price of imports (black line) and estimates of its trend.
Trend estimates from the baseline model (red dashed lines) are compared with those from model M2 that excludes
survey data in panel (a), and with those from model M3 that disables forecast smoothing in panel (b) (both as
blue shaded areas). The bands depict the median and 68% credible set.
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Figure A6: Time-varying stochastic volatility of inflation gap equation error
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Note: Estimates for the time-varying standard deviation of επt , calculated as eψt/2, are shown for the baseline
model (median and 68% credible sets; red dashed lines), a well as the median estimates for model M2 that discards
survey data, and model M3 that disables forecast smoothing.

Figure A7: Time-varying stochastic volatility of import price inflation error
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Note: Estimates for the time-varying standard deviation of εmt , calculated as eωt/2, are shown for the baseline
model (median and 68% credible sets; red dashed lines), a well as the median estimates for model M2 that discards
survey data, and model M3 that disables forecast smoothing.
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Table A3: Summary statistics of the error variances’ posterior distribution

Parameter Baseline model Model M2 Model M3

σ2
u 0.025 0.025 0.028

(0.022, 0.029 ) (0.022, 0.028) (0.025, 0.033)

σ2
τπ 0.010 0.012 0.005

(0.007, 0.013) (0.009, 0.017) (0.004, 0.006)

σ2
τu 0.005 0.005 0.006

(0.004 0.006) (0.004, 0.006) (0.005, 0.008)

σ2
τm 0.009 0.009 0.010

(0.007, 0.013 ) (0.007, 0.012) (0.007, 0.014)

σ2
ρ 0.002 0.002 0.001

(0.001, 0.002) (0.001, 0.002) (0.001, 0.002)

σ2
λ 0.002 0.002 0.002

(0.001, 0.003) (0.001, 0.003) (0.001, 0.002)

σ2
γ 0.001 0.001 0.001

(0.001, 0.002) (0.001, 0.002) (0.001, 0.002)

σ2
ψ 0.079 0.079 0.082

(0.060, 0.106) (0.060, 0.106) (0.062, 0.110)

σ2
ω 0.082 0.083 0.083

(0.063, 0.109) (0.063, 0.110) (0.064, 0.110)

σ2
ξ 0.002

(0.001, 0.003)

σ2
1y 0.013 0.010

(0.011, 0.015) (0.008, 0.012)

σ2
2y 0.007 0.006

(0.006, 0.008) (0.005, 0.007)

σ2
5y 0.005 0.006

(0.004, 0.006) (0.005, 0.007)

Note: The summary statistics shown are the posterior median and, between round brackets, the 16th and 84th
percentiles of the posterior distribution. The parameters σ2

1y , σ2
2y and σ2

5y denote, respectively, the error vari-
ances from the measurement equations for the one-year-ahead, two-years-ahead, and five-years-ahead inflation
expectations.
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Table A4: Summary statistics of the persistence parameters

Parameter Baseline model Model M2 Model M3

ρu1 1.782 1.823 1.659

(1.727, 1.835) (1.755, 1.891) (1.613, 1.704)

ρu2 -0.805 -0.842 -0.696

(-0.856, -0.751) (-0.909, -0.775) (-0.739, -0.650)

ρm1 0.428 0.381 0.142

(0.340, 0.519) (0.280, 0.479) (0.080, 0.202)

ρm2 0.030 0.026 0.061

(-0.045, 0.105) (-0.068, 0.119) (0.016, 0.106)

Note: The summary statistics shown are the posterior median and, between round brackets, the 16th and 84th
percentiles of the posterior distribution of the persistence parameters ρu1 and ρu2 related to the unemployment gap
equation, and ρm1 and ρm2 related to the relative import price gap equation.

A.6.3 Comparison with models M4 and M5

In our estimations, we explained the term structure of expectations using models that allow for time-varying

trends and transmission coefficients. The typical approach in the literature, however, is to use constant

transmission coefficients in the inflation gap equation and to include only long-term survey expectations.

Therefore, we perform two comparison checks to see whether the results change when we simplify our mod-

elling approach. The first simplification, applied in model M4, is to use only long-term inflation expectations

data at the five-years ahead horizon, and discard the equations related to the one- and two-years ahead

forecasts. The second, applied in model M5, is to only allow for time variation in the trends. Model M5 thus

features constant transmission coefficients (ρπ, λ and γ), a constant smoothing coefficient (ξ), and static

variances of the inflation gap residual (επt ∼ N(0, σ2
π), εmt ∼ N(0, σ2

m)).
In Section 6 of the main text, we assess the performance of the baseline model against these two sim-

plifications in terms of inflation forecast accuracy and marginal likelihood evaluation. In this section, we

investigate whether models M4 and M5 lead to qualitatively different results compared to the baseline model.

More specifically, the next paragraphs discuss the implications for the estimated smoothing coefficient ξt,

trend inflation τπt , and the natural rate of unemployment τut .

Smoothing coefficient ξt: Model M5 with constant transmission coefficients delivers a median estimate

of ξ = 0.81 (Table A5). This value fits well with the average degree of forecast smoothing recorded over

the sample in the baseline model. Interestingly, for model M4 that uses only long-term SPF forecasts, ξt is

found to be broadly stable at a level just above 0.9 (not shown). The observed decline in ξt in our baseline

estimate during the financial crisis period is therefore fully driven by developments in short-term inflation

expectations. Indeed, the short end of the expectations curve experienced sharp changes in the later years

of our sample, whereas the long end remained relatively more stable (Figure A1).
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Table A5: Summary statistics of selected parameters of model M5

Model M5

ρu1 1.783 ρm1 0.483 ρπ 0.104 λ 0.201

(1.721, 1.839) (0.399, 0.564) (0.041, 0.175) (0.146, 0.273)

ρu2 -0.801 ρm2 0.012 ξ 0.806 γ 0.144

(-0.857, -0.741) (-0.061, 0.084) (0.752, 0.859) (0.128, 0.160)

σ2
π 0.585 σ2

m 17.207

(0.516, 0.670) (15.294, 19.502)

Note: The summary statistics shown are the posterior median and, between round brackets, the 16th and 84th
percentiles of the posterior distribution. The table contains selected parameters from model M5, which uses
constant transmission coefficients, smoothing parameter, and error variances.

Trend inflation τπt : Panel (a) of Figure A8 shows the posterior median trend inflation estimates for the

baseline model, model M2, and the two variants M4 and M5. The baseline and M5 models deliver similar

trend inflation estimates during most of the protracted period of below-target inflation since 2013. At the

end of the sample, these trend inflation rates are close to 30 basis points above the trend inflation from

model M2 that excludes survey data. Model M4, which uses only long-term inflation expectations, points to

a stronger weakening in trend inflation in recent years compared to the baseline model. This result might

seem counter-intuitive. After all, long-term inflation expectations have been higher and more stable than

shorter-term inflation expectations, and they should, in isolation, be the most informative about the trend.

However, compared to the baseline model, the relatively higher ξt estimates in model M4 imply a slower

adjustment of survey expectations to the underlying model forecasts. This mechanism allows for a more

persistent deviation between long-term survey forecasts and trend inflation, which explains the lower trend

inflation for model M4.

Natural rate of unemployment τut : Panel (b) of Figure A8 shows that, out of the four models, the

baseline model tends to deliver the lowest natural rate of unemployment estimates, especially at the end of

the sample. Again, model M5 delivers similar estimates. The natural rates of the models M2 and M4 form

a second group with higher values over the sample period.

All told, a key message from this exercise is that including only long-term inflation expectations in the

model can lead to different views regarding the trends and, therefore, the relative roles of permanent and

cyclical factors in explaining the lowflation. In fact, Model M4 finds lower trend inflation and a higher natural

rate, which points to less economic slack over the lowflation period and a more critical role for permanent

effects. However, the more accurate forecasts of the baseline model than its M4 variant, as reported in

Section 6 of the main text, suggests that short-term survey forecasts carry essential additional information

about the inflation trend and cyclical factors —a point made previously by Kozicki and Tinsley (2012).
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Figure A8: Model comparisons: trend inflation τπt and natural rate of unemployment τut

(a) Trend inflation τπt estimates
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Note: The figures compare the median trend estimates from the different model variants. Panel (a) shows trend
inflation τπt estimates and panel (b) shows the natural rate of unemployment τut estimates. Models M4 and M5 refer
to the model variants with (i) only long-term expectations and (ii) constant transmission parameters, smoothing
coefficient, and error variances, respectively.
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A.7 Model evaluation exercises: extra details

Forecasting details

Table 1 in the main text includes out-of-sample forecasting results from the Stock and Watson (2007) trend

inflation model with stochastic volatility (UC-SV) and a random walk model. Here, we provide details

concerning these models.

The UC-SV model is defined as

πt = τπt + ηt

τπt = τπt−1 + εt,

where ηt ∼ N(0, σ2
η,t), εt ∼ N(0, σ2

ε,t). The error terms follow stochastic volatility processes:

lnσ2
η,t = lnσ2

η,t−1 + νη,t

lnσ2
ε,t = lnσ2

ε,t−1 + νε,t,

and νη,t ∼ N(0, σ2
νη), εt ∼ N(0, σ2

νε). Although Stock and Watson calibrate σ2
νη = σ2

νε = 0.22, we set relat-

ively uninformative priors for these variances and draw from their posterior distribution. More specifically,

we set inverse-Gamma priors for σ2
νη and σ2

νη with 10 degrees of freedom and scale parameters such that

their means are E(σ2
νη) = E(σ2

νε) = 0.22. We set diffuse initial values as τπ1 ∼ N(0, 9), lnσ2
η,1 ∼ N(0, 9), and

lnσ2
ε,1 ∼ N(0, 9). For each estimation, we discard the initial 10,000 burn-in draws from the MCMC sampler,

and retain each 10th draw of the 50,000 post-burn-in sample. Our forecasts are generated by simulating

future data using the remaining 5,000 MCMC sampler draws.

Our random walk forecast is generated by estimating the model

πt = πt−1 + εt,

where εt ∼ N(0, σ2). We set a flat (or uninformative) prior for σ2, draw 100,000 draws from the posterior

sampler for each estimation, and simulate future inflation data using the MCMC sampler output.

All models simulate future values of annualised quarter-on-quarter inflation. To create year-on-year

inflation, we take the four-quarter moving average. Finally, we fit a normal distribution to the posterior

draws from the MCMC sampler and evaluate the actual realisation of inflation at this probability density

function.

Marginal likelihood estimation details

Let y1:T = (y′1, ..., y′T )′ denote all data up to time T. Our aim is to estimate the marginal likelihood of the

data given model Mk as p(y1:T |Mk). This computation is not trivial for models with many latent state

variables, such as those estimated in our paper. One often applied approach is the modified harmonic mean

estimator. However, Chan and Grant (2015) show that this approach leads to seriously biased estimates of

the marginal likelihood in a model with many latent states. Moreover, the numerical standard errors can be

so severely underestimated that the true marginal likelihood is not within the uncertainty bands. Therefore,
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we opted for using a brute-force approach, which works as follows. We decompose the marginal likelihood as

p(y1:T |Mk) = p(y1|Mk)
T∏
t=1

p(yt+1|y1:t,Mk),

where p(yt+1|y1:t,Mk) denotes the predictive likelihood. To evaluate each predictive likelihood element, a

separate MCMC estimation is done and, based on the estimated parameters, a one-step-ahead forecast is

evaluated at the realised values. More formally, collect model Mk’s constant parameters in the vector β, and

the time-varying parameters in θ1:T , and rewrite the predictive likelihood as (see the appendix of Lakdawala,

2015):

p(yt+1|y1:t,Mk) =
∫ ∫

p(yt+1, β, θ
1:t+1|y1:t,Mk)dβdθ1:t+1

=
∫ ∫

p(yt+1|β, θ1:t+1, y1:t,Mk)p(β, θ1:t+1|y1:t,Mk)dβdθ1:t+1

=
∫ ∫

p(yt+1|β, θ1:t+1, y1:t,Mk)p(θt+1|β, θ1:t, y1:t,Mk)p(β, θ1:t|y1:t,Mk)dβdθ1:t+1.

In the last line, the term p(β, θ1:t|y1:t,Mk) refers to the posterior distribution using data up to time t. Given

this distribution, a simulation is made for states in period t+1 using p(θt+1|β, θ1:t, y1:t,Mk) (see also Cogley

et al., 2005), such that the realized data from t+ 1 is evaluated using p(yt+1|β, θ1:t+1, y1:t,Mk) . Using the

posterior draws from the MCMC sampler, we evaluate the predictive density for period t+ 1 as

1
S

S∑
i=1

p(yt+1|β(i), θ(i),1:t+1, y1:t,Mk),

where superscript (i) refers to draw i from the MCMC sampler’s S total retained draws. This procedure is

repeated by re-estimating the model T − 1 times in order to build the marginal likelihood p(y1:T |Mk). We

used the output from the pseudo-out-of-sample forecasting exercise from Section 6.1 for this purpose.10 In

particular, as the SPF data only start in 1999, the baseline, M2 and M3 models are the same from 1990 until

1998, which makes it unnecessary to repeat MCMC runs for each model separately for this subsample.

When compare the models against restricted versions with constant parameters, we use the following

proper priors: λ ∼ TN(−1, 0; 0.5, 5), γ ∼ N(0.5, 5), ρπ ∼ TN(0, 1; 0.5, 5), σ2
π ∼ IG(10, 9), and σ2

π ∼
IG(10, 9).

A.8 Prior and data sensitivity analyses

Prior sensitivity analysis

Since our baseline model is an extension of the model of Chan et al. (2016), we strongly follow their prior

settings in the main text. They use weakly informative priors that favour smooth variation in the time-

varying parameters. This strategy is necessary for flexible models such as those in this paper to avoid erratic

estimates, but without being dogmatically imposing. In this section, we discuss the sensitivity of our state

variable estimates to different prior settings.

10As in Chan et al. (2018), we discarded the initial four predictive likelihoods to reduce sensitivity to the priors. Moreover,
to compare the baseline model with model M3, we discarded the initial periods for the SPF data because the baseline model
uses a lagged SPF expectation in its measurement equation, while model M3 does not.
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The initial values of our state variables have relatively large variances that make them uninformative

(or diffuse). Therefore, we do not vary these settings. To verify the prior sensitivity of our estimated state

variables (τπ, τu, τm, ρπ, λ, γ, ξ, ψ, ω), we re-estimated the baseline model four times under different

settings for the error variances of the state variables. By adjusting the scale parameters of their inverse-

Gamma priors, we considered the following four cases: i) Very loose: baseline prior means × 10; ii) Looser:

baseline prior means × 4; iii) Tighter: baseline prior means / 4; iv) Very tight: baseline prior means / 10.

Settings i and ii thus favour more time variation in the states, while iii and iv are more restrictive against

time variation. To get a feel for how large these changes are, note first that the priors in our main text imply

that, with 95% probability, the change in trend inflation τπt − τπt−1 lies in the (-0.2;0.2) interval. By contrast,

for the four sensitivity scenarios this interval changes to, respectively, (-0.62;0.62), (-0.39,0.39), (-0.1,0.1),

and (-0.06;0.06). The last setting particularly stacks the deck against time variation, as its 95% probability

bands imply that it would take at least 16 years for trend inflation to decline by 50 basis points.

Overall, we find that the main results hold up well against these prior perturbations. Under case i and

ii, more short-term fluctuations become apparent in the evolutions of the state variables. Under case iii, by

contrast, the estimates become smoother but still show economically relevant time-variation. By contrast,

the “Very tight” case iv kills the time variation in several parameters. Therefore, very conservative priors

towards time variation are needed to end up with flat parameter evolutions. As an illustration, Figures A9

to A11 below show the estimated state variables of trend inflation τπ, Phillips curve slope λ, and stochastic

volatility ψ under the different prior settings. (Other charts are available upon request.)
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Figure A9: Prior sensitivity analysis for trend inflation τπt

(a) Very loose prior setting
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Note: The figure shows four panels where the baseline model estimates for trend inflation τπt (red dashed lines)
are compared against estimates under different prior settings for the error variances of the state variables (blue
full lines). The bands depict the median and 68% credible set. The inverse-Gamma prior settings for the error
variances are defined as follows: i) Very loose: baseline prior means × 10; ii) Looser: baseline prior means × 4;
iii) Tighter: baseline prior means / 4; iv) Very tight: baseline prior means / 10.
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Figure A10: Prior sensitivity analysis for the Phillips curve slope λt

(a) Very loose prior setting
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Note: The figure shows four panels where the baseline model estimates for Phillips curve slope λt (red dashed
lines) are compared against estimates under different prior settings for the error variances of the state variables
(blue full lines). The bands depict the median and 68% credible set. The inverse-Gamma prior settings for the
error variances are defined as follows: i) Very loose: baseline prior means × 10; ii) Looser: baseline prior means ×
4; iii) Tighter: baseline prior means / 4; iv) Very tight: baseline prior means / 10.
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Figure A11: Prior sensitivity analysis for stochastic volatility ψt

(a) Very loose prior setting
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Note: The figure shows four panels where the baseline model estimates for stochastic volatility ψt (red dashed
lines) are compared against estimates under different prior settings for the error variances of the state variables
(blue full lines). The bands depict the median and 68% credible set. The inverse-Gamma prior settings for the
error variances are defined as follows: i) Very loose: baseline prior means × 10; ii) Looser: baseline prior means ×
4; iii) Tighter: baseline prior means / 4; iv) Very tight: baseline prior means / 10.

Sensitivity analysis to survey expectations data:

We have assessed the robustness of our baseline model estimates to using alternative inflation expectations

series. We did not use market-based inflation expectations measures because they are strongly influenced

by other factors such as risk-premia (see Section 1 of the main text). Moreover, the sample for such series

only starts in 2005 for the euro area. We have, however, verified the sensitivity of our estimates to two

other survey-based inflation expectations series, namely the SPF average point forecasts, and the Consensus

Economics (CE) inflation expectations series. Concerning the former, recall that our main estimates use

the (self-computed) mean of the SPF inflation expectations distributions at the one-, two-, and five-years

ahead horizons. These series are very similar to the average point forecasts from SPF respondents at the

first two horizons. However, at the long-term five-years ahead horizon, the average point forecast is, on

average, ten basis points above the self-computed mean in the 2013-2019 period. Nevertheless, panel (a) of

Figure A12 shows that the estimates of trend inflation are essentially the same when we use the average

point forecasts in the estimation of the baseline model. Similarly, panel (b) of Figure A12 shows that trend

inflation estimates are highly similar when we use inflation expectations from CE instead. The same follows

for trend unemployment estimates τut (not shown). Hence, we conclude that our findings hold up well with
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other inflation expectations measures.

Some remarks are in order concerning our implementation of the CE data. The CE dataset reports

calendar year (or “fixed event”) forecasts, which are different from the SPF rolling-horizon forecasts that we

use. In the literature, the CE fixed-event forecasts have been used to approximate rolling-horizon forecasts.

For instance, the one-year ahead rolling horizon expectation for inflation is constructed as a weighted average

of the current and next calendar year inflation forecasts. (Similarly, the two-years ahead forecast is made

as a weighted average of next two consecutive calendar years.) These weights will vary depending on the

quarter (or month) of the year when the expectations are made. Dovern and Fritsche (2008) provide ad-

hoc determined weights. However, Knüppel and Vladu (2016) determine optimal weights by assuming an

underlying AR(1) data generating process for inflation and show that their weights can differ substantially

from the ad-hoc determined weights.

Our approach for setting the weights is inspired by Knüppel and Vladu (2016) but contains some short-

cuts. First, we performed an AR(1) regression on quarter-on-quarter annualised inflation to obtain the

estimated mean, persistence parameter, and error variance. Second, we used these point estimates to simulate

a long time series from the AR(1) model, together with the model-consistent rolling horizon and calendar

year forecasts. Based on this simulated data, we ran an OLS regression of the rolling horizon forecasts on

the calendar year forecasts in order to extract the optimal weights. These weights were applied to the CE

fixed event forecasts to extract rolling-horizon forecasts.11 Another caveat is that the CE data is available

twice per year from 1990 to 2013, and quarterly afterwards. To enhance the comparability between the SPF

and CE series, we used linear interpolation to fill the gaps and only used data starting in 1999.

Figure A12: Data sensitivity analysis for trend inflation τπt

(a) Baseline model vs model with SPF point forecasts
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Note: The trend inflation τπt estimates from the baseline model (red dashed lines) are compared against those
from two models with different inflation expectations data (blue full lines). Panel (a) shows the comparison with
a model using the SPF average point estimates, and panel (b) the comparison with a model using Consensus
Economics (CE) expectations. The bands depict the median and 68% credible set.
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