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In this appendix we provide the technical details corresponding to our discussion in the
main text. Section A briefly discusses identification of time effects and average treatment
effects (ATE) with a correlated random coefficient (CRC) model and a general number of
time periods, while the main text focused on the case where two time periods are observed
for simplicity. Section B discusses the estimation methods of Lemieux| (1998)) and |Suri
(2011)). Section C compares the sufficient set of conditions for the extrapolation identifying
assumption to hold discussed in the main text with generalized Roy models. Section D
discusses CRC models with time-varying treatment effects. Section E discusses the two-step
estimation method defined in the main text and the test of validity of the extrapolation
identifying assumption for the simple extrapolation. Section F discusses the extension of
these methods to using the generalized extrapolation identifying assumption discussed in
the main text. Section G discusses the implications of using unbalanced panels due to data
missing at random. Section H contains proofs for the results of Sections E and F. Propositions
1-3 in the main text are obtained as special cases of the propositions stated in Sections E
and F, but with more cumbersome notation. Therefore we also write in Section H proofs
for Propositions 1-3 in the main text. In Section I we briefly discuss the consequences of
learning about treatment effects (returns in our empirical application) upon being treated
on the validity of the CRC model and extrapolation identification assumptions discussed in
the main text.

Throughout the appendix, ¢ will denote an arbitrary positive constant ¢ > 0 and C'
will denote an arbitrary constant C' < co. We use |A| to denote the cardinality of any set
A. We use the notation O, to denote that a sequence is bounded in probability and o,
to denote that a sequence converges in probability. Throughout the appendix, referenced
equations corresponding to numbered sections are found in the main text, while equations

corresponding to sections indexed by letters are found in this appendix.



A Identification with a General Number of Time Pe-
riods

In this section we discuss the information contained in the CRC model (2.4]) for a general
number of time periods 7', while the main text only considered T' = 2 for simplicity.

Under cross-sectional independence, we can stack observations across time and rewrite

the CRC model (2.4) as:

=W | | +/+U, E(U;|X,) =0 (A.1)

where Y; = [yz‘t]tzl,...,% W; = [jT Xl} Jjr = mt:l,...,T, Xi = [zile=r.1y [ = [fili=1,.1,
U, = [Uit]t:I,...,T-

As in (Chamberlain| (1992), since the relationship between baseline heterogeneity (a;),
treatment effect (b;), and treatment status history (X;) is left unrestricted, the information

for estimating f contained in (A.1]) is equivalent to the information contained in:
E(Mw,(Y; = f)|Xi) =0 (A.2)

where My, = Ip — Wi(W, W;)~W, and (.)~ is a generalized inverse operator.
As in the main text, we will apply the normalization f; = 0, so that time effects f;
are identified if My, has rank greater than 7" — 1 for some values of X; corresponding to a
positive probability. For values of X; corresponding to stayers, Myy, is the projection matrix
of a regression on an constant using 7' observations, so that it has rank 7" — 1, leading to
identification of time effects from observations on stayers.
With two time periods, My, = 0 for cross-sectional observations 7 that correspond to

movers. However with three or more time periods, rank(Myy,) > T —2 > 0, and observations

on movers participate in the identification of time effects f;. Depending on the profiles of



treatment status history observed in the data, it is possible for all time effects f;, t = 2,...,T

to be identified by observations on movers only when 7" > 3.

The CRC model (A.1)) is equivalent to (A.2) and:

B( b X)) = E(Bi(Y; — FIX) + (I - BW)G (A.3)

where B; = (W;W;)”"W, and (; is an unknown, unrestricted term of heterogeneity.
This shows that conditional average treatment effect £(b;|X;) is only identified for cross-
sectional observations such that VV;VVZ» is non-singular. With x; being binary, VVZ»/VVZ» is

non-singular for movers and singular for stayers, so that average treatment effects are only

identified for movers.

B Notation and Comparison with the Methods of Suri

2011 and Lemieux 1998

In this section we describe the estimation procedures used by Lemieux (1998)) and [Suri| (2011))
and show that they can be represented by the linear extrapolation discussed in the main text
when there are no additional covariates in the model, i.e. when treatment status x;; is the
only covariate.

First we map the notation used by |Lemieux (1998) and Suri (2011) to the notation used
in the main text. In the simple setting without additional covariates, our notation for the
correlated random coefficient model with the extrapolation identifying assumption and two

time periods is given by:

Yir = a; + iy + [ + wi E(uit|zir, xi2) =0 (B.1)

a; = oo + Oélbi + € E(€i|l‘i17 xiQ) =0 (BQ)



In the simple setting without additional covariates, the notation used by |Lemieux] (1998)

writes potential outcomes without (N) or with (U) treatment as:

yn =0 +0) + ¢,

Y =0N +6+0Y + ¢,

where #V and AN have mean zero, so that the average treatment effect is given by ¢ and ¢,
are unobserved wage shocks.

Therefore our notation writes f; = 51{\7 ,a; = 0N by = 5+ QZ-U — 0N, uy = e;t.

The notation for the extrapolation identifying assumption in Lemieux (1998) is given by
the linear projections:

0 = by (0) —07) + &

2

07 = by (0) —07) + &

(2

_ Cov(0V 0N —07)

Cov(0Y ,0N —0Y)
where by = Var(8N —o0) = ———Lx—p
7 7

and bU T Var(6N-6Y) -

Lemieux| (1998) then defines €; = &; + e;t and assumes:
E(Eit|xi17$i2) =0 (B?))

In our notation we have ay = by, ¢, =&, a1 +1 = by.

Lemieux| (1998) defines 6; = by (6 — 67) and ¢ = 7% so that:

0N =0, + &

07 = v + ¢

In our notation we have O‘a—fl =1, arb; = 0;.



The model for observed outcomes estimated by Lemieux| (1998)) is then given by:

Yir = 01 + 0wy + 0;(1 + (¥ — Day) + eir E(eit|zir, xi2) =0 (B.4)

In the next two subsections we show that under the CRC model assumption only,
estimation of all the parameters in the model that combines the CRC model with the
extrapolation identifying assumption by generalized method of moments estimation
(Lemieux (1998)) or minimum distance estimation (Suri (2011)) leads to the linear extrap-
olation from ATE among movers to ATE among stayers depicted in Figure 1 of the main

text.

B.1 Lemieux 1998

The estimation procedure proposed by Lemieux (1998) is GMM estimation from the moment

conditions:

Ti1Tq2
1-— €T; 1-— Z; —
E( ( 1)( 2) 62(557(57@&76{\[):0
l’il(l - 33i2)

(1 —mi1)xsn

where the moment function e;(.) is defined to be:

— _ 1+ —
03 3.,8) = ya = O — G = 1



These moment conditions can be rewritten as:

E(Ay;, — A83'10,0) =0

E(Ay;n — A8y [1,1) =0

E(yw - 55 - Q/J(yz'l - 5{V)|07 1) =0

E(yi2 - 5N (?le )|1 0) =0

E<yz’t - 51{\[ - gﬂ%t
=1 1+ (w — 1)512',“5

)=0

M“@H ;

Under the CRC model (B.1)), with the normalization f; = 0, we can further re-write

these moment conditions:

Afy— A8 =0 (B.5)
Afy—ASY =0 (B.6)
E(a; +b; — 6~ — 5 —ap(a; — 67)|0,1) =0 (B.7)
E(ai—(s{V—%(aﬁbi—dfv—(sm,())—0 (B.8)
2
a; + b; xzt + fi — 6 — dxy
E( =0 B.9

We see that the first two moment conditions (B.5|) and contain the same information
under the CRC model (B.1)), setting AdY equal to Afy. Therefore the remaining three
moment conditions ‘} are exactly identifying for ¢, 67, 9.

Equations (B.7) and (B.8)) imply:

E(a;]0,1) — E(a4|1,0)

b = (B.10)

E(as]0,1)— E(a;]1,0)
E(b;|0,1)—E(b;]1,0) *

Defining o = we can therefore use ) = alH below to shorten notatlon

'Here we use aj to denote a pseudo-true value of a parameter since the extrapolation identifying as-
sumption is not assumed to hold here, only the CRC model is assumed to hold throughout this section.

9



We can re-write equation (B.g]) as:

6 = E(ai|1,0) — o (E(b;|1,0) — 0) (B.11)

Therefore defining o = E(a;|1,0) — afE(b;|1,0) we can write that 6 = af + a7d.

Equation can then be written:

7T00<E<CLZ'|0, 0) — Oéa — Oéié) + 11

N (B(a; + bi|1,1) — o — (o] + 1)d)
of +1

+710105 (E(0i|0,1) = 8) 4+ moai(E(bi|1,0) —0) = 0
where we define 7., = P(x;1 = x1, T, = x2) to shorten notation.
This yields:

E(a;]0,0) — o E(a; +b;]1,1) — of
+ 11 -
1+ a3

(5:7T0() <
aq

+ 7T01E(bi|0, ].) + 7T10E(bz'|]_, 0)

so that the ATE for the entire population is indeed obtained by the linear extrapolation

represented in Figure 1 of the main textE|

B.2 Suri 2011

The notation used in [Suri (2011)) is almost identical to the notation used in Lemieux (1998))

but [Suri (2011) uses minimum distance estimation instead of GMM estimation. The only

differences between the notation in [Suri (2011) and the notation in |Lemieux (1998) are that

the parameter ¢ is used, which is mapped to the notation of [Lemieux (1998) by ¢ = — 1,
1

so that this new parameter is mapped to our notation by ¢ = o The expected value of

returns is also defined to be $ in |Suri| (2011) rather than § in Lemieux (1998), so that this

ZSimilarly ATE for untreated stayers would be taken to be ATE}, = w and ATE for treated
1

stayers would be taken to be W
1

10



new parameter is mapped to our notation by 5 = E(b;).
The reduced form parameters used in |Suri (2011) are obtained from the conditional

expectations:

E(yi|zi1, xi2) = Yo1 + M1%Ti1 + Y2Ti2 + V3T Tio

E(yio|Ti1, Ti2) = Yo2 + YaTi1 + Y5Ti2 + VeTi1Tio

which are obtained in this form without loss of generality since x;; is a binary random
variable.

In addition to the parameter ¢ and ATE f, the structural parameters to be identified in
Suri| (2011)) also comprise the parameters in the conditional expected value of 6; conditional

on treatment history:

E(0i]7i, vi2) = Ao + Mizin + AaTia + A3TinTia (B.12)

The structural parameters to be identified in [Suri| (2011)) are the parameters in the con-
ditional expectation F(6;|x;1,x;2), ¢, and the ATE § (a total of six structural parameters).

These structural parameters are estimated by minimum distance estimation from the link:

71 =1+ @)\ + B+ oo (B.13)
Y2 = Az (B.14)
V3= (1+¢@)As + dAs (B.15)
Ya =M (B.16)
Y5 = (1+ ) A2+ B+ oo (B.17)
Y6 = (1 + @)As + o\ (B.18)
Ao = =\ — ATy — A3Tny (B.19)

11



where as before m,,,, = P(xy = o1, %5 = x3) and where m; = P(x;; = 1) and mp = P(x;0 =
1).
The first six equalities (B.13])-(B.18)) follow from:

E(yit|£l?i1, iUz'Q)
= fi + (1 + ¢xy) E(0;|xi1, xi2) + By

= fi + (14 ¢xi) (Ao + Mimiz + Aaiz + Asxin@in) + B
fi+t o+ (L+d)A + B+ dXo)win + Aoxio + (1 4+ &) A3 + pAo)zjxin ift =1

fo+ Ao+ Mz + (L4 @)Aa+ B+ dAo)zio + (L + @) A3 + o )zazse ift =2

where the first equality follows from the model given by (B.4)) with the notation used in |Suri
(2011)).
The last equality (B.19) follows from E(6;) = 0.

Under the CRC model we can rewrite the reduced form parameters as:

M = E(b[1,0) + E(ai|1,0) — E(a;]0,0)

Y2 = F(a;]0,1) — E(a;)|0,0)

v3 = E(b;|1,1) — E(b;|1,0) + E(a;|1,1) — E(a;|1,0) + E(a;]0,0) — E(a;]0,1)
v4 = F(a;|1,0) — E(a;)|0,0)

V5 = E(b:|0,1) + E(a;]0,1) — E(a;/0,0)

v6 = E(bi|1,1) — B(b;]0,1) + E(a;|1,1) — E(ai|1,0) + E(a;]0,0) — E(a;]0,1)

Therefore under the CRC model, equations (B.14]), (B.15]), (B.16]), and (B.18) or equa-

. s oy _ B(bi]1,0)—E(b;]0,1)
tions (B.13), (B.14), (B.16)), and (B.17) both lead to ﬁ = % —1= Fa L0 B@pD)"

Therefore under the CRC model the system of seven equations (B.13))-(B.19)) is at most

exactly identifying for the six structural parameters.

12



From (B.13)), (B.14)), (B.16)), and (B.17) we find:

b = N~
V4= 72

-1

We also have:

A2 =72 = E(a;]0,1) — E(a;]0,0) (B.20)

and:
A1 =7 = E(a;]1,0) — E(a;]0,0) (B.21)
When ¢ = —1, the system linking reduced form parameters to structural parameters

does not identify A3, so that 3, A\g, A3 are not identified, so that the probability limits of the
estimators for average returns for stayers do not exist. In Figure 1 in the main text, this
corresponds to the case where the line a + b = E(b;|1,1) + E(a;|1,1) and the extrapolation
line going through (E(a;|1,0), E(b;|1,0)) and (E(a;]0,1), E(b;]0,1)) have the same slope, —1,
so that they do not intersect at a unique point.

When ¢ # —1, then:
_ s — oM

A
3 1+ 0

(B.22)

£ is then given by:

=m0+ — oo
=7 — 7 — (M + No)

= E(bi[1,0) = (A + Ao)

13



We can show from the above equalities that:

)\1 + /\0 = (E(az|1,0) - E(CLA0,0))(]. — T — Ty + 7T11)

+ mo(E(a;]1,0) — E(a;]0,1))

+ 11 (E(az—l—bz|0,1)—E(al+bz|1,1))

1+¢

The above implies:

ﬁ = ’iTlQE(biH,O) + 7T01E(bi|0, 1)
E(az|170) _E(az|071)
Ela; +b|1,1

Fra(Bla+ bl D) e 0 T Bla + b0, 1)

E(b;]0,1)E(a;|1,0) — E(b;|1,0)E(a;]0, 1)
E(az“—a O) - E(al|0a ]-)

+ o0 (E(a;|0, 0) +

)

. a;|l, —F 73 0,1 1 .
Using of = g((bﬁ,gg—EEbiNO,l)) and of = F(a;]0,1) — a7 E(b;]0,1) we can rewrite:

B = 7T10E(bi‘1, O) + 7r01E(bi]0, 1)
E<a1’070) — 046

*

+ oo
1

E(ai -+ bzyl, 1) — Oéa
or +1

+ 11

Similarly for expected returns for the population of stayers, which in [Suri (2011)) are

given by:

ATES, = B+ ¢FE(6:]0,0) = 8+ ¢

ATEY = B+ ¢E(0:i|1,1) = B+ ¢(Xo + A1+ A2 + A3)

14



Under the CRC model, we have:

ATE =7 — (1 6)
E(az|07 0) — E(az|07 1)
E(az|170) - E(al|07 ]-)

E(a;|1,0) — E(a;]0,0)
E(az‘la 0) - E(az‘oa 1)

= E(b;]1,0) + E(b;|0, 1)

and:

ATE =y — (14 6)(Ao + M1+ g+ A3)

E(a; +b;]1,1) — E(a; + b;]0, 1)
E(a; + bi|1,0) — E(a; + b0, 1)
E(a; +b;|1,0) — E(a; + bi|1,1)
E(a; + 0iJ1,0) — Ea; + b0, 1)

+ E(b:]0, 1)

Using af = ?&Hgg:ggg"gif and af = F(a;]0,1) — a3 E(b;|0,1) we can rewrite:

E(a;]0,0) — af

ATE}, =
00 Oé’l(
" E(az+bz|1,1)—a*
ATE}, = 1 9
1

Therefore we see that the method used in |Suri (2011) corresponds to the extrapolation

represented in Figure 1 of the main text.

C Comparison of the Extrapolation Identifying Assump-
tion with Generalized Roy Models

In this section we briefly compare generalized Roy models with the set of conditions (2.12))
and (2.13)) considered in the main text as sufficient for the extrapolation identifying assump-
tion (2.11]) to hold. We take as an example the model outlined in p. 365-366 of |Carneiro

et al. (2003)), abstracting from observed covariates or instrumental variables, which can be

15



written as:

y(0) = Boo + 51,00 + €o, y(1) = Boq + 1,10 + €1,

X = 1[60,s+51750+€5 > 0], {60,61,65} 10

where variables in bold denote random variables, y(1) and y(0) are potential outcomes
with and without treatment, x is treatment status, 6 is an unobserved common factor, and
€9, €1, €5 are unobserved shocks to outcomes and selection into treatment.

We can define a = 0+ 51,00+€0, b = 5o.1—Bo0+(81,1—F1,0)8, so that if 81 1— 51 # 0 we
have a = [y — Bl,?ioﬁl,o (Boa — Boo) + Bl,/lgi,%l,ob +€p and (2.12]) holds. With these definitions,
(2.13) also holds by defining ¢ = €; and from the assumption that € is independent of 6.

With generalized Roy models, observing instrumental variables that satisfy exogeneity and
relevance conditions, observing proxies for the unobserved common factor 8, or observing
several independent measurements of 8, would yield identification of ATE (see also (Cunha
et al.[ (2005), |Abbring and Heckman| (2007))), while here the restrictions imposed by the CRC

model (2.4) yield identification, as discussed in the main text.

D CRC Model with Time-Varying Treatment Effects

In this section we discuss CRC models with time varying treatment effects. For simplicity
we consider the case where there are no additional control covariates here, so that the model

is given by:
Yit = @i + i + fr + uy, E(uy|X) =0 (D.1)

Without additional restrictions on treatment effects, b;;, identification of differences in
time effects relies on average changes in outcomes for a cross-sectional observation across

pairs of time periods when she was untreated only (whereas with the CRC model with time-

16



constant treatment effects considered in the main text, pairs of time periods with the same
treatment status - both treated and untreated - can be used to identify changes in time
effects):

ft - fs - E(yzt - yis|xit =0,z = 0) (DZ)

ATE for movers who are currently treated can then be identified by difference-in-differences

comparisons:

E(bz‘t|Iz't =124 = 0) = E(yz't — Yis — (ft - fs)|«rz‘t =1,z = 0) (D-3)

As in the main text, we can apply the normalization f; = 0 to shorten notation. Then
average baseline heterogeneity is identified for movers and untreated stayers, and average

total heterogeneity at each time period is identified for treated movers and stayers:

E(ai|lzy = 1,25 =0) = E(yis — fs|lza = 1,255 = 0)
E(a; + bi|ry = 1,25 = 0) = E(yir — filvw = 1,25 = 0)
E(a;/max,—1 12 = 0) = E(ys — fijmax,—1 . px;s = 0)

E(a; + by|ming—y 725 = 1) = E(yy — filming—y,__pxis = 1)

Under the CRC model with time varying random coefficients , ATE for movers
who are currently untreated or for stayers are not identified. In order to extrapolate from
the quantities identified by the CRC model to ATE for stayers or for movers who are
currently untreated, we can assume that a single term of unobserved heterogeneity determines

baseline heterogeneity, treatment effects at each time period, and treatment status:

a; = Boa + Br.a€i + Vasi, E(vq;le;) =0 (D.4)
bit = Bos + Biei + Vi, E(vile;) =0Vt (D.5)
zi = g(e;, ci) Vi, {city.yert L {ei, Vo, vei Vi) (D.6)

17



Conditions and impose that a particular characteristic e; determines both
baseline heterogeneity a; and treatment effects b;;, but the effect of e; on treatment effect may
vary over time. Condition imposes that treatment effects b; themselves do not enter
the determination of treatment status, rather that this determination is based on e; only.
Intuitively this last restriction most likely implies that the shocks v;; to treatment effect b;
are unknown and unpredictable at the time of determination of treatment status, so that
the main advantage of this extrapolation with time-varying treatment effects compared to
the extrapolation discussed in the main text with time-constant treatment effects is that
the effect of the one-dimensional term of unobserved heterogeneity e; on treatment effect b,

P14, is allowed to vary over time.

Under -, we obtain:

a; = oo + o by + €, Eeilzi, ..., xir) = (D.7)

— 2 and oy, = 54, which are well-defined if 5, ; # 0.

Under the CRC model with time-varying random coefficients (D.1]) and the new extrap-

where we define o = Boq

olation identifying assumption , the second step of our estimation procedure can still
take the form of an instrumental variable regression of a; on l;it using treatment status his-
tory {x;1,...,z;r} as instrumental variables, but the estimation sample is now restricted to
include only movers who are treated at time t. Because of this restriction in the sample that
can be used for the second-step estimation, one must observe at least three time periods to
observe several groups of movers who are treated at time ¢ and be able to implement this
estimation procedure. For instance with T" = 2, the only group of movers treated at time
t = 1 has treatment status history profile x = (1,0). With 7" = 3, movers treated at time

t =1 correspond to treatment status history profiles « € {(1,0,0), (1,1,0),(1,0,1)}.

18



ATE for untreated movers and stayers can then be identified from:

E(balz) = E(ai|x) — agy _ E(a; + by|x) — apy (D.8)
" Qg 14+ aq, .

if a1, ¢ {—1,0}.

In practice, since identification relies on smaller groups of movers, the implementation
of this approach may lead to estimation results that are significantly more imprecise than
the results obtained when treatment effects are assumed to be time constant. In addition,
the conditions — that lead to the extrapolation identifying assumption are
restrictive, even though we can note that they encompass the case when treatment effects
are constant over time since we could then define e; = b; and v;; = 0.

In some applications, accounting for dynamic treatment effects, i.e. allowing for past
treatment status to affect current treatment effect, is an important feature of the models
used. This could be accommodated here by explicitly using an extrapolation identifying
assumption that allows, for instance, the most recent treatment status to affect current

treatment effect:

bit = Bot + Biei + Baiv—1 + B3Tir—1€; + V44, E(vile;) =0Vt (D.9)

so that the difference in treatment effect at the time of the first exposure to treatment and

one time period later is given by [y + [se;.

Under (D.4)), (D.6)), and we obtain the extrapolation identifying assumption:

a; = oot + o (Ti—1)biy + a4 (Ti—1) (D.10)

Bl,a

_ B1,a02
B1,t+B3xit—1

where Oél,t<1'it—1) T BratB3mic—1

and ag¢(zy—1) =
The parameters in this extrapolation identifying assumption can be estimated by an

instrumental variable regression by conditioning on both possible values of x;;_y € {0,1},

19



which will generally require than one additional time period be observed. For instance,
suppose one is interested in estimating ATE at time ¢t = 2. With T = 3, the treatment

history profiles corresponding to movers that are treated at time ¢t = 2 are given by:

(xla T2, .Ig) = (07 17 1)7(07 17 0)7 (17 17 O)

from which we see that the extrapolation identifying assumption (D.10)) would not be iden-
tified for cross-sectional observations who were treated at time t = 1 (i.e. with z; = 1).
With T" = 4, the treatment history profiles corresponding to movers that are treated at time

t = 2 and were also treated at time ¢ = 1 are given by:

(1'1, T2, T3, [E4) = (17 17 07 0)7 (17 17 Oa 1)7 (17 17 L O) (Dll)

so that the extrapolation identifying assumption (D.10)) would be identified as long as these
three groups of movers have different average treatment effects.

Given identification of the parameters entering , extrapolation to movers who are
currently untreated or to stayers can be performed as before. For instance the ATE for

untreated stayers at time tat the first exposure to treatment is given by:

E(ay|max,—y, . 172

ATE, = (D.12)

0) — OZO,t — Oé27t(0)
0)

—~

Qg ¢

while the ATE for untreated stayers at time ¢ after the first exposure to treatment is given

by:

ATEtJ -

E(ay|lmax,—y,.. 72is = 0) — apy — ag(1) (D.13)
] .

o (1

There are alternative approaches that could be used for extrapolation with the CRC
model with time-varying treatment effects that could be used in particular applications, but
we leave this question for later work.

From the discussion above, we see that the data requirements are significantly greater
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with the models discussed in this section than with the models discussed in the main text.
Not only more time periods need to be observed for identification, but identification of time
effects in the CRC model and of the parameters in the extrapolation identifying assumption
is obtained from much narrower subgroups of cross-sectional observations than in the main
text. In practice this will imply that estimation results will be significantly more noisy than
using the methods developed in the main text, and will require researchers to have access to
larger datasets than what is used in the empirical application of the main text. It would be
interesting to consider the extensions sketched in this section in more details in future work

in applications that are more amenable to these methods.

E Estimation and Inference with the Simple Extrapo-
lation Identifying Assumption

In this section we discuss the details of estimation for models of the form:

Yit = Q; + biTie + 2y + Ui, E(uy| X, Z;)) =0 (E.1)
a; = og + Cklbi + €, E(EZ’XZ) =0 (EQ)
Ti1 Zil
where X; = | ... |, Z; = | ... |, and z; is a vector of control covariates.
Xir ZiT

Setting z; to be a set of indicator variables for each time period other than the first time

period, i.e. z; = [1[t = s]]*=2T, yields the special case:

Yit = a; + bz + fr + Wi, E(uy|X;) =0

which is the CRC model considered in the main text, where only time effects are included

as control covariates and where the normalization f; = 0 has been applied.
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In general z;; is a vector of controls that can include random variables. For notational
simplicity we consider the case where z;; is a scalar variable below, as all results extend in a
straightforward way to multiple control covariates.

We observe cross-sectional observations ¢ = 1, ..., n over time periodst = 1, ...,T". Through-
out this appendix, we use an asymptotic framework where n is large and 7' is small. We also
assume that observations are cross-sectionally independent for simplicity, all results extend

in a straightforward way to many independent clusters as in the empirical application.
Assumption 7. Observations are cross-sectionally independent.

Note that Assumption [7]is implied by Assumption 1 in the main text.

Stacking observations over time, we obtain:

a;

Y, =W, | | +Zn+ U, EU\W;, Z;) =0 (E.3)
b;
Yi1 Wi1 Uiy
where Y, = | . |, Wi=| ... |, U =] ..]|,and wy = [Lilfit]-
YiT Wi Ui

The estimation method we discuss in this section is decomposed into two steps. The
first step yields consistent estimates of the homogenous coefficients v and noisy estimates
of treatment effect b; and baseline heterogeneity a; for cross-sectional units that are movers,
noisy estimates of baseline heterogeneity a; for untreated stayers, noisy estimates of total
heterogeneity a; + b; for treated stayers. The second step yields consistent estimates of «y,
aq, and noisy estimates of the values of {a;, b;}i=1,, that were missing from the first step,
i.e. corresponding to untreated and treated stayers. We show that averaging the resulting
noisy estimates of treatment effect b; across the entire population or large groups of stayers

or movers yields consistent estimators of ATE.
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E.1 Step 1: High-dimensional regression

The first step of our estimation procedure regresses y;; on z;, indicator variables for each
cross-sectional observation, and indicator variables for each cross-sectional observation in-

teracted with x;;. By the Frisch-Waugh theorem, the resulting estimates are given by:

= (0 2 2 Y
i=1

i=1

Q; a; ’ _ ’ N

= + (W, W)" W (Ui — Zi(§ — 7))
b; b;

where My, = Ip — Wi(W,W;)"W, and (W;W;)~ is the generalized inverse obtained by
omitting the interaction of the indicator variable corresponding to a particular cross-sectional
observation with treatment status x; when this cross-sectional observation is a stayer, i.e.
when there is no variation in x; over time across observations corresponding to this cross-

sectional observation.

The next assumption imposes restrictions on moments of the data.

Assumption 8.
a) The support of a;, b;, zi, uy is compact.
For constants C' and ¢ > 0:
b) %Z?:l P(zy =z Vit,s) >cVn>C.
¢) L3 E(ZiMw,Z;) > cVn>C.
d) %Var(zizl,...,n:xit:xisVt,s ZiMw,U;) > c¥n > C.

Assumption [§la is standard and imposed in this form for simplicity. It could easily be
relaxed to higher moments of the random variables a;, b;, z;, u; being uniformly bounded.
Assumption [§]b imposes that we observe a non-vanishing share of stayers in the data. As-
sumptions [8lc and [§ld impose that there is variation in covariates z;; and transitory shocks

u;; over time. For instance z; and u; may not be time constant.
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Assumption [§ld requires that there be variation in covariates z; and transitory shocks u;;
over time among observations that are stayers instead of among all cross-sectional observa-
tions. This additional regularity condition is imposed for simplicity as it guarantees that the
first-step estimator discussed in this section is not approximately linearly dependent of the
part of the influence function of the second-step estimator which does not depend on the first-
step estimator, which guarantees that the second-step estimator is at most /n-consistent,
i.e. is not super consistent.

Note that Assumption [§] is implied by Assumptions 1 and 2 in the main text for the
special case where T'= 2 and z;; = 1[t = 2].

Under the CRC model and Assumptions[7]and 8] the first step of our estimation procedure
yields consistent estimates of the homogenous coefficients v and noisy estimates of the two
terms of unobserved heterogeneity a; and b; with estimation noise that can be decomposed
into a part which vanishes as sample size increases and a part which is unrelated to sample

size.

Proposition 4. Under and Assumptions @ and@ as n — oo while T remains fired:
_1 R d
Vnﬂ%oAn,’y,O\/ﬁ(f}/ - 7) - N(Oa [K> (E4>

where Ay o =230 E(Z;Mw, Zs), Voo = = S0 Var(Z; Mw,U;).

Fori=1,....,n such that At,s s.t. xy # x;5, we have:

B B b. — (WW) WU — (WW) 1WZAn170\/—Cabn+em

where Cappn = \/Lﬁ S ZiMw, U = O,(1) and mazi—1,_,|ein| = op(\/iﬁ).

Fori1=1,...,n such that x;; =0 Vt, we have:

T

T
1 1
a; = T E Uit — § ZztAn»yo\/—Cabn + €in (E5)
t=1
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Fori=1,...,n such that x;; =1 Vt, we have:

T T
. 1 1 1
S ST e = Fe N
t=1 t=1
Proposition 4 shows that the estimator for ~ is \/n-consistent and asymptotically normal.
It also shows that the estimation noise of the heterogeneity terms a; and b; is decomposed
into idiosyncratic noise that would arise even if v were known and vanishing noise originating
from the estimation of v which is dominated by a term of order \/LE

Note that Proposition 1 in the main text is obtained as a special case of Proposition [4]

E.2 Step 2: Instrumental Variable Regression and Extrapolation

In a second step, we consider estimation of the parameters oy and a; in the linear extrap-
olation to ATE for stayers by generalized method of moments (GMM) estimation of the
coefficients in an instrumental variable regression using noisy estimates of a; (a;) as the de-
pendent variable, noisy estimates of b; (ZA)Z) as the explanatory variable, and treatment history
X, as instrumental variables.

Let M, be the subset of cross-sectional observations that are movers, i.e.
M,={i=1,...,n: 3t,s s.t. Ty # Tis} (E.7)

Define § C {1,...,T} to be one of the largest subsets of time periods such that the
variables {z;}ies are linearly independent among observations corresponding to movers in
the data. When only two time periods are observed, i.e. T = 2, we have S = {1} or
S = {2} since x5 = 1 — x;3p among movers. In general when T' > 2 and if there are
treated and untreated observations in all time periods, the entire vector of treatment status

history X; will be included in the list of instrumental variables, i.e. & = {1,...,T'}. Define
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- 1
X, = to be the elements of the vector of treatment status history that are linearly

[Zitles
independent among movers augmented with a constant.

The estimator for ap and a4 in the extrapolation identifying assumption (E.2) that we

consider in this section is:

Qo / / 1
= (B,X,'B.) 'B,%, = g
. ( n—n n) BnE’fL n Z XZCLZ
aq €My
1 ~
Bn = - Z Xz[labz]
" e,
1 ~
So=— Y GXX,
i€My,

where €; are first-stage residuals obtained by a two-stage least squares regression of a; on b,
using X; as instrumental Variables

As in the main text, given estimates of the parameters oy and «;, we obtain estimates

Yict,. n BE(zie=1V1]b;

.....

Siet,..n Pl@a=171)

Yiet,.. n BE(zie=0V1]b;

.....

Yic1,...n P@a=0V¢)

of ATE for stayers, AT Egy = ) and AT Es; = ), by a

3Note that in this section we could have considered a two-stage least squares regression only instead of
GMM estimation, i.e. we could have chosen X, = %Z?:l XZX; This would also lead to a consistent and
asymptotically normal estimator. We consider GMM estimation for a potential efficiency gain because of
the heteroscedasticity in a; — ag — ay1b; conditional on X; that is likely to exist because of measurement
error. Indeed heteroscedasticity is likely to appear in the non-vanishing part of the estimation noise in the
estimates a; and b;: Even if Var(e;|X;) = 02, Var(Us|X;) = 0217, and Cov(e;, U;| X;) = 0, we have:

Var(e; + [1, —aq) (W, W;) "W, Ui | X;) = 02 + 02 [1, —aq (W, W;) ™! {_21]

£ Var(e; + [1, —ay (W, Wi) "W, UsJi € M,,)

in general.

In addition GMM estimation extends easily to estimating and performing statistical inference on additional
parameters such as ATE among different subpopulations, to accounting for cross-sectional dependence when
computing the weighting matrix, and to accommodating unbalanced panel data originating from missing
data. We encounter these three issues in our empirical application.

Note also that one could use interactions between elements of X; to obtain additional valid moment
functions. We only consider moment functions obtained by using linear terms for simplicity here and to
avoid the proliferation of moment conditions. See for instance| Newey and Windmeijer| (2009) for a discussion
of issues that arise with GMM estimation and many moment conditions.
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simple plug-in using the derivations in the main text:

1
Gen — Zi:xit:OVt a; G — Zi:x“:IVt Q;
SO iy =0V} Ui ay = 1V )

Define

Define ag and &; to be the two-stage least squares regression estimators of oy and ay
obtained by regressing a; on a constant and b, using X; as instrumental variables.

Define A,,;, to be the minimum eigenvalue of a matrix.

Assumption 9. For constants C and ¢ > 0:

a) Amin(En0) > ¢, Vn > C.

b) Amin(Br 05 0Bno) = ¢, Vn > C.

c) ao N ag and &g L oy as n — oo while T remains fized.

@) SV ar(C .. a—ove @t Sy i) o7y ZiMw,Us) 2 ¢ and [V ar(L iy | pa—1velait
b; + % Zthl wi)| Do, Z.Mw.U;) > c a.s.,Yn > C.

Assumption [9a requires that there be variation in X; among observations that correspond
to movers. For instance with two time periods, i.e. T = 2, Assumption [0la would be obtained
by imposing i) Var(v;|X;) > ¢ >0Vi=1,...n, Vnandii) 0 < ¢ < P(x;; = 0,250 = 1) <
l—cand 0 < ¢ < P(zjg = Lzjp =0) < 1—¢Vi=1,..,n, Vn. The first condition is
standard and requires that the error terms of the CRC model u;; and of the extrapolation

identifying assumption have positive variance, so that the resulting model is not degenerate.
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The second condition guarantees that two different profiles of movers are represented by
non-vanishing fractions of the data (in large samples), so that there is variation in x;; (or
Z;2) among observations that are movers.

Assumption [9]b requires that the variation in X; among observations that correspond to

movers be predictive of treatment effect b;. For instance with two time periods Assumption

|§|'b would be obtained by Izz'fl ..... n E((@in,@in)=(0,1)]bi) >y . EQl(@ir,wiz)=(1,0)]b:)

o P, 22)=0.1) S PGnam=aoy | 2 ¢ >0
Vn>C.

Assumption [Olc¢ requires that the two-stage least squares estimators of oy and «; be
consistent. This is imposed for convenience only since convergence in probability of the
two-stage least squares estimators of ay and a; can be derived from primitive conditions as
in the proof of Proposition [5| below.

Assumption [9}d is a regularity condition which guarantees that the estimator for ATE is
at most y/n-consistent, i.e. is not super consistent. It requires that there be no approximately
exact dependence between the terms of unobserved heterogeneity a; and a; + b; and the error
term of the CRC model u;. This condition for the case z;; = 0 Vt would be obtained
if we assume that i) @; is independent of {w;};—1 1 conditional on Z; and W, and that
ii) VC”“(% 2:{:1 Wit {wis — %2:{:1 Wit }s=1,..15 ZiyTiy = 0Vt) > c. These are both natural
conditions requiring that the idiosyncratic shocks to outcomes u;; be independent of baseline
heterogeneity a; and that the error term in the CRC model u; not be degenerate. Similarly
this condition for the case x;; = 1 V¢ would be obtained if we assume that i) a; + b; is
independent of {w;}¢—1 7 conditional on Z; and W; and that ii) Var(% Zthl wir[{uis —
%Zthl Wit }s=1,..1, Zis Tip = 1V 1) > c.

Note that Assumption [Ola, [9}b, and [9]d are implied by Assumptions 1-3 in the main
text and Assumption [Ojc is irrelevant with two time periods since the moment conditions
E (Xi(&i — g — ozllA)Z»)) ~ ( are exactly identifying for the parameters ag and «; in this case.

To state Proposition , we define deterministic matrices which will determine the asymp-
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totic distribution of our second-step estimators

aq
1 -~ ! 1 -~ ’ !
v == XU 7. — 1. — WIW 7,
nevo = o D BUiXUMwZ)  Cuo = 3 BIX[1, o] (WWy) 7' W, Z3)
ZeMn ’LEMn
Anio= (B;,ozﬁ,%)Bn,O)le;z,ozﬁ,%) Apoo = (B;L,ozﬁ,%)Bn,O)713;,02;1}3071,014;1%0
Zn,(] Vn,a ,0 A/n 1,0
Qn,() = , ! Vn,() = [An,l,(h An,Q,O]Qn,O , o
Vn,a’y,O Vn,'y,O An,Q,O

We define deterministic matrices which will determine the asymptotic distribution of our

second-step estimators ATE 5,0

1 T
a; = a; + — i — E(a;),
a; = a; + T 2 it (a;)
=1
A _ _i % Zi:l,...,n E(1zy = OVt]% Zle Zit) 1
AT T g 5 2ict,n Plan = 0V1) e
1 ATEqg P IV _
Ap ATEs 0,0 = [oz_1’ a—l’o](Bn,oZn,%Bn,o) "B, 020 0Cn045 0 0
1 ATES ! _ _ !’ —
An,ATES,O,a,r,O = _[04_17 a—lp](Bn,OEn,%]Bn,(J) 1Bn,02n,%)
1

An,ATES,O,o = [a_’ An,ATES,O,%o + An,ATES,O,a,%O, An,ATES,O,a,r,o]
1

1
= D=1
T

2=,

QATES,O,O = Var(\/ﬁ % 27}_1 Z/MWZ UZ )

nl [Iitzo Vt}ai
n P(xi:=0Vt)

,,,,,

!
Vo, ATE, 0,0 = An,ATEg 0,047 Es 0,040, AT 5 0.0

We define deterministic matrices which will determine the asymptotic distribution of our
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second-step estimators ATESJ:

T
~ 1
a—l—bz:al—l—bl—l—?;uzt—E(al—i—bl)

T
1 %Zzzln E(1[zy = 1Vt]% thl Zit) 1

An»ATES,l ’770 =

- L 700
L+ IS i Pl =1V1) )
1 ATEs., . ,
_ } 1 1 . .
An,ATES’l’Ol’%O B [1 + al’ 14 Qaq ]<Bn’02”:Oano) Bn,OZn,OCn,OAn,’Y,O
1 ATEs.. ,
_ : 1 _1 .
AmATES’ha’r’O N _[1 + O‘lj 1+ o ](Bn,ﬂzn,OBn,O) Bn,OEn,O
1
An’ATESJ7O - [1 + 0] ’An,ATEsﬂl”%O + An7ATES717a7’V7O7 ATL,ATES,I,O&,T,O]
1
%Zizl ..... n 1[zit=1Vtla+b;
L3 im, o Plei=1V1)
= !
QATESJ,O — Va/’n(\/ﬁ 711 Z:’f:l Zl MWZ UZ )

!
Vaars, 1,0 = Anares, 0Qares, 045 aTE, 0

Proposition 5. Under , , and Assumptions @-@ as n — oo while T' remains

fixed:
dO Qg ’ _ _ ’ _ 1 ~
V(| L= | D = BB Bl 3 Ko
an aq €M,
’ _ _ ’ _ _ 1 i ’
- (Bn,OEn})Bn,O) an,OEn,%)CTL,OAn}y,O% Z Zz MWz UZ + Op(l)
i=1
and:
_1 éé() Qp d
Vn,02 \/ﬁ( — ) — N(0, I5) (E.8)
an &3]
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If in addition oy ¢ {0, —1}, then we have:

_% Dicl,m 1[4 =04 |
5 ict,....n P(@it=0V1)
V(AT Eso = ATEsp) = Aware.ooVn | 1570, ZiMw U | +0p(1)
L :L Ez’eM Xir; ]
_% Dim1,.m Lwir=14]a; |
%Zizl ..... n P(xit=1V1)
V(AT Eg, — AT Egy) = Apare, , 0V/n %Z:}:l Z My U | + 0,(1)
7{0 ZieMn erz ]

and:

_1 A d
V, irp, V(AT Esg — ATEg0) % N(0,1)

1 N
V, irg. oV(ATEsy — ATEsy) < N(0,1)

Note that Proposition 2 in the main text is obtained as a special case of Proposition [5]

~

(&%) ~ ~
Proposition [5| shows that the estimators , ATEg,, and AT Eg, adopt a linear
a1
influence function asymptotic representation, so that inference by cluster bootstrap, with
clusters given by cross-sectional units, would be asymptotically valid (see e.g. |Mammen
(1992)). Alternatively, one can use the analytical formula for asymptotic variance to obtain
consistent estimated variance-covariance matrix using cluster robust standard errors for two-

step estimation, with clusters given by cross-sectional units.

For simplicity the next proposition shows that these standard errors are consistent and

~

Qo
lead to asymptotically valid inference for the estimator only, since the same result can

aq

be obtained for the estimators ATE s1 and ATE S.0-

Proposition 6. Define C,, = L3, .\ Xi[1, —n|(W,W,)"'W,Z;, #; = 4; — &g — éub;, and
Uy =Y~ Z#. Define £, = L3, 1 72X, X], 8, = 1 S ictn ZiMy, UU; My, Zi, Sory =

T on
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LY e, # XU, My, Z;. Define Any = (B,YX7'B,) 'B,Y5Y, Aps = (B,X'B,) ' B, X1 CL ALY,

!

Yn  Znay A,
Qn = ; Vn - [An,b An,?]Qn 7
Zimom/ ETL A;’Z,Q
Under , [ , and Assumptions as n — oo while T remains fized:
_1 do (7)) d
Vi 2v/n( — ) — N(0, I5) (E.9)
éél aq

Since the matrices used in Proposition [6] are stored by standard statistical software,
variance-covariance matrices using the formula given by Proposition [f] are straightforward

to compute.

Additionally, note that all estimators above can be computed as the solution to exactly

identifying moment conditions:

> Z My, (Y — Z4) =0
=1

B,E Y X[l —aa] (W W) T W (Y; = ZiA) — do) = 0

1€My,
1 T ~ ~
T 1Yt — %4 — «
Z (T Zt_l(y tdl +Y) 0 AT Fgo) = 0
i:zit:OVt
> dZhb sy
=1Vt 1 + d/1 51

so that, instead of using the formulae from Proposition [f]to compute standard errors, analyt-
ical standard errors can also be obtained directly using any command capable of numerical

differentiation in standard statistical software.
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E.3 Testing the Validity of the Extrapolation
E.3.1 Lack of testable implications with two time periods

As discussed in the main text, under the CRC model (??) and with two time periods, the
extrapolation identifying assumption (??) is equivalent to introducing identities for four pa-
rameters that were left unrestricted by the CRC model, so that the extrapolation identifying
assumption does not contain testable implications under the CRC model.

We can see this directly by considering the CRC model:

Yit = @; + by + fr + wi, E(uy|zi, xi2) =0

and defining o = FEEP-Fld and of = B(ai[0, 1) —afE(b:[0, 1) if E(b;]0,1) # E(b:]1,0).

For ¢ such that Ti1 7é T2, define ELZ = Qa; and Bz = bz For ¢ such that Ti1 = 0 and Tjo = 0,

define b; = a";*ag if at # 0. For i such that z;; = 1 and x;5 = 1, define b; = aﬁ—a_ﬁg and
1 1

a; = af 4 atb; if of # —1.

Then we can write:
Yit = @ + by + wir, E(ui|ri, xi2) =0
and
a; = o + oz’{i)i + éi, E(§i|%1, Tin) =0
since 5} = 0 when z;; = ;2 and E(é\xil? xi2) = 0 when z;; # 240.

E.3.2 Testing with three or more time periods

The extrapolation identifying assumption (E.2|) implies that

E(ai — Oy — Oé1b1|XZ) =0 (ElO)
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Here we propose testing an implication of this assumption, namely LP(a;—ao—a1b;| X;, i €
M,) = 0, where LP is the linear projection operator, and recall that M, is the subset of

cross-sectional observations that are movers. This condition is equivalently written:

E(a; — ag — asbili € M,) =0 (E.11)

E(mit(ai — Qg — Cklbl)‘l € Mn) =0VvVteS (E12)

where recall that S is one of the largest subsets of time periods such that the variables
{2t }+es are linearly independent among observations corresponding to movers in the data.
When only two time periods are observed, i.e. T'= 2, we have S = {1} or § = {2}, while in
general § = {1,...,7} when T' > 3.

With a very large number of cross-sectional observations, testing directly would
generally yield a test with larger power, similarly as in the previous section where using
interactions of the elements of X; would lead to more moment conditions and to a more
efficient estimator in general when a large number of cross-sectional observations is available.
However with more modest sample sizes, it is possible that some values of X; correspond
to relatively few cross-sectional observations, leading to a “small cell” problem, i.e. it is
possible that F(a; — ag — a1b;|X;) can only be estimated imprecisely for some values of X;.
This could lead to size distortions in small samples. We propose a more parsimonious test
based on and instead.

This test is straightforward given the discussion in the previous section as long as three or

more time periods are observed. We simply add |S|+1 exactly identified moment conditions:

E(1[i € M,)([1, —ca](W;W3) "W (Y; = Ziy) — ag) — 10) = 0

E(1[i € M)z ([1, —oq (W, W) T W, (Y; — Ziy) — o) — ) =0Vt € S

and test the null hypothesis Hy : 99 = 0,1, = 0Vt € S using a Wald test with critical values

from a chi-squared distribution with |S| — 1 degrees of freedom. Note that when T' = 2,
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|S| = 1 so that this test cannot be performed, as discussed in the main text and above.
Estimated variances for this Wald test can be obtained by cluster bootstrap, or using an-

alytical formulae as in Proposition [0} or by solving for exactly identifying moment conditions

using any command capable of numerical differentiation in standard statistical software.
This is an over-identification test similar to the Sargan-Hansen J-test discussed in |[Hansen

(1982) except that it accounts for the first-step estimation of the coefficients 7.

F Estimation and Inference with the Generalized Ex-
trapolation Identifying Assumption

In this section we discuss how to extend the estimation and testing methods discussed in the
previous section to the use of a generalized extrapolation where cost shifters shared by all
observations with the same value of indexing variable v; can be correlated with productivity

(@i, b;). The model considered in this section is given by:

Yit = Qi + biTip + 2y + Ui, E(uy[{X;, Zj}j:vj:vi) =0 (F.1)

A; = €y, -+ Oélbi + €, E(Ei’{Xj}j:vj:vi) =0 (FQ)

where all variables are defined as in the previous section, and v; is a deterministic discrete
indexing variable[] In our empirical example v; indexes farmer i’s village.

The same first-step estimator of v is used as in the previous section. As before, it also
leads to noisy estimates of baseline heterogeneity and treatment effects, a; and b;, for movers,
noisy estimates of baseline heterogeneity for untreated stayers, and noisy estimates of total

heterogeneity for treated stayers.

4Note that here the exogeneity of covariates X; and Z; in the CRC model has been strengthened
to be strict across all observations with the same value of the indexing variable v;. This is because the
assumption of independence is relaxed below so that observations are only assumed to be independent
across different values of the indexing variable v; instead of being independent cross-sectionally. If the
assumption of cross-sectional independence held, the assumptions of exogeneity in could be relaxed to
E(uit| X;, Z;) = 0 as before.
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The coefficient «; is then estimated by GMM estimation after demeaning the noisy
estimates of a; and b; obtained for movers in the first stage within the groups defined by

each value of the indexing variable v;:

. o _ _ 1 ~

b = b; — by, b = n—ijM%_vi b;
where n, = |{i € M, : v; = v}|. In our empirical example, this amounts to demeaning
among movers within each village.

As before, define S to be one of the largest sets of time periods such that [z;]cs is a set
of linearly independent variables in the data among observations that correspond to movers,
in order to accommodate the case where T' = 2. Redefine )~(i = [Zit]ies to be as in the
previous section but without the constant. Then the estimator of oy in this section is given

by:

iEMn,jGMninZUi

and a; is the first-step estimator of a; obtained by a fixed effects two-stage least squares
regression of a; on b, using X; as instrumental variable and with fixed effects indexed by v;.

Given this estimator of a;, we obtain a noisy estimator of the “fixed effect” term e, in
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the generalized extrapolation assumption (F.2)):

v .
1€EMyv;=v

Estimators of ATE for stayers are then defined in this section by:

1 Zzzzt:IVt(dZ + bl - évz)

i Zi:mitZOVt<di - éUz)

ATEg, =
dl |{ZIzt:0Vt}| ’ 1

ATEgq =

Here we consider the case where there are few cross-sectional observations per value of the
indexing variable v;, so that the indexing variable v; takes many values. As discussed in the
main text, this corresponds to the data structure of our application where few farmers live in
each village. Considering the case where v; takes few values and where there are many cross-
sectional observations per value of v; is straightforward with cross-sectional independence or
limited forms of cross-sectional dependence.

With v; taking many values, Assumption 1 of cross-sectional independence can be relaxed
to independence across values of v;. Define N, = |{i = 1,...,n : v; = v}| to be the number

of cross-sectional observations with value v of the indexing variable v;.

Assumption 10. Observations are independent if they do not share the same value of the
indexing variable v; and the number of observations per group is uniformly bounded, i.e.

mazi=1,. nNy,, < C Vn for a constant C.

Note that Assumption [10]is implied by Assumption 4 in the main text.
Similarly as before, the new estimator of a; defined above and the estimators of ATE for

stayers will be consistent and asymptotically normal if conditions hold on second moments
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of the data. Define:

JEMp,vj=v;
1
By ==Y E(Xib)
n €My,
e Y
! ‘ Ny, J
v JEMp,vi=v;
. . ’ _ ’ 1 ’ _ ’
ri =&+ [—Laa (W, W;)" W, U; — — Z (W;W;)~W,;Uj)
nvi jeMn/Uj:'Ui
. 1 -
Yo = — > E(i#;X: X))

1€EMn,jEMp:vj=v;

. 1
G =— Y (a;—aby)

Vi JEMp:vj=v;

=) w—— Y (L= (W) W0

Assumption 11. For constants C' and ¢ > 0:
a) )\min(in,O) >cVn>C.
b) B, o2 4 Bro > ¢ Vn > C.
c) &y 2 Q1 as N — 00 while T remains fixed.
Z?:l Z?ZMWZ' Ui
ZieMn Ti
Zizl,...,n:wit:0Vt(ai — &y, + 1)

Zi:l,...,n:xitZIVt(ai +bi — évi + al)

d) )\mm(%‘/ar(

Assumption [11la requires that there be within-group variation in X; among movers since

. . : 8 8
we can rewrite ¥, 0 = + Y E(rirjX;X;) where X; = X; — -3 0 X
K2

iGMn,jGMn:vjzvi
Define N to be the number of values taken by v;. Under Assumption note that N
is of the same order as n. With two time periods, Assumption a is implied by i)

Var(ri{X;}jw,—v) > ¢ >0Vi=1,...,n, Vn,ii) Cov(r,r;|{X;} =0Vi=1,...,n,

i v)
W =v;
i 1

38



Jj#is.t. v; =0, Vn and iii)

N

1
NZP(HZ>]StUZ =V; =V, Ty = O, Tio = 1, Tj1 = 1, Tjo = O) >c>0VN (F4)
v=1

As in the previous section, the first condition is fairly innocuous and simply requires that
the model composed of the CRC model and the generalized extrapolation identifying
assumption (F.2)) is not degenerate.

The second condition would be obtained by conditional cross-sectional independence of
the error terms of the CRC model and of the generalized extrapolation identifying
assumption (F.2)). This condition is imposed for simplicity but could be relaxed as long as
the within-group dependence is not strong enough to lead to linear dependence across several
observations belonging to the same group.

The third condition requires that a non-vanishing fraction of groups have both possible
profiles of movers (adopters and disadopters), so that = > | E(X?)>c>0Vi=1,..,n,
Vn>C.

Assumption [L1]b requires that the within-group variation in X; be predictive of treatment
effect b;.

As before, Assumption [11.c is imposed for convenience since the preliminary estimator
of a1, a1, can be shown to be consistent under a similar argument as in the proof of the
following proposition.

As before, Assumption[I1]d is a regularity condition which guarantees that the estimators
for a; and ATE are y/n-consistent rather than being super consistent and requires that there
be no approximately exact dependence between cross-sectional observations belonging to the
same group and between the terms of unobserved heterogeneity a; and a;+b; and the average
error term of the CRC model u;.

Note that Assumptions [T1}a, [[1}b and [II]d are implied by Assumptions 4 and 6 in the

main text and that Assumptions [I1]c is irrelevant when 7" = 2 since the moment condition
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used to estimate «; in this case is exactly identifying.
Note also that Assumption [§ is implied by Assumptions 4 and 5 in the main text.
To state the next proposition, define the deterministic matrices that determine the asymp-

totic distribution of our second-step estimator &;:

Coo == 32 BEL -l (WW) W2 - — S Ww) " wiz)  (E5)

4 Ny Al —
ZEM" ]EMn.'Uj—vi

and

. 1 . / . ]. ’ /
Viaro = — > E(HXU;Mw,Z;) Viro =~ > E(ZMw,UUMy, Z;)

1€EMn,jvj=v; i=1,...,n,j:v;=v;

. B 1 el . o el A VA 1
An,170 - (Bn,ozn,an,O) Bn,OEn,O An72,0 - (Bn,ozn,an,O) Bn,OEn,OCTMUAn,%O
. . .,

o ETL,O Vn7a'y,0 . . . .. A”7170
Qn,O = ., . Vn,O = {An,l,Oy An,Z,O]Qn,O v
Vn,a%O Vna%o An,2,0

Define the deterministic matrices which will determine the asymptotic distribution of our
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second-step estimators ATE&O:

S (Bl) == > Bloy—oaby))
Vi JEMywj=v;
j - 1
n,ATEg 9,7,0 — oy % Zi:l,.‘.,n P(:Czt = OVt)

1 1«

i=1,...,n t=1

1 / _ / —
Ty, > L= (W W) W Z)) AL o
vi JEMp:vj=v;

. ATESO NV .. v, e ..
s —1 —1 —1 -1
An,ATEsyo,oc,%O = a—(Bn,OZn,OBmO) Bn,OEH,OCnyoAm%O
1

.. ATESO N .. vy e
_ ) —1 -1 —1
An ATEs 0,000 = B (BroXnoBno)™ BuoXno
An,ATES’O,O = [a_a An,ATES’O,%O + An,ATEs,O,a,%m An,ATESVO,a,T,O
1

L5 lzg=0Vta;

AAAAA

IS it o P(zi=0V1)

QATESVO,O = V(M’(\/ﬁ % " 1 Z/MWZUZ )

Vo, ATE, 00 = An ATEs 0, 080T Es 0.0 A AT ES 0.0

Define the deterministic matrices which will determine the asymptotic distribution of our
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second-step estimators ATESJ:

+ b =a; + by + — Zult - — Z 1, _051](W]{Wj)71v‘/]{(y} — Zv)

JEMn Wi =v;

—(Blai+b)—— 3 E(a;— b)),

i JEMp:vj=v;

T
. 1 1 1 1
A0 = T TS Pl — v & Pme = 1A 2

i=1,...,n t=1

LY el (W)W Z) A,

n,7,0?
vi JEMp:vj=v;

.. ATFE

An,ATE5717a,7,O 1+ a Sl(BnOZV:%]Bn()) anO2 CnOAn'yO
.. ATE

An,ATEs,hoz,r,O = 1+§1(BnOEnOBnO) anOZn%J

1

—, An,ATES,l,«,,o + An,ATEs,l,a,%oa An,ATES,l,a,r,o]
]_ + aq

An,ATESJ 0 = [

i, L=l Vtla+b;
Iy o PlEa=1V1)

Qarmg,o=Var(vn | LS ZMy U |)

. -
n ziEMn Xiri

Vo, ATE, 10 = AnaTEs 1 04T Es 1 0An ATES 0

Proposition 7. Under , and Assumptions @ and as n — oo while T

remains fived:

Vi(éy — 1) = (B, 0%, 6Bno) ' B, OEnO\/— > X

ZGMn

— (Bl o505 Bno) " Bl o5 b BaoCro AL oD Z Z; My, U; + 0,(1)

and:

V. &v/n(ar —ar) 5 N(0,1) (F.6)
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If in addition oy ¢ {0, —1}, then we have:

_% 2iz1,m 1[$it:0Vt]5,i_
%Zizl ..... n P(2it=0Y1)
V(AT Egy — AT Esg) = Apare, o 0Vn Ly ZMw,Us | + 0,(1)
L ib Zz’eM Xiri ]
E 2ic1,m 1z =1V4]a; |
5 2 ict,...n P@a=1V1)
V(AT Eg, — AT Egy) = Apare, , 0V/n %Z:}:l Z My U | + 0,(1)
7{0 ZieMn erz ]

and:

w1 ~ d
V, irp, ,oVI(ATEsg — ATEg0) % N(0,1)

. 1 A
V, irm. oV(ATEgy — ATEsy) < N(0,1)

Note that Proposition 3 in the main text is obtained as a special case of Proposition [7]

Proposition [7] shows that the second stage estimators of «; and of ATE for stayers have
a linear influence function asymptotic representation, so that as before consistent variance
estimation could be obtained by bootstrap resampling, although here resampling should be
clustered at the level of the indexing variable v;. Alternatively, one can also use analytical
standard errors for inference, although these standard errors should now be clustered at
the level of the indexing variable v;. As before, we only show consistency of the analytical
standard errors for &; here, as the same result for ATE of stayers is obtained in a similar

way.

Proposition 8. Define C,, = LY e, X1, —al]((WiIWi)*lﬂngi—% > I/VJI»WJ»)”W]{ZJ'),

jEMn:Uj:Ui (

~
A A ~ . A

— _ 1 ~ o ~
T, = Q; — Oélbi, r,=7r; — n_u.szMn,UjZW Tj, and Uz = Y; — ZZ”)/
1

Deﬁne inﬁ = % Zi,j:l,...,n:vjzvi Z;MWZ 0ZU;MWJ Zj; ijn,oz’y = % ZieMn,jeMn:v]:vi TZXZUJ/MWJ Z]"
ce g0 .. LA e yo .. LA .. .. in i)n’a'y
Deﬁne An,l = (an,;an)ianz);l; An72 == (anﬁan)lenzﬁlanﬁl; Qn - . . ’
’ )
n,oy n,y
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Vn = [An,la An,?]Q

Under (F.1),
W1
Vi 2v/n(ay — ar) % N(0,1) (F.7)

As in the previous section, this proposition shows that asymptotically valid inference for
a1 can be based on Wald tests with analytical standard errors clustered at the level of the
indexing variable v; which account for both steps of estimation.

As in the previous section, the estimators defined above and consistent standard errors
can also be obtained by solving for exactly identifying moment conditions using any command
capable of numerical differentiation in standard statistical software.

As in the previous section, we can test the extrapolation identifying assumption by

including additional exactly identifying moment conditions:

E(1fi € Mylwio([L, —aa] (W, Wo) "W, (Yi = Ziy)

Y (W)WY~ Z) — ) =0 Vi€ S

Ny, .
b JEMp,vj=v;
and testing the null hypothesis Hy : n; = 0Vt € S using a Wald test with critical values

from a chi-squared distribution with |S| — 1 degrees of freedom.

G Estimation and Inference with Unbalanced Panels

Many panel datasets available in empirical work are unbalanced, i.e. some cross-sectional
observations are only observed for a subset of the time periods ¢ = 1, ..., T. In this section we
briefly discuss the consequences of missing data if one assumes that observations are missing
at random, i.e. that whether an observation (i,t) is observed are not is independent of all

of the variables included in our model.
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Let o; = 1[observation (i,t)is observed]. Redefine Y; = [Vitlton=1, Wi = [1, Tit)t:op=1,
Zi = [zitltoy=1, Xi = [Tit]t.o,=1. Redefine M, to be the set of cross-sectional observations
that have a change in treatment status across the time periods for which observations are
observed, i.e. M, ={i=1,...,n: 3t, swithxy # x;s, 0y = 1, 0;s = 1}. With data missing
at random, under the model used in Section B given by and , we have:

E(Mw,(Yi — Ziy)) =0

so that v can be estimated by a linear regression of y;; on indicator variables for each cross-
sectional observation, these indicator variables interacted with treatment status, and z,
pooling over all observations that are observed.

We also have:

E(1fi € MyJ([1, —aa](W;W3) "W, (Y; = Ziy) — @) = 0

E(1[i € Moz ([1, —on (W, Wi) YW, (Y; — Ziy) — a)) = OVt

so that the parameters oy and ag can be estimated by GMM as in Section B, pooling over
observations that are observed for each moment condition separately for each time period t.
Similarly testing the validity of the extrapolation identifying assumption and performing
asymptotically valid inference for objects of interest such as ATE for untreated stayers can
be obtained by relying on GMM estimation and pooling across all observations that are
observed separately for each moment condition.
The same results apply to the use of the generalized extrapolation identifying assumption

discussed in Section C.
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H Proofs

H.1 Proof of Proposition 1

Recall the normalization fl = 0 and the definition in the main text:

;o ZigZMn Ayio
 n— M,

ZigZMn Augo

= fo+ T

where the second equality follows from the normalization f; = 0 and the CRC model (?77?).

By convergence in mean-square error and Assumption 1 we have:

n

1 1 P
—(n—|Mnl|) == lHzp = xig) =
n(” | M) nz [2i = @] = s

i=1

where g was defined in the main text to be mg = P(z;1 = x42).

Note that by the law of total variance and the CRC model (?7?) we have:
Var(1[z; = zp]Aup) = Uiu’Sﬂ'S

where the main text defined 03, ¢ = Var(Aug|zi = ;). Therefore we have Var(1[z; =
Zio] Auie) > 0 under Assumption 2.b and 2.c.
Assumption 2.a of bounded support implies that 1[x;; = ;2] Aus, has bounded support.

Therefore by the Lindeberg-Levy central limit theorem for i.i.d. observations, we have:

1 n
% ZZI 1[1‘11 = $Q]AUZ’2 i N(O, O-QAu’Sﬂ-S) (Hl)

Therefore by Slutsky’s theorem, since mg > 0 by Assumption 2.b, we have:

2

Vilfs = f) 5 N(0, 22u5) (H2)

s

This establishes the first result of Proposition 1.
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By definition, we have:

. Ei:1,2(1 — @it) (Yir — ft) . - 21':1,2 Tit (Yit — ft)
a; = 9 a; + b@ —
Zi:l,Z(l — Tyt) Zz’:l,Q Lit

where as discussed above these estimators are both well-defined only for cross-sectional
observations that are movers.
For all cross-sectional observations such that @; is well-defined (movers and untreated

stayers), we can write:

i — > izt ol = @) (Yie — fi) C (1= ) (fo— fo)

' Zi:l,z(l — Tit) " Zi:1,2(1 — Tit)
Lia(m )i (2= fo)

> i1l — @it) N izl — i)

where the first equality follows from the normalizations f; = fl = (0 and the second equality
follows from the CRC model (?7).
The first result of this proposition shows that f, — fo = ( =), and we have (1 —z;) €

{0,1} and >, ,(1 — 24) € {1,2} for movers and untreated stayers.

(fa—1f2)

Therefore defining (,;, = (1 — J?ig)z_ 2 we obtain Mazi—1, . niuws=0orzn=0/Cain| =
1 ,

Similarly we have for movers and treated stayers:

~ 1o Tl o
&i‘i_bi:ai‘i‘bi‘i‘ZZil’Q S (f2 = 12)

2
Zi:l,Q Lit ' Zi:l,Q T

and defining (o ypin = @ 22(f2 f2) we obtain mazi—1_n.wp=1orzin=1|Catbin| = (%) which

completes the proof of this proposition.

H.2 Proof of Proposition 2

Linear influence function representation for &y, and &;.
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el 1S b
n n LaieMy, Vi
Define 4, = | " " "

01

1 7 1 ~
n n ZieMn:zﬂ:o bi n ZiGMn:x“:O a;

LY e, @
— . a/.
1€M, ?
and w,, = " " so that

= A tw, (H.3)

651

The extrapolation identifying assumption (?7) and Proposition 1 imply:
a; = ag + ayb; + 1 + Gin (H.4)

where (i, = Caim — 01Cpin a0d Cpinn = Catbin — Cavin and 7; is defined in the main text as

T = € + thl,Q uzt((]- —|— 041)(]_ — xit) — OéllL’Z‘t).

Therefore we have:

% ZieMn (7i + Cim)

1
n ZiEMn:x“:O(Ti + Gin)
From Proposition 1, for cross-sectional observations that are movers:

where e,, =

Ci,n = (1 + al)ga,i,n - alCab,i,n

= (1+a)(1 —22)(fo — fo) — 1mia(fo — fo)
By convergence in mean-squared error:

%ZieMn((l + O‘I)<1 - $i2) - 061%‘2) »

— Co
% ZiEMn:zﬂ:O((l + 041)(1 - xiQ) - alxz?)
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E((1+a1)(1 = 2i2) — a1Zig| i # 2i2) T

E((l + Oél)(l — $i2) — &1%@‘0, 1)71'01
From the proof of Proposition 1, we also have:

where ¢y =

\ﬁ%—ﬁﬁvgi—E:Am+%m (HL6)

.. 7 itUg 1—zit)u;
From proposition 1, we also have b; = b; + Zif;:: L Zzt:(t (1:33 L+ Cpin Where max;Cyip =

+ TitUi (1=t )u;
0p(1) and B(RLrmt — ST

Therefore under Assumption 2.a of bounded support and Assumption 1, convergence in

Ti1, J]ig) =0 for Ti1 7é Ti2.

mean squared error implies:

A, 5 A (H.7)

™ E(bi\iﬁil # xi2>7TM
where Ag = where 7y = w1 + 0.

To1 E(bz|0, 1)7T01
In addition Assumptions 3.a and 3.b imply A,in(Ag) > 0. Therefore by the continuous

mapping theorem:

A= A7 = 0,(1) (H8)

Under Assumption 2.a of bounded support and Assumption 1 of cross-sectional indepen-

dence, we have \/iﬁ Dien, i = Op(1), \/LﬁzieMn:z“:O r; = Op(1), and %Zmﬂ:m Augy =
O,(1).

Therefore we have:

R \/LEZiEMn Ti
%) %) 1 L

Val| = 1) = At el | = o |+ o(D) (H.9)
a1 a1

1
\/_ﬁ Zi:x“ =x;2 AuiQ

where [5 is the 2 x 2 identity matrix.
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Lz # zior;

Defining &,; = Ay (12, col 1[x; = 0,25 = 1]r;| completes the proof of the first result

Lzin = 2] Aug

Qo
of Proposition 2, showing that the estimator has an asymptotic influence function
aq
representation.
Asymptotic normality of ¢y and &;.

Define
1[%’1 # %’2}7“1‘
w; = |1[z;; = 0,250 = 1]ry (H.10)
L[z = T Aug

From Assumption 2.a of bounded support, w; has bounded support.

As in the proof of Proposition 1, Assumptions 2.b and 2.c guarantee that Var(1ljz; =
Tio]Auge) > 0. Assumptions 3.a and 3.c guarantee that Var(llxy # zp]r;) > 0 and
Var(llxy = 0,240 = 1]r;) > 0.

Assumption 1 of cross-sectional independence guarantees that 1[z;; = x| Auyo is uncor-
related with 1[z;; # xo]r; and 1[z;; = 0,250 = 1)r;.

Finally

COU(].[:L‘M 7£ ZL‘Z‘Q]T’Z', 1[1’11 = O,ZL‘Z‘Q = 1]7"Z) = E(].[I’zl = O,ZL‘Z‘Q = ]_]7”22)

=Var(llzy =0,z = 1]ry)
and

Var(1[z; # xi)r) = Var([z; = 0,20 = 1r;) + Var(1[z; = 1, 250 = 0]ry)

> Var(lxy = 0,240 = 1r;)

where the strict inequality follows from Var(r;|1,0) > 0 (Assumption 3.c) and mo > 0
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(Assumption 3.a).

Therefore |Corr(1[z;; # z]ri, 1[x;a = 0,20 = 1]1)| < 1, so that:

where A,,;, denotes the smallest eigenvalue of a matrix.
Therefore all conditions (bounded support, positive variance, i.i.d.) are met for the

Lindeberg-Levy central limit theorem to apply:

% zn: w; % N0, Var(w;)) (H.12)

so that we obtain by Slutsky’s theorem:

Qg (%] d
Vvn( — ) = N(0,V,) (H.13)
6%} Qg
1 -[2 1
where V,, = Ay [Iz, ¢o]Var(w;) Ay
o

Linear influence function representation and asymptotic normality of ATES,O
and ATESJ

By definition:

ATEgy - 0
1
nLOO zi:a}ilzwmzo(ai + % Zt:lz WUig — %(fQ - fQ)) — Qo
a1
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g.o— . 1 L ) .
Define a; = a; + 3 Zt:m u; and define:

L[zj1 = x40 = 0](a; — E(a;]0,0))
WATE,i = (H.14)
Wy

lxa # xilr;

where w; was defined above as w; = zg = 0,20 = 1]r; | -

1[3311 = ﬂﬁiz]AUiz

As before, the variance of w; is positive definite. In addition Assumption 1 implies that
1lxy = 20 = 0)(a; — E(a;]0,0)) is uncorrelated with 1[z;; # x| and 1z = 0, 240 = 1]r;.

Assumption 3.c implies that Var(a;|Ause,0,0) > 0, so that |Corr(1[z;; = z;2 = 0](a; —
E(a;]0,0)), 1[z;1 = Tsp]Aup)| < 1.

Therefore A\, Var(warg;) > 0. In addition Assumption 2.a guarantees that warg,; has
bounded support.

Therefore by the Lindeberg-Levy central limit theorem we have:

1 n
NG S " ware; 5 N(O,Var(ware,)) (H.15)
=1

Therefore since AT Eg = %ﬁnﬂo, by the )-method we obtain:

. 1 — ,
\/H(ATES,O — ATE&O) = AATE,O% Z wATE,i + Op(l) i N(O, AATE,OVOJ'r(wATE,i)AATE’o)
i=1

(H.16)

2 g i1
ATE 2 2
where Aarpo = [L, -+, —5—22] o0 £ %5

) ) where 05 is
(e %1 a1 a1

Bargo and Bargo =
0, Ag' Agteo

a 2 x 1 vector of zeros and Ag, ¢y are defined above.

The same steps can be used for ATESJ, which completes the proof of Proposition 2.

92



H.3 Definitions and Lemma for the Proof of Proposition 3

The first step of our estimation procedure is unchanged when estimating ATE under the

generalized extrapolation identifying assumption (3.7). We first establish the same result for

these first step estimators as Proposition 1 but under Assumptions 4 and 5.
Recall the redefinition in the main text of 0%, ¢ to oA, g = Var(},

Also redefine mg = E(> .., _, 1[za = T3]).

Lemma 1. Under the CRC model (7?) and Assumptions 4 and 5, as N — oo:

2
VN = f) 5 N0 )

and wherever a; and a; + b; are well-defined we can write:

N Zt:l,Q(l — Ty ) Uit

b= a o+ Zt:l,Q Lit Wit
' ' Zt:1,2<1 — Tyt)

+ Catbi,N
Zt:1,2 Lit

+ Cai N a; + by = a; + b +

L

where maxi;=1,...n:x;;=0 ormiQZO’Ca,i,N’ = Op(\/ﬁ) and maxi;=1,..n:x; =1 ormi2:1‘<a+b,i,N| = Op(\/%)

Proof. As in the proof of Proposition 1, we have:

Zv:l,..,,N Zi:m:v,mﬂ:wm Auﬂ

\/N(f2 - f2) = szl,.--yN Zi:vi:v 1[[@1 = sz‘Q]

Under Assumption 4, convergence in mean-squared error implies:

% Z Z 1[5(]Z‘1:J]i2]£>773

v=1,...,N ©:v;=v

and Assumption 2.b implies g > 0.

Assumption 4 and Assumption 2.a imply that ).

Wi=0,T41 =42

bounded support. Assumption 5 implies Var(d

VV;=V,L;1=T42

1V, =0V,T;1=2x;2

A’U/ig) .

(H.17)

(H.18)

(H.19)

(H.20)

Auyo is id.d. across v with

Aug) = 03,5 > 0. Therefore by

the continuous mapping theorem, Slutsky’s theorem, and the Lindeberg-Levy central limit
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theorem, we have:

VEh=p=——oe 3 X Auato)

----- N iv;=v,2;1=Ti2

Given this result, the rest of the proof of Lemma 1 is as in the proof of Proposition 1. [

Here we also define explicitly the second-step estimator for oy used with the generalized
extrapolation identifying assumption (3.7). A fixed effects instrumental variable regression

of a; on l;Z using ;o as an instrumental variable, with fixed effects indexed by wv;, yields the

estimator:
Zv:l,...,N ZiEMn:Ui:’U LigQy
Ev:l,...,N ZiGMn:vi:v xi2bi

o) =

(H.21)

where

ai:ai—di, dl:n— E (Ij

1 .

1EMp,v;=v
H.4 Proof of Proposition 3

From the CRC model (?7?), the generalized extrapolation identifying assumption (3.7)), and

Lemma 1:

&i = €y, + Oéll;i +r; + Ci,n <H23>

o4



~

where as before r; = ¢; +Zt:172 wit(L+a1)(1 —zi) —onzy) and G, = (1+0q9) (1 —252) (fa —
f2) - 061%’2(]?2 - f2)

Therefore we have:

Zv:l,...,N ZieMn:vi:v Li2 (TZ + (z,n)
szl,...,N Zieanvi:y xini

dl — Q1] = (H24)

: 1 : 1
Where /ri - Ti - n_'”z ZjEMnl’Uj:'Ui /rj and Ci:” - Civn - n_,ul ZjGMnZ”Uj:Ui ijn

Considering the denominator, we have:

Z Z $z‘26@': Z Z xigi)i— Z o0l Z l;l

n
v=1,...,N i€ My, v;=v v=1,...,N i€ My, v;=v v=1,....N v 1EMy v;=v
Ny, 01Mw,10, 1 - -
Sy metn LS LS
v=1,...,N v v,01 1€EMyv;=v v,10 1EMpv;=v

where Ny 40, = {t = 1,0 v = 0,251 = 21, 20 = T2}

Under Assumption 4 we have W < (. From Lemma 1 we therefore have:

1 1 A .
N nv,Olnv,lo( Z b — Z (1 _ $i2)bi)
v=1,...,N T nv,Ol 1€EMy,v;=v nv,lO 1€Mp,v;=v
1 Np.01M 1
= N v,01 v,lO( Z Q?Zg(bz + Auzg) — Z (1 — l’ﬁ)(bl — AUZQ)) + 0p<1)
v=1,....N T nv,(]l 1€EMp v;=v nv,lO 1€EMp v;=v
) k) n 7 n K

and convergence in mean-squared error implies:

1 N,01Mw,10 1

N " - Z Tio(b; + Auyg) — "
v=1,...,N v v,01 1E€EMpv;=0v v,10

Z (1 — xlg)(bl — Aulg))

1E€My,v;=v

2y g0t g bioy)

v

Define Ay = E(=2=2%(bo1,, — bio,)). We have A, # 0 since =072 > (), 20202 > ¢
with positive probability under Assumptions 6.a and 4, "”%Z“O has discrete support under

Assumption 4, and bg;, — big, > 0 whenever m%f“o > 0 or bo1p — bio, < 0 whenever

%)



N ,01Mv,10
Ny

> 0 under Assumption 6.c.

Convergence in mean-squared error and Lemma 1 imply:

Z Z xz2 Tz + Cz n)

v 1,....N i€ Myp:v;=v

> aaiitc Z > Aup+o,(1)

v=1,...,N i€ My v;=v v=1,...,N 1:0;=v,2;1 =2

2=

where co = E(Dicns, —o Tia((1+ a1)(1 — &i2) — auin)), Tz = T — "va D e Moy, Li2:

> ien, =0 Ti2li

Zi:vizv,x“:xm Auﬂ
extrapolation identifying assumption. Assumption 6.d imposes that A, (Var(w,)) > 0. w,

Define w, = . E(w,) = 0 under the CRC model and the generalized

has bounded support under Assumption 2.a.
Therefore under Assumption 4, the continuous mapping theorem, Slutsky’s theorem, and

the Lindeberg-Levy central limit theorem imply:

VN(ér — 1) = Aag—= Y w, 3 N(0,Va) (H.25)
\/_ v=1,...,N
where V,, = A%OVar(wv)A;O and A, = A%,[L Coé]-
By definition:
1 A 1 ~ -
ATES,O _ 100 Zimﬂ:mﬁ:o(ai B n_viAZjeMn:vj:vi(aj - albj))

aq

Redefine mpo = E(>] 1[zi1 = x;2 = 0]), note that Assumption 6.d implies mpy > 0.

R

By convergence in mean-squared error we obtain:

n
% ﬂ) 00 <H26)
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By convergence in mean-squared error and the previous results, we can also write:

LAY Y @l Y -k

v=1 t:v;=v,x;1=x;2=0 JEMp:vj=v;
N
1
==> X DT > )
v=1 1:0;=V,T;1=Tij2= 0 t 1,2 jEMn V=4

+dov/n(fr — fo) + eov/n(én — ay) + 0p(1)
LS Y @ lYueel Yo

v=1 :w;=v,x;1=x;2=0 t 1,2 JEMp:vj=v;

—i—do—\/—— Z Z Ay

v=1,...,N 1:0;=0,;1=T;2

1 1.1
+eg—11,co—|—= Wy + 0,(1
OAI;[ OWS]\/NU:;N P( )
where
1 & 1z o] 1
i1 — 442
dO:NZE(AZ (—— o Yo (1 +a)(l - zp) + arzp)))
v=1 V=0 JEMp:vj=v;
1
co=E( >, — > b
10, =v,x;1=x;2=0 UjEMn:vj:v
Therefore by the J-method we have:
. 1
V(AT Egy — ATEs,) = N AATEOWATEyw + 0p(1) (H.27)
v=1,...,N
L g (do+eoaco)=
where Aarpo = [, ATaESO]BATE 0, Barpo = |™ oa; (ot conyco)s, , and:
v 0o L 1L
Ay Ay Vg
Zi:v-:v Ti1=Tjo= (ai = Cy; — E(al = €y |Til = T2 = 0) + az))
WATEyw = e Tme= (H.28)

Wy
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where 4; was defined in the main text to be 4; = %Z;‘ll Uit — n%z ZjeMnmj:vi r; and w, is
defined above.
Bounded support, Assumption 6.d, and Assumption 4 lead to the applicability of the

Lindeberg-Levy central limit theorem, so that:

V(AT Egy — ATEso) % N(0, Var) (H.29)

/

Where VATE = AATE,OVCLT(U}ATEO,U)AATE7()-
This completes the proof of this proposition since the same steps can be used to derive

the asymptotic normality of the estimator of ATE for treated stayers, ATE S1-

H.5 Proof of Proposition

The choice of generalized inverse used here (excluding the interaction between the cross-

sectional indicator variables and treatment status for stayers) implies:

;

[29,zL — 20] ifiisamover
(W, Wi)™ W, Z; = 1 [, 0]' if 7y = 0Vt (H.30)
(7, 0] if we =1Vt
where z), = % and z}, = %, and (W, W;)~W,U; has a similar representation.
t 7 ¢ it

Therefore under Assumption .a: Z: My, Zs, Z; My, Uy, (W, W)~ W, Z; and (W, W;)~ W, U;
have bounded support.
The definition of the estimator and (E.3|) implies:

1 e— 1 o
V(=)= (=Y Z;Mw,Z)'—= Z;Mw,U;

Under Assumption , 7, My, Z; and Z; My, U; are cross-sectionally independent.
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Therefore convergence in mean squared error implies:

1~
= " ZiMy, Z; — Ayyo B 0
n
i=1
Assumption .d implies that V,, , 0 = Var(\/iﬁ S ZiMw,U;) > ¢,¥n > C, for constants
¢ >0 and C, and as discussed above Z; My, U; has bounded support.
Therefore a central limit theorem for independent observations such as Theorem 5.11 in
White| (2001) implies:

-1 1 - / d
Vo ; Z; Myw,U; < N(0, I) (H.31)

These two results complete the proof of V,, OAn oV n(y —7) < N(0, Ir).

From the definition of the estimators a; and bi we also have:

a; ’ ’
~ | T (W, W)~ W (Y; — Zi)
b;
a; _ ’
= (W;Wa)" Wi (Ui = Zi(y — 7))
bi

From the above, we have:

(Wi W)™ Wi Zi(3 — ) = (W, W)~ W, ZAn}yO\/_

1
(W W Z Z MWz - An,v,O)_Cn

By the continuous mapping theorem and Assumption [§c:

Z Z:Mw, Z:) ™' — AL o = 0,(1) (H.32)
The first result in this proof shows that (W, W;)~W; Z; has bounded support and we have
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shown that —= Z=6n 4N (0,1), so that \f(" is bounded in probability.

Therefore:

ey

which completes the proof.

H.6 Proof of Proposition

T
From the definition of the estimator we can rewrite:

A

7

&%) &%)

|| = BE BB S Y Kl + L W)W U + Ziy =)

(05} aq zeMn
(H.33)
Define Cy = =3/ X, Xi[1, —au | (W, W;)"'W, Z;. From Assumption [7| and Assumption

[la, by convergence in mean squared error:
Cr — Cho = 0p(1) (H.34)

By definition:

1 .
Bn = - Z z[labz}
niEMn
1 ind / /
== Z Xi[L, by + [0, W W) ='W (U + Zi(§ — 7))
" e,
1 ind / /
== X[Lbi+ [0, (W, W)W, Ui] + 0,(1)
n
i€M,
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where the last equality follows from Proposition [4]
As in the proof of Proposition 4}, X;[1,b; + [0, 1](W; W;)~'W,U;] has bounded support

under Assumption [8la, so that by convergence in mean-squared error:

B, — Bno = 0,(1) (H.35)
By definition of ¥,:
1 2 /
Sa=— Y GXX,
i€Mp
1 . . o o
= - (a'z — 0y — albz) Xz i
i€Mp
1 ~ ~ ap — ~ ~
== S @ —ap—anb — [LB] | | )2RX
i€My a; — o
1 ’ ’ ~ & — ~ ~
== 3 (i~ Ll (WIW) W2 - ) — (LB | )R
1€My, 5(1 —

mazi1,. n[l,b; = 0p(1)
a1 — O
mazi—y,.. o1, —oa|(W; W) "W, Z;(3 — ) = 0,(1)
mazi—y, i = Op(1)
Therefore:
1 ~

Y, =— 2X, X, 1 H.36
n Z Tz 7 + OP( ) ( )
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As previously, under Assumptions [7] and [§|a, convergence in mean squared error implies:
Zn - En,O = Op(l) (H37)

Therefore under Assumptions [9la and [9}b, by the continuous mapping theorem and

Proposition [ we have:

Qo Qo ~
\/ﬁ( - ) (BnOEnOBTLO> an[)EnO\/— Z Xiri

(651 (651 €My,

- (B;,OE;,%)Bn,O)_lB;,oE Cn oA Z Z Mw,U; + 0,(1)

n’yO\/_

which completes the proof of the first result of Proposition [5]
With the first result of Proposition |5 established, the second result can be obtained

by using a central limit theorem for independent observations. To apply this central limit

~

Qy
theorem, we show that higher moments of the linear influence function for are bounded
a7}
and that the variance of the linear influence function is uniformly positive-definite.
From Assumptionsa, @.a, and @b, we have that the support of (B;’OE;}]B,LO)*13;702;%))@7"@

is bounded.

From Assumptions [8la, [Ola, Ob, and [§lc, we have that the support of

(B;7OE;})Bn,O)‘1B;702 LCh0ATY (Z My, U, (H.38)

n,7y,0

is bounded.
Assumption[7]of cross-sectional independence, Assumption[8b that a non-vanishing share

of the population be stayers, and Assumptions d and @.a imply that Ay (Qn0) > c.
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Therefore A\pin (Vi) > ¢ as long as:

A;z,l,()
)\min([An,l,Ov An,Q,O] , ) Z c <H39>

n,2,0

-1 _

which follows from )\mm(B;’OZ;}]Bn,O)*l > ¢, which itself follows from Amz‘n(B,/@,oE;})Bn,o) =
F— (B;;z;}) By’ and /\mazE;b = /\mmlznﬁ < C by Assumption ﬂ.a, and )\max(B;,an,O) <C

by Assumption [§la.
Therefore all conditions are met to use a central limit theorem for independent observa-

tions such as Theorem 5.11 in White| (2001)), and we have:

_1 (7 (6
’ "1y 4 N0, L) (H.40)

ay aq

which completes the proof of the second result of Proposition [5]
We can show that the estimators of ATE for stayers, ATE s, and ATE 51, have a linear

influence function representation using similar steps as above. Under the assumptions of this

proposition we have:

Zi:.’zitzo Yt &’L
Yict,...n P(@it=0V)

S ZiMw,Us | + 0p(1)

. -
L Ezz’eMn Xt ]

Zi:zitzl Vit a+bl
Yict,...n Pl@at=1Vt)

LS Z My, Ui | +0p(1)

. -
L Ezz’eMn Xt ]

\/E(ATE&Q - ATE&O) - An,ATES,o,O\/ﬁ

Vn(ATEg, — ATEg,) = Anarm,, 0Vn

For concision we concentrate on AT Egy in the remainder of this proof since the asymp-

totic normality of ATESJ is derived in the same way.
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Ei:x“:o vt @i
Zi:l,m,n P(IltZOVt)

As above, A, ATE, 4,0 % S ZZT My, U; | has bounded support under the assumptions of
w 2iens, XiTi
this proposition, so that we can apply a central limit theorem for independent observations

Zmit:o vt @i
Zi:l,“.,n P(z=0Vt)

if Var(y/n %Z?:l Z, My U, ) is uniformly positive-definite since A, ATES’O,QA'”’ ATE, 00 = €

. -
n ZieMn Xiri

Vn>C.
Ei:xit:o Yt ai
2imt1,...n P@ie=0V1)

Assumptions|8.d, [9la, and|9.d impose that the variance of each term in \/n % S sz My, U

) -
n ZiEMn Xiri

is uniformly positive definite.
As above, Assumptions , .b, and .d guarantee that % Yoy 7, My, U; and % > ien, X,r;

are not approximately linearly dependent.

zi:z‘itzo vt @i

Assumptionof cross-sectional independence guarantees that 5= P =0 and % D e M, X;r;

i=1,...,n
are independent.

Z'L:zit:O 47 a;
i=1,...n P(@it=0Vt

Assumption @.d guarantees that = ) and %Z?:l Z; My, U; are not approxi-

mately linearly dependent.
Zi:zit:O vt a;
2izt,.. n P(@ie=0V1)

Therefore we have A, Var(y/n |1 S Z My, U, ) >c¢>0Vn > C and applying a

% ZieMn Xiri
central limit theorem for independent observations such as Theorem 5.11 in White, (2001))

we obtain:

_1 N
V, i, o oVn(ATEsy — ATEsg) % N(0,1) (H.41)

64



H.7 Proof of Proposition [6]

As in the proofs of Propositions [4 and [5], convergence in mean-squared error and the contin-

uous mapping theorem imply:

Cr, — Chro = 0p(1), Y =200 =0p(1) Epy—Viryo=0p(1) Zpnay— Vaayo =0,(1)

An,l - An,l,O = Op(l) An,2 - An,Q,O = Op(1> Qn - Qn,O = Op<1) Vn - Vn,a,O = Op(l)

so that Slutsky’s theorem implies:

vty = |7 A N, ) (H.42)

aq (631

Qg &) d

H.8 Proof of Proposition

The proof of this proposition follows the same steps as the proof of Proposition |5 albeit with

different definitions and dependence being indexed by v; rather than .

H.9 Proof of Proposition

The proof of this proposition follows the same steps as the proof of Proposition [6] albeit with

different definitions and dependence being indexed by v; rather than i.

I Learning and the Extrapolation Identifying Assump-
tion

In this section we briefly discuss the possibility that farmers in our empirical application do
not know exactly what their returns are prior to adopting hybrid seeds for the first time, and
learn about their returns as they use the technology. Learning could create a feedback from

past shocks to productivity, w;s Vs < ¢, to current technology use, x;, if positive (negative)
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shocks to productivity while using hybrid seeds are misinterpreted as high (low) returns to
using hybrid seeds, invalidating the CRC model used in the first step of our estimation
approach.

If farmers learn directly about their returns, without confounding their adoption of the
new technology with past productivity shocks, learning may not invalidate the extrapolation
assumption . Suppose for simplicity that immediate learning takes place, where before
her first adoption, a farmer bases her decision on whether to use hybrid seeds on the rule
T = 1[l~9Z > ¢;y] where Bl = b; +;, where ¢; is measurement error, and ¢;; is the cost of using
hybrid seeds, while after having used hybrid seeds at least once she bases her decision on
the rule z;; = 1[b; > ¢u]. If ¢; and ¢;; are independent of a; and b;, this model of selection
satisfies the condition discussed in section in the main text.

More generally, a farmer may base her selection decision on an information set, Z;,
and the selection rule z;; = 1[E(b;|Z;;) > ¢y, as in [D’Haultfceuille and Maurel (2013) and
references therein. If Z;; and ¢;; are independent of a; conditional on b;, then the extrapolation
identifying assumption holds (if the assumption of linearity also holds). In
section [4.3] in the main text, we allow for part of a farmer’s information set to be correlated
with her baseline productivity a; or returns b; as long as it corresponds to information that

is shared by all farmers in a village.
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