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In this appendix we provide the technical details corresponding to our discussion in the

main text. Section A briefly discusses identification of time effects and average treatment

effects (ATE) with a correlated random coefficient (CRC) model and a general number of

time periods, while the main text focused on the case where two time periods are observed

for simplicity. Section B discusses the estimation methods of Lemieux (1998) and Suri

(2011). Section C compares the sufficient set of conditions for the extrapolation identifying

assumption to hold discussed in the main text with generalized Roy models. Section D

discusses CRC models with time-varying treatment effects. Section E discusses the two-step

estimation method defined in the main text and the test of validity of the extrapolation

identifying assumption for the simple extrapolation. Section F discusses the extension of

these methods to using the generalized extrapolation identifying assumption discussed in

the main text. Section G discusses the implications of using unbalanced panels due to data

missing at random. Section H contains proofs for the results of Sections E and F. Propositions

1-3 in the main text are obtained as special cases of the propositions stated in Sections E

and F, but with more cumbersome notation. Therefore we also write in Section H proofs

for Propositions 1-3 in the main text. In Section I we briefly discuss the consequences of

learning about treatment effects (returns in our empirical application) upon being treated

on the validity of the CRC model and extrapolation identification assumptions discussed in

the main text.

Throughout the appendix, c will denote an arbitrary positive constant c > 0 and C

will denote an arbitrary constant C < ∞. We use |A| to denote the cardinality of any set

A. We use the notation Op to denote that a sequence is bounded in probability and op

to denote that a sequence converges in probability. Throughout the appendix, referenced

equations corresponding to numbered sections are found in the main text, while equations

corresponding to sections indexed by letters are found in this appendix.
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A Identification with a General Number of Time Pe-

riods

In this section we discuss the information contained in the CRC model (2.4) for a general

number of time periods T , while the main text only considered T = 2 for simplicity.

Under cross-sectional independence, we can stack observations across time and rewrite

the CRC model (2.4) as:

Yi = Wi

ai
bi

+ f + Ui, E(Ui|Xi) = 0 (A.1)

where Yi = [yit]t=1,...,T , Wi =

[
jT Xi

]
, jT = [1]t=1,...,T , Xi = [xit]t=1,...,T , f = [ft]t=1,...,T ,

Ui = [uit]t=1,...,T .

As in Chamberlain (1992), since the relationship between baseline heterogeneity (ai),

treatment effect (bi), and treatment status history (Xi) is left unrestricted, the information

for estimating f contained in (A.1) is equivalent to the information contained in:

E(MWi
(Yi − f)|Xi) = 0 (A.2)

where MWi
= IT −Wi(W

′
iWi)

−W
′
i and (.)− is a generalized inverse operator.

As in the main text, we will apply the normalization f1 = 0, so that time effects ft

are identified if MWi
has rank greater than T − 1 for some values of Xi corresponding to a

positive probability. For values of Xi corresponding to stayers, MWi
is the projection matrix

of a regression on an constant using T observations, so that it has rank T − 1, leading to

identification of time effects from observations on stayers.

With two time periods, MWi
= 0 for cross-sectional observations i that correspond to

movers. However with three or more time periods, rank(MWi
) ≥ T−2 > 0, and observations

on movers participate in the identification of time effects ft. Depending on the profiles of
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treatment status history observed in the data, it is possible for all time effects ft, t = 2, ..., T

to be identified by observations on movers only when T ≥ 3.

The CRC model (A.1) is equivalent to (A.2) and:

E(

ai
bi

 |Xi) = E(Bi(Yi − f)|Xi) + (I −BiWi)ζi (A.3)

where Bi = (W
′
iWi)

−W
′
i and ζi is an unknown, unrestricted term of heterogeneity.

This shows that conditional average treatment effect E(bi|Xi) is only identified for cross-

sectional observations such that W
′
iWi is non-singular. With xit being binary, W

′
iWi is

non-singular for movers and singular for stayers, so that average treatment effects are only

identified for movers.

B Notation and Comparison with the Methods of Suri

2011 and Lemieux 1998

In this section we describe the estimation procedures used by Lemieux (1998) and Suri (2011)

and show that they can be represented by the linear extrapolation discussed in the main text

when there are no additional covariates in the model, i.e. when treatment status xit is the

only covariate.

First we map the notation used by Lemieux (1998) and Suri (2011) to the notation used

in the main text. In the simple setting without additional covariates, our notation for the

correlated random coefficient model with the extrapolation identifying assumption and two

time periods is given by:

yit = ai + bixit + ft + uit E(uit|xi1, xi2) = 0 (B.1)

ai = α0 + α1bi + εi E(εi|xi1, xi2) = 0 (B.2)
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In the simple setting without additional covariates, the notation used by Lemieux (1998)

writes potential outcomes without (N) or with (U) treatment as:

yNit = δNt + θNi + ε
′

it

yUit = δNt + δ̄ + θUi + ε
′

it

where θUi and θNi have mean zero, so that the average treatment effect is given by δ̄ and ε
′
it

are unobserved wage shocks.

Therefore our notation writes ft = δNt , ai = θNi , bi = δ̄ + θUi − θNi , uit = ε
′
it.

The notation for the extrapolation identifying assumption in Lemieux (1998) is given by

the linear projections:

θNi = bN(θNi − θUi ) + ξi

θUi = bU(θNi − θUi ) + ξi

where bN =
Cov(θN1 ,θ

N
i −θUi )

V ar(θNi −θUi )
and bU =

Cov(θU1 ,θ
N
i −θUi )

V ar(θNi −θUi )
.

Lemieux (1998) then defines εit = ξi + ε
′
it and assumes:

E(εit|xi1, xi2) = 0 (B.3)

In our notation we have α1 = bN , εi = ξi, α1 + 1 = bU .

Lemieux (1998) defines θi = bN(θNi − θUi ) and ψ = bU
bN

so that:

θNi = θi + ξi

θUi = ψθi + ξi

In our notation we have α1+1
α1

= ψ, α1bi = θi.
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The model for observed outcomes estimated by Lemieux (1998) is then given by:

yit = δNt + δ̄xit + θi(1 + (ψ − 1)xit) + εit E(εit|xi1, xi2) = 0 (B.4)

In the next two subsections we show that under the CRC model assumption (B.1) only,

estimation of all the parameters in the model (B.4) that combines the CRC model with the

extrapolation identifying assumption (B.2) by generalized method of moments estimation

(Lemieux (1998)) or minimum distance estimation (Suri (2011)) leads to the linear extrap-

olation from ATE among movers to ATE among stayers depicted in Figure 1 of the main

text.

B.1 Lemieux 1998

The estimation procedure proposed by Lemieux (1998) is GMM estimation from the moment

conditions:

E(



xi1xi2

(1− xi1)(1− xi2)

xi1(1− xi2)

(1− xi1)xi2


ei(δ

N
2 , δ̄, ψ, δ

N
1 ) = 0

E(θi) = 0

where the moment function ei(.) is defined to be:

ei(δ
N
2 , δ̄, ψ, δ

N
1 ) = yi2 − δN2 − δ̄xi2 −

1 + (ψ − 1)xi2
1 + (ψ − 1)xi1

(yi1 − δN1 − δ̄xi1)
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These moment conditions can be rewritten as:

E(∆yi2 −∆δN2 |0, 0) = 0

E(∆yi2 −∆δN2 |1, 1) = 0

E(yi2 − δN2 − δ̄ − ψ(yi1 − δN1 )|0, 1) = 0

E(yi2 − δN2 −
1

ψ
(yi1 − δN1 − δ̄)|1, 0) = 0

2∑
t=1

E(
yit − δNt − δ̄xit
1 + (ψ − 1)xit

) = 0

Under the CRC model (B.1), with the normalization f1 = 0, we can further re-write

these moment conditions:

∆f2 −∆δN2 = 0 (B.5)

∆f2 −∆δN2 = 0 (B.6)

E(ai + bi − δN1 − δ̄ − ψ(ai − δN1 )|0, 1) = 0 (B.7)

E(ai − δN1 −
1

ψ
(ai + bi − δN1 − δ̄)|1, 0) = 0 (B.8)

2∑
t=1

E(
ai + bixit + ft − δNt − δ̄xit

1 + (ψ − 1)xit
) = 0 (B.9)

We see that the first two moment conditions (B.5) and (B.6) contain the same information

under the CRC model (B.1), setting ∆δN2 equal to ∆f2. Therefore the remaining three

moment conditions (B.7)-(B.9) are exactly identifying for ψ, δN1 , δ̄.

Equations (B.7) and (B.8) imply:

ψ =
E(ai + bi|0, 1)− E(ai + bi|1, 0)

E(ai|0, 1)− E(ai|1, 0)
(B.10)

Defining α?1 = E(ai|0,1)−E(ai|1,0)
E(bi|0,1)−E(bi|1,0)

, we can therefore use ψ =
α?
1+1

α?
1

below to shorten notation.1

1Here we use α?1 to denote a pseudo-true value of a parameter since the extrapolation identifying as-
sumption is not assumed to hold here, only the CRC model is assumed to hold throughout this section.
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We can re-write equation (B.8) as:

δN1 = E(ai|1, 0)− α?1(E(bi|1, 0)− δ̄) (B.11)

Therefore defining α?0 = E(ai|1, 0)− α?1E(bi|1, 0) we can write that δN1 = α?0 + α?1δ̄.

Equation (B.9) can then be written:

π00(E(ai|0, 0)− α?0 − α?1δ̄) + π11
α?1

α?1 + 1
(E(ai + bi|1, 1)− α?0 − (α?1 + 1)δ̄)

+π01α
?
1(E(bi|0, 1)− δ̄) + π10α

?
1(E(bi|1, 0)− δ̄) = 0

where we define πx1x2 = P (xi1 = x1, xi2 = x2) to shorten notation.

This yields:

δ̄ = π00
E(ai|0, 0)− α?0

α?1
+ π11

E(ai + bi|1, 1)− α?0
1 + α?1

+ π01E(bi|0, 1) + π10E(bi|1, 0)

so that the ATE for the entire population is indeed obtained by the linear extrapolation

represented in Figure 1 of the main text.2

B.2 Suri 2011

The notation used in Suri (2011) is almost identical to the notation used in Lemieux (1998)

but Suri (2011) uses minimum distance estimation instead of GMM estimation. The only

differences between the notation in Suri (2011) and the notation in Lemieux (1998) are that

the parameter φ is used, which is mapped to the notation of Lemieux (1998) by φ = ψ − 1,

so that this new parameter is mapped to our notation by φ = 1
α1

. The expected value of

returns is also defined to be β in Suri (2011) rather than δ̄ in Lemieux (1998), so that this

2Similarly ATE for untreated stayers would be taken to be ATE?00 =
E(ai|0,0)−α?

0

α?
1

and ATE for treated

stayers would be taken to be
E(ai+bi|1,1)−α?

0

1+α?
1

.
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new parameter is mapped to our notation by β = E(bi).

The reduced form parameters used in Suri (2011) are obtained from the conditional

expectations:

E(yi1|xi1, xi2) = γ01 + γ1xi1 + γ2xi2 + γ3xi1xi2

E(yi2|xi1, xi2) = γ02 + γ4xi1 + γ5xi2 + γ6xi1xi2

which are obtained in this form without loss of generality since xit is a binary random

variable.

In addition to the parameter φ and ATE β, the structural parameters to be identified in

Suri (2011) also comprise the parameters in the conditional expected value of θi conditional

on treatment history:

E(θi|xi1, xi2) = λ0 + λ1xi1 + λ2xi2 + λ3xi1xi2 (B.12)

The structural parameters to be identified in Suri (2011) are the parameters in the con-

ditional expectation E(θi|xi1, xi2), φ, and the ATE β (a total of six structural parameters).

These structural parameters are estimated by minimum distance estimation from the link:

γ1 = (1 + φ)λ1 + β + φλ0 (B.13)

γ2 = λ2 (B.14)

γ3 = (1 + φ)λ3 + φλ2 (B.15)

γ4 = λ1 (B.16)

γ5 = (1 + φ)λ2 + β + φλ0 (B.17)

γ6 = (1 + φ)λ3 + φλ1 (B.18)

λ0 = −λ1π1 − λ2π2 − λ3π11 (B.19)
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where as before πx1x2 = P (xi1 = x1, xi2 = x2) and where π1 = P (xi1 = 1) and π2 = P (xi2 =

1).

The first six equalities (B.13)-(B.18) follow from:

E(yit|xi1, xi2)

= ft + (1 + φxit)E(θi|xi1, xi2) + βxit

= ft + (1 + φxit)(λ0 + λ1xi1 + λ2xi2 + λ3xi1xi2) + βxit

=


f1 + λ0 + ((1 + φ)λ1 + β + φλ0)xi1 + λ2xi2 + ((1 + φ)λ3 + φλ2)xi1xi2 if t = 1

f2 + λ0 + λ1xi1 + ((1 + φ)λ2 + β + φλ0)xi2 + ((1 + φ)λ3 + φλ1)xi1xi2 if t = 2

where the first equality follows from the model given by (B.4) with the notation used in Suri

(2011).

The last equality (B.19) follows from E(θi) = 0.

Under the CRC model we can rewrite the reduced form parameters as:

γ1 = E(bi|1, 0) + E(ai|1, 0)− E(ai|0, 0)

γ2 = E(ai|0, 1)− E(ai|0, 0)

γ3 = E(bi|1, 1)− E(bi|1, 0) + E(ai|1, 1)− E(ai|1, 0) + E(ai|0, 0)− E(ai|0, 1)

γ4 = E(ai|1, 0)− E(ai|0, 0)

γ5 = E(bi|0, 1) + E(ai|0, 1)− E(ai|0, 0)

γ6 = E(bi|1, 1)− E(bi|0, 1) + E(ai|1, 1)− E(ai|1, 0) + E(ai|0, 0)− E(ai|0, 1)

Therefore under the CRC model, equations (B.14), (B.15), (B.16), and (B.18) or equa-

tions (B.13), (B.14), (B.16), and (B.17) both lead to γ6−γ3
γ4−γ2 = γ1−γ5

γ4−γ2 − 1 = E(bi|1,0)−E(bi|0,1)
E(ai|1,0)−E(ai|0,1)

.

Therefore under the CRC model the system of seven equations (B.13)-(B.19) is at most

exactly identifying for the six structural parameters.
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From (B.13), (B.14), (B.16), and (B.17) we find:

φ =
γ1 − γ5

γ4 − γ2

− 1

=
E(bi|1, 0)− E(bi|0, 1)

E(ai|1, 0)− E(ai|0, 1)

We also have:

λ2 = γ2 = E(ai|0, 1)− E(ai|0, 0) (B.20)

and:

λ1 = γ4 = E(ai|1, 0)− E(ai|0, 0) (B.21)

When φ = −1, the system linking reduced form parameters to structural parameters

does not identify λ3, so that β, λ0, λ3 are not identified, so that the probability limits of the

estimators for average returns for stayers do not exist. In Figure 1 in the main text, this

corresponds to the case where the line a + b = E(bi|1, 1) + E(ai|1, 1) and the extrapolation

line going through (E(ai|1, 0), E(bi|1, 0)) and (E(ai|0, 1), E(bi|0, 1)) have the same slope, −1,

so that they do not intersect at a unique point.

When φ 6= −1, then:

λ3 =
γ6 − φλ1

1 + φ
(B.22)

β is then given by:

β = γ1 − (1 + φ)λ1 − φλ0

= γ1 − γ4 − φ(λ1 + λ0)

= E(bi|1, 0)− φ(λ1 + λ0)
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We can show from the above equalities that:

λ1 + λ0 = (E(ai|1, 0)− E(ai|0, 0))(1− π1 − π2 + π11)

+ π2(E(ai|1, 0)− E(ai|0, 1))

+ π11
1

1 + φ
(E(ai + bi|0, 1)− E(ai + bi|1, 1))

The above implies:

β = π10E(bi|1, 0) + π01E(bi|0, 1)

+ π00(E(ai|0, 0)
E(bi|1, 0)− E(bi|0, 1)

E(ai|1, 0)− E(ai|0, 1)
+
E(bi|0, 1)E(ai|1, 0)− E(bi|1, 0)E(ai|0, 1)

E(ai|1, 0)− E(ai|0, 1)

+ π11(E(ai + bi|1, 1)
E(bi|1, 0)− E(bi|0, 1)

E(ai + bi|1, 0)− E(ai + bi|0, 1)

+
E(bi|0, 1)E(ai + bi|1, 0)− E(bi|1, 0)E(ai + bi|0, 1)

E(ai + bi|1, 0)− E(ai + bi|0, 1)
)

Using α?1 = E(ai|1,0)−E(ai|0,1)
E(bi|1,0)−E(bi|0,1)

and α?0 = E(ai|0, 1)− α?1E(bi|0, 1) we can rewrite:

β = π10E(bi|1, 0) + π01E(bi|0, 1)

+ π00
E(ai|0, 0)− α?0

α?1

+ π11
E(ai + bi|1, 1)− α?0

α?1 + 1

Similarly for expected returns for the population of stayers, which in Suri (2011) are

given by:

ATE?
00 = β + φE(θi|0, 0) = β + φλ0

ATE?
11 = β + φE(θi|1, 1) = β + φ(λ0 + λ1 + λ2 + λ3)
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Under the CRC model, we have:

ATE?
00 = γ1 − (1 + φ)λ0

= E(bi|1, 0)
E(ai|0, 0)− E(ai|0, 1)

E(ai|1, 0)− E(ai|0, 1)
+ E(bi|0, 1)

E(ai|1, 0)− E(ai|0, 0)

E(ai|1, 0)− E(ai|0, 1)

and:

ATE?
11 = γ1 − (1 + φ)(λ0 + λ1 + λ2 + λ3)

= E(bi|1, 0)
E(ai + bi|1, 1)− E(ai + bi|0, 1)

E(ai + bi|1, 0)− E(ai + bi|0, 1)

+ E(bi|0, 1)
E(ai + bi|1, 0)− E(ai + bi|1, 1)

E(ai + bi|1, 0)− E(ai + bi|0, 1)

Using α?1 = E(ai|1,0)−E(ai|0,1)
E(bi|1,0)−E(bi|0,1)

and α?0 = E(ai|0, 1)− α1E(bi|0, 1) we can rewrite:

ATE?
00 =

E(ai|0, 0)− α?0
α?1

ATE?
11 =

E(ai + bi|1, 1)− α?0
α?1 + 1

Therefore we see that the method used in Suri (2011) corresponds to the extrapolation

represented in Figure 1 of the main text.

C Comparison of the Extrapolation Identifying Assump-

tion with Generalized Roy Models

In this section we briefly compare generalized Roy models with the set of conditions (2.12)

and (2.13) considered in the main text as sufficient for the extrapolation identifying assump-

tion (2.11) to hold. We take as an example the model outlined in p. 365-366 of Carneiro

et al. (2003), abstracting from observed covariates or instrumental variables, which can be
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written as:

y(0) = β0,0 + β1,0θ + ε0, y(1) = β0,1 + β1,1θ + ε1,

x = 1[β0,s + β1,sθ + εs ≥ 0], {ε0, ε1, εs} ⊥ θ

where variables in bold denote random variables, y(1) and y(0) are potential outcomes

with and without treatment, x is treatment status, θ is an unobserved common factor, and

ε0, ε1, εs are unobserved shocks to outcomes and selection into treatment.

We can define a = β0,0+β1,0θ+ε0, b = β0,1−β0,0+(β1,1−β1,0)θ, so that if β1,1−β1,0 6= 0 we

have a = β0,0− β1,0
β1,1−β1,0 (β0,1−β0,0) + β1,0

β1,1−β1,0 b+ε0 and (2.12) holds. With these definitions,

(2.13) also holds by defining c = εs and from the assumption that εs is independent of θ.

With generalized Roy models, observing instrumental variables that satisfy exogeneity and

relevance conditions, observing proxies for the unobserved common factor θ, or observing

several independent measurements of θ, would yield identification of ATE (see also Cunha

et al. (2005), Abbring and Heckman (2007)), while here the restrictions imposed by the CRC

model (2.4) yield identification, as discussed in the main text.

D CRC Model with Time-Varying Treatment Effects

In this section we discuss CRC models with time varying treatment effects. For simplicity

we consider the case where there are no additional control covariates here, so that the model

is given by:

yit = ai + bitxit + ft + uit, E(uit|X) = 0 (D.1)

Without additional restrictions on treatment effects, bit, identification of differences in

time effects relies on average changes in outcomes for a cross-sectional observation across

pairs of time periods when she was untreated only (whereas with the CRC model with time-
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constant treatment effects considered in the main text, pairs of time periods with the same

treatment status - both treated and untreated - can be used to identify changes in time

effects):

ft − fs = E(yit − yis|xit = 0, xis = 0) (D.2)

ATE for movers who are currently treated can then be identified by difference-in-differences

comparisons:

E(bit|xit = 1, xis = 0) = E(yit − yis − (ft − fs)|xit = 1, xis = 0) (D.3)

As in the main text, we can apply the normalization f1 = 0 to shorten notation. Then

average baseline heterogeneity is identified for movers and untreated stayers, and average

total heterogeneity at each time period is identified for treated movers and stayers:

E(ai|xit = 1, xis = 0) = E(yis − fs|xit = 1, xis = 0)

E(ai + bit|xit = 1, xis = 0) = E(yit − ft|xit = 1, xis = 0)

E(ai|maxs=1,...,Txis = 0) = E(yit − ft|maxs=1,...,Txis = 0)

E(ai + bit|mins=1,...,Txis = 1) = E(yit − ft|mins=1,...,Txis = 1)

Under the CRC model with time varying random coefficients (D.1), ATE for movers

who are currently untreated or for stayers are not identified. In order to extrapolate from

the quantities identified by the CRC model (D.1) to ATE for stayers or for movers who are

currently untreated, we can assume that a single term of unobserved heterogeneity determines

baseline heterogeneity, treatment effects at each time period, and treatment status:

ai = β0,a + β1,aei + νa,i, E(νa,i|ei) = 0 (D.4)

bit = β0,t + β1,tei + νt,i, E(νt,i|ei) = 0 ∀ t (D.5)

xit = g(ei, cit) ∀ t, {ci1, ..., ciT} ⊥ {ei, νa,i, νt,i ∀ t} (D.6)
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Conditions (D.4) and (D.5) impose that a particular characteristic ei determines both

baseline heterogeneity ai and treatment effects bit, but the effect of ei on treatment effect may

vary over time. Condition (D.6) imposes that treatment effects bit themselves do not enter

the determination of treatment status, rather that this determination is based on ei only.

Intuitively this last restriction most likely implies that the shocks νt,i to treatment effect bit

are unknown and unpredictable at the time of determination of treatment status, so that

the main advantage of this extrapolation with time-varying treatment effects compared to

the extrapolation discussed in the main text with time-constant treatment effects is that

the effect of the one-dimensional term of unobserved heterogeneity ei on treatment effect bit,

β1,t, is allowed to vary over time.

Under (D.4)-(D.6), we obtain:

ai = α0,t + α1,tbit + εit, E(εit|xi1, ..., xiT ) = 0 (D.7)

where we define α0,t = β0,a − β0,t
β1,t

and α1,t = β1,a
β1,t

, which are well-defined if β1,t 6= 0.

Under the CRC model with time-varying random coefficients (D.1) and the new extrap-

olation identifying assumption (D.7), the second step of our estimation procedure can still

take the form of an instrumental variable regression of âi on b̂it using treatment status his-

tory {xi1, ..., xiT} as instrumental variables, but the estimation sample is now restricted to

include only movers who are treated at time t. Because of this restriction in the sample that

can be used for the second-step estimation, one must observe at least three time periods to

observe several groups of movers who are treated at time t and be able to implement this

estimation procedure. For instance with T = 2, the only group of movers treated at time

t = 1 has treatment status history profile x = (1, 0). With T = 3, movers treated at time

t = 1 correspond to treatment status history profiles x ∈ {(1, 0, 0), (1, 1, 0), (1, 0, 1)}.
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ATE for untreated movers and stayers can then be identified from:

E(bit|x) =
E(ai|x)− α0,t

α1,t

=
E(ai + bit|x)− α0,t

1 + α1,t

(D.8)

if α1,t /∈ {−1, 0}.

In practice, since identification relies on smaller groups of movers, the implementation

of this approach may lead to estimation results that are significantly more imprecise than

the results obtained when treatment effects are assumed to be time constant. In addition,

the conditions (D.4)-(D.6) that lead to the extrapolation identifying assumption (D.7) are

restrictive, even though we can note that they encompass the case when treatment effects

are constant over time since we could then define ei = bi and νt,i = 0.

In some applications, accounting for dynamic treatment effects, i.e. allowing for past

treatment status to affect current treatment effect, is an important feature of the models

used. This could be accommodated here by explicitly using an extrapolation identifying

assumption that allows, for instance, the most recent treatment status to affect current

treatment effect:

bit = β0,t + β1,tei + β2xit−1 + β3xit−1ei + νt,i, E(νt,i|ei) = 0 ∀ t (D.9)

so that the difference in treatment effect at the time of the first exposure to treatment and

one time period later is given by β2 + β3ei.

Under (D.4), (D.6), and (D.9) we obtain the extrapolation identifying assumption:

ai = α0,t + α1,t(xit−1)bi,t + α2,t(xit−1) (D.10)

where α1,t(xit−1) = β1,a
β1,t+β3xit−1

and α2,t(xit−1) = − β1,aβ2
β1,t+β3xit−1

.

The parameters in this extrapolation identifying assumption can be estimated by an

instrumental variable regression by conditioning on both possible values of xit−1 ∈ {0, 1},
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which will generally require than one additional time period be observed. For instance,

suppose one is interested in estimating ATE at time t = 2. With T = 3, the treatment

history profiles corresponding to movers that are treated at time t = 2 are given by:

(x1, x2, x3) = (0, 1, 1),(0, 1, 0), (1, 1, 0)

from which we see that the extrapolation identifying assumption (D.10) would not be iden-

tified for cross-sectional observations who were treated at time t = 1 (i.e. with xi1 = 1).

With T = 4, the treatment history profiles corresponding to movers that are treated at time

t = 2 and were also treated at time t = 1 are given by:

(x1, x2,x3, x4) = (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0) (D.11)

so that the extrapolation identifying assumption (D.10) would be identified as long as these

three groups of movers have different average treatment effects.

Given identification of the parameters entering (D.10), extrapolation to movers who are

currently untreated or to stayers can be performed as before. For instance the ATE for

untreated stayers at time tat the first exposure to treatment is given by:

ATEt,0 =
E(a1|maxs=1,...,Txis = 0)− α0,t − α2,t(0)

α1,t(0)
(D.12)

while the ATE for untreated stayers at time t after the first exposure to treatment is given

by:

ATEt,1 =
E(a1|maxs=1,...,Txis = 0)− α0,t − α2,t(1)

α1,t(1)
(D.13)

There are alternative approaches that could be used for extrapolation with the CRC

model with time-varying treatment effects that could be used in particular applications, but

we leave this question for later work.

From the discussion above, we see that the data requirements are significantly greater
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with the models discussed in this section than with the models discussed in the main text.

Not only more time periods need to be observed for identification, but identification of time

effects in the CRC model and of the parameters in the extrapolation identifying assumption

is obtained from much narrower subgroups of cross-sectional observations than in the main

text. In practice this will imply that estimation results will be significantly more noisy than

using the methods developed in the main text, and will require researchers to have access to

larger datasets than what is used in the empirical application of the main text. It would be

interesting to consider the extensions sketched in this section in more details in future work

in applications that are more amenable to these methods.

E Estimation and Inference with the Simple Extrapo-

lation Identifying Assumption

In this section we discuss the details of estimation for models of the form:

yit = ai + bixit + zitγ + uit, E(uit|Xi, Zi) = 0 (E.1)

ai = α0 + α1bi + εi, E(εi|Xi) = 0 (E.2)

where Xi =


xi1

...

xiT

, Zi =


zi1

...

ziT

, and zit is a vector of control covariates.

Setting zit to be a set of indicator variables for each time period other than the first time

period, i.e. zit = [1[t = s]]s=2,...,T , yields the special case:

yit = ai + bixit + ft + uit, E(uit|Xi) = 0

which is the CRC model considered in the main text, where only time effects are included

as control covariates and where the normalization f1 = 0 has been applied.
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In general zit is a vector of controls that can include random variables. For notational

simplicity we consider the case where zit is a scalar variable below, as all results extend in a

straightforward way to multiple control covariates.

We observe cross-sectional observations i = 1, ..., n over time periods t = 1, ..., T . Through-

out this appendix, we use an asymptotic framework where n is large and T is small. We also

assume that observations are cross-sectionally independent for simplicity, all results extend

in a straightforward way to many independent clusters as in the empirical application.

Assumption 7. Observations are cross-sectionally independent.

Note that Assumption 7 is implied by Assumption 1 in the main text.

Stacking observations over time, we obtain:

Yi = Wi

ai
bi

+ Ziγ + Ui, E(Ui|Wi, Zi) = 0 (E.3)

where Yi =


yi1

...

yiT

, Wi =


wi1

...

wiT

, Ui =


ui1

...

uiT

, and wit = [1, xit].

The estimation method we discuss in this section is decomposed into two steps. The

first step yields consistent estimates of the homogenous coefficients γ and noisy estimates

of treatment effect bi and baseline heterogeneity ai for cross-sectional units that are movers,

noisy estimates of baseline heterogeneity ai for untreated stayers, noisy estimates of total

heterogeneity ai + bi for treated stayers. The second step yields consistent estimates of α0,

α1, and noisy estimates of the values of {ai, bi}i=1,...,n that were missing from the first step,

i.e. corresponding to untreated and treated stayers. We show that averaging the resulting

noisy estimates of treatment effect bi across the entire population or large groups of stayers

or movers yields consistent estimators of ATE.
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E.1 Step 1: High-dimensional regression

The first step of our estimation procedure regresses yit on zit, indicator variables for each

cross-sectional observation, and indicator variables for each cross-sectional observation in-

teracted with xit. By the Frisch-Waugh theorem, the resulting estimates are given by:

γ̂ = γ + (
n∑
i=1

Z
′

iMWi
Zi)
−1

n∑
i=1

Z
′

iMWi
Uiâi

b̂i

 =

ai
bi

+ (W
′

iWi)
−W

′

i (Ui − Zi(γ̂ − γ))

where MWi
= IT − Wi(W

′
iWi)

−W
′
i and (W

′
iWi)

− is the generalized inverse obtained by

omitting the interaction of the indicator variable corresponding to a particular cross-sectional

observation with treatment status xit when this cross-sectional observation is a stayer, i.e.

when there is no variation in xit over time across observations corresponding to this cross-

sectional observation.

The next assumption imposes restrictions on moments of the data.

Assumption 8.

a) The support of ai, bi, zit, uit is compact.

For constants C and c > 0:

b) 1
n

∑n
i=1 P (xit = xis ∀ t, s) ≥ c ∀n ≥ C.

c) 1
n

∑n
i=1E(Z

′
iMWi

Zi) ≥ c ∀n ≥ C.

d) 1
n
V ar(

∑
i=1,...,n:xit=xis ∀ t,s Z

′
iMWi

Ui) ≥ c ∀n ≥ C.

Assumption 8.a is standard and imposed in this form for simplicity. It could easily be

relaxed to higher moments of the random variables ai, bi, zit, uit being uniformly bounded.

Assumption 8.b imposes that we observe a non-vanishing share of stayers in the data. As-

sumptions 8.c and 8.d impose that there is variation in covariates zit and transitory shocks

uit over time. For instance zit and uit may not be time constant.
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Assumption 8.d requires that there be variation in covariates zit and transitory shocks uit

over time among observations that are stayers instead of among all cross-sectional observa-

tions. This additional regularity condition is imposed for simplicity as it guarantees that the

first-step estimator discussed in this section is not approximately linearly dependent of the

part of the influence function of the second-step estimator which does not depend on the first-

step estimator, which guarantees that the second-step estimator is at most
√
n-consistent,

i.e. is not super consistent.

Note that Assumption 8 is implied by Assumptions 1 and 2 in the main text for the

special case where T = 2 and zit = 1[t = 2].

Under the CRC model and Assumptions 7 and 8, the first step of our estimation procedure

yields consistent estimates of the homogenous coefficients γ and noisy estimates of the two

terms of unobserved heterogeneity ai and bi with estimation noise that can be decomposed

into a part which vanishes as sample size increases and a part which is unrelated to sample

size.

Proposition 4. Under (E.1) and Assumptions 7 and 8, as n→∞ while T remains fixed:

V
− 1

2
n,γ,0An,γ,0

√
n(γ̂ − γ)

d→ N(0, IK) (E.4)

where An,γ,0 = 1
n

∑n
i=1E(Z

′
iMWi

Zi), Vn,γ,0 = 1
n

∑n
i=1 V ar(Z

′
iMWi

Ui).

For i = 1, ..., n such that ∃ t, s s.t. xit 6= xis, we have:

âi
b̂i

−
ai
bi

 = (W
′

iWi)
−1W

′

iUi − (W
′

iWi)
−1W

′

iZiA
−1
n,γ,0

1√
n
ζab,n + ei,n

where ζab,n = 1√
n

∑n
i=1 Z

′
iMWi

Ui = Op(1) and maxi=1,...,n|ei,n| = op(
1√
n
).

For i = 1, ..., n such that xit = 0 ∀ t, we have:

âi − ai =
1

T

T∑
t=1

uit −
1

T

T∑
t=1

zitA
−1
n,γ,0

1√
n
ζab,n + ei,n (E.5)
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For i = 1, ..., n such that xit = 1 ∀ t, we have:

âi + b̂i − ai − bi =
1

T

T∑
t=1

uit −
1

T

T∑
t=1

zitA
−1
n,γ,0

1√
n
ζab,n + ei,n (E.6)

Proposition 4 shows that the estimator for γ is
√
n-consistent and asymptotically normal.

It also shows that the estimation noise of the heterogeneity terms ai and bi is decomposed

into idiosyncratic noise that would arise even if γ were known and vanishing noise originating

from the estimation of γ which is dominated by a term of order 1√
n
.

Note that Proposition 1 in the main text is obtained as a special case of Proposition 4.

E.2 Step 2: Instrumental Variable Regression and Extrapolation

In a second step, we consider estimation of the parameters α0 and α1 in the linear extrap-

olation to ATE for stayers by generalized method of moments (GMM) estimation of the

coefficients in an instrumental variable regression using noisy estimates of ai (âi) as the de-

pendent variable, noisy estimates of bi (b̂i) as the explanatory variable, and treatment history

Xi as instrumental variables.

Let Mn be the subset of cross-sectional observations that are movers, i.e.

Mn = {i = 1, ..., n : ∃ t, s s.t. xit 6= xis} (E.7)

Define S ⊆ {1, ..., T} to be one of the largest subsets of time periods such that the

variables {xit}t∈S are linearly independent among observations corresponding to movers in

the data. When only two time periods are observed, i.e. T = 2, we have S = {1} or

S = {2} since xi1 = 1 − xi2 among movers. In general when T > 2 and if there are

treated and untreated observations in all time periods, the entire vector of treatment status

history Xi will be included in the list of instrumental variables, i.e. S = {1, ..., T}. Define
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X̃i =

 1

[xit]t∈S

 to be the elements of the vector of treatment status history that are linearly

independent among movers augmented with a constant.

The estimator for α0 and α1 in the extrapolation identifying assumption (E.2) that we

consider in this section is:α̂0

α̂1

 = (B
′

nΣ−1
n Bn)−1B

′

nΣ−1
n

1

n

∑
i∈Mn

X̃iâi

Bn =
1

n

∑
i∈Mn

X̃i[1, b̂i]

Σn =
1

n

∑
i∈Mn

ε̃2i X̃iX̃
′

i

where ε̃i are first-stage residuals obtained by a two-stage least squares regression of âi on b̂i

using X̃i as instrumental variables.3

As in the main text, given estimates of the parameters α0 and α1, we obtain estimates

of ATE for stayers, ATES,0 =
∑

i=1,...,n E(1[xit=0∀ t]bi)∑
i=1,...,n P (xit=0∀ t) and ATES,1 =

∑
i=1,...,n E(1[xit=1∀ t]bi)∑

i=1,...,n P (xit=1∀ t) , by a

3Note that in this section we could have considered a two-stage least squares regression only instead of
GMM estimation, i.e. we could have chosen Σn = 1

n

∑n
i=1 X̃iX̃

′

i . This would also lead to a consistent and
asymptotically normal estimator. We consider GMM estimation for a potential efficiency gain because of
the heteroscedasticity in âi − α0 − α1b̂i conditional on Xi that is likely to exist because of measurement
error. Indeed heteroscedasticity is likely to appear in the non-vanishing part of the estimation noise in the
estimates âi and b̂i: Even if V ar(εi|Xi) = σ2

ε , V ar(Ui|Xi) = σ2
uIT , and Cov(εi, Ui|Xi) = 0, we have:

V ar(εi + [1,−α1](W
′

iWi)
−1W

′

iUi|Xi) = σ2
ε + σ2

u[1,−α1](W
′

iWi)
−1
[

1
−α1

]
6= V ar(εi + [1,−α1](W

′

iWi)
−1W

′

iUi|i ∈Mn)

in general.
In addition GMM estimation extends easily to estimating and performing statistical inference on additional

parameters such as ATE among different subpopulations, to accounting for cross-sectional dependence when
computing the weighting matrix, and to accommodating unbalanced panel data originating from missing
data. We encounter these three issues in our empirical application.

Note also that one could use interactions between elements of Xi to obtain additional valid moment
functions. We only consider moment functions obtained by using linear terms for simplicity here and to
avoid the proliferation of moment conditions. See for instance Newey and Windmeijer (2009) for a discussion
of issues that arise with GMM estimation and many moment conditions.
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simple plug-in using the derivations in the main text:

ˆATES,0 =
āS,0 − α̂0

α̂1

, ˆATES,1 =
āS,1 − α̂0

1 + α̂1

āS,0 =

∑
i:xit=0∀ t âi

|{i : xit = 0∀ t}|
āS,1 =

∑
i:xit=1∀ t âi

|{i : xit = 1∀ t}|

Define

Bn,0 =
1

n

∑
i∈Mn

E(X̃i[1, bi])

ri = εi + [1,−α1](W
′

iWi)
−1W

′

iUi

Σn,0 =
1

n

∑
i∈Mn

E(r2
i X̃iX̃

′

i)

Define α̃0 and α̃1 to be the two-stage least squares regression estimators of α0 and α1

obtained by regressing âi on a constant and b̂i using X̃i as instrumental variables.

Define λmin to be the minimum eigenvalue of a matrix.

Assumption 9. For constants C and c > 0:

a) λmin(Σn,0) ≥ c, ∀n ≥ C.

b) λmin(B
′
n,0Σ−1

n,0Bn,0) ≥ c, ∀n ≥ C.

c) α̃0
p→ α0 and α̃1

p→ α1 as n→∞ while T remains fixed.

d) 1
n
V ar(

∑
i=1,...,n:xit=0∀ t(ai+

1
T

∑T
t=1 uit)|

∑n
i=1 Z

′
iMWi

Ui) ≥ c and 1
n
V ar(

∑
i=1,...,n:xit=1∀ t(ai+

bi + 1
T

∑T
t=1 uit)|

∑n
i=1 Z

′
iMWi

Ui) ≥ c a.s., ∀n ≥ C.

Assumption 9.a requires that there be variation in Xi among observations that correspond

to movers. For instance with two time periods, i.e. T = 2, Assumption 9.a would be obtained

by imposing i) V ar(vi|Xi) ≥ c > 0 ∀ i = 1, ..., n, ∀n and ii) 0 < c ≤ P (xi1 = 0, xi2 = 1) ≤

1 − c and 0 < c ≤ P (xi1 = 1, xi2 = 0) ≤ 1 − c ∀ i = 1, ..., n, ∀n. The first condition is

standard and requires that the error terms of the CRC model uit and of the extrapolation

identifying assumption have positive variance, so that the resulting model is not degenerate.
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The second condition guarantees that two different profiles of movers are represented by

non-vanishing fractions of the data (in large samples), so that there is variation in xi1 (or

xi2) among observations that are movers.

Assumption 9.b requires that the variation in Xi among observations that correspond to

movers be predictive of treatment effect bi. For instance with two time periods Assumption

9.b would be obtained by |
∑

i=1,...,n E(1[(xi1,xi2)=(0,1)]bi)∑
i=1,...,n P ((xi1,xi2)=(0,1))

−
∑

i=1,...,n E(1[(xi1,xi2)=(1,0)]bi)∑
i=1,...,n P ((xi1,xi2)=(1,0))

| ≥ c > 0

∀n ≥ C.

Assumption 9.c requires that the two-stage least squares estimators of α0 and α1 be

consistent. This is imposed for convenience only since convergence in probability of the

two-stage least squares estimators of α0 and α1 can be derived from primitive conditions as

in the proof of Proposition 5 below.

Assumption 9.d is a regularity condition which guarantees that the estimator for ATE is

at most
√
n-consistent, i.e. is not super consistent. It requires that there be no approximately

exact dependence between the terms of unobserved heterogeneity ai and ai+bi and the error

term of the CRC model uit. This condition for the case xit = 0 ∀ t would be obtained

if we assume that i) ai is independent of {uit}t=1,...,T conditional on Zi and Wi and that

ii) V ar( 1
T

∑T
t=1 uit|{uis −

1
T

∑T
t=1 uit}s=1,...,T , Zi, xit = 0 ∀ t) ≥ c. These are both natural

conditions requiring that the idiosyncratic shocks to outcomes uit be independent of baseline

heterogeneity ai and that the error term in the CRC model uit not be degenerate. Similarly

this condition for the case xit = 1 ∀ t would be obtained if we assume that i) ai + bi is

independent of {uit}t=1,...,T conditional on Zi and Wi and that ii) V ar( 1
T

∑T
t=1 uit|{uis −

1
T

∑T
t=1 uit}s=1,...,T , Zi, xit = 1∀ t) ≥ c.

Note that Assumption 9.a, 9.b, and 9.d are implied by Assumptions 1-3 in the main

text and Assumption 9.c is irrelevant with two time periods since the moment conditions

E(X̃i(âi − α0 − α1b̂i)) ' 0 are exactly identifying for the parameters α0 and α1 in this case.

To state Proposition , we define deterministic matrices which will determine the asymp-
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totic distribution of our second-step estimators

α̂0

α̂1

:

Vn,αγ,0 =
1

n

∑
i∈Mn

E(riX̃iU
′

iMWi
Zi) Cn,0 =

1

n

∑
i∈Mn

E(X̃i[1,−α1](W
′

iWi)
−1W

′

iZi)

An,1,0 = (B
′

n,0Σ−1
n,0Bn,0)−1B

′

n,0Σ−1
n,0 An,2,0 = (B

′

n,0Σ−1
n,0Bn,0)−1B

′

n,0Σ−1
n,0Cn,0A

−1
n,γ,0

Ωn,0 =

 Σn,0 Vn,αγ,0

V
′
n,αγ,0 Vn,γ,0

 Vn,0 = [An,1,0, An,2,0]Ωn,0

A′n,1,0
A
′
n,2,0


We define deterministic matrices which will determine the asymptotic distribution of our

second-step estimators ˆATES,0:

ãi = ai +
1

T

T∑
t=1

uit − E(ai),

An,ATES,0,γ,0 = − 1

α1

1
n

∑
i=1,...,nE(1[xit = 0∀ t] 1

T

∑T
t=1 zit)

1
n

∑
i=1,...,n P (xit = 0∀ t)

A−1
n,γ,0,

An,ATES,0,α,γ,0 = [
1

α1

,
ATES,0
α1

](B
′

n,0Σ−1
n,0Bn,0)−1B

′

n,0Σ−1
n,0Cn,0A

−1
n,γ,0

An,ATES,0,α,r,0 = −[
1

α1

,
ATES,0
α1

](B
′

n,0Σ−1
n,0Bn,0)−1B

′

n,0Σ−1
n,0

An,ATES,0,0 = [
1

α1

, An,ATES,0,γ,0 + An,ATES,0,α,γ,0, An,ATES,0,α,r,0]

ΩATES,0,0 = V ar(
√
n


1
n

∑
i=1,...,n 1[xit=0∀t]ãi

1
n

∑
i=1,...,n P (xit=0∀ t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

)

Vn,ATEs,0,0 = An,ATES,0,0ΩATES,0,0A
′

n,ATES,0,0

We define deterministic matrices which will determine the asymptotic distribution of our
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second-step estimators ˆATES,1:

˜a+ bi = ai + bi +
1

T

T∑
t=1

uit − E(ai + bi)

An,ATES,1,γ,0 = − 1

1 + α1

1
n

∑
i=1,...,nE(1[xit = 1∀ t] 1

T

∑T
t=1 zit)

1
n

∑
i=1,...,n P (xit = 1∀ t)

A−1
n,γ,0,

An,ATES,1,α,γ,0 = [
1

1 + α1

,
ATES,1
1 + α1

](B
′

n,0Σ−1
n,0Bn,0)−1B

′

n,0Σ−1
n,0Cn,0A

−1
n,γ,0

An,ATES,1,α,r,0 = −[
1

1 + α1

,
ATES,1
1 + α1

](B
′

n,0Σ−1
n,0Bn,0)−1B

′

n,0Σ−1
n,0

An,ATES,1,0 = [
1

1 + α1

, An,ATES,1,γ,0 + An,ATES,1,α,γ,0, An,ATES,1,α,r,0]

ΩATES,1,0 = V ar(
√
n


1
n

∑
i=1,...,n 1[xit=1∀t] ˜a+bi

1
n

∑
i=1,...,n P (xit=1∀ t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

)

Vn,ATEs,1,0 = An,ATES,1,0ΩATES,1,0A
′

n,ATES,1,0

Proposition 5. Under (E.1), (E.2), and Assumptions 7-9, as n → ∞ while T remains

fixed:

√
n(

α̂0

α̂1

−
α0

α1

) = (B
′

n,0Σ−1
n,0Bn,0)−1B

′

n,0Σ−1
n,0

1√
n

∑
i∈Mn

X̃iri

− (B
′

n,0Σ−1
n,0Bn,0)−1B

′

n,0Σ−1
n,0Cn,0A

−1
n,γ,0

1√
n

n∑
i=1

Z
′

iMWi
Ui + op(1)

and:

V
− 1

2
n,0

√
n(

α̂0

α̂1

−
α0

α1

)
d→ N(0, I2) (E.8)
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If in addition α1 /∈ {0,−1}, then we have:

√
n( ˆATES,0 − ATES,0) = An,ATEs,0,0

√
n


1
n

∑
i=1,...,n 1[xit=0∀t]ãi

1
n

∑
i=1,...,n P (xit=0∀ t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

+ op(1)

√
n( ˆATES,1 − ATES,1) = An,ATEs,1,0

√
n


1
n

∑
i=1,...,n 1[xit=1∀t]ãi

1
n

∑
i=1,...,n P (xit=1∀ t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

+ op(1)

and:

V
− 1

2
n,ATEs,0,0

√
n( ˆATES,0 − ATES,0)

d→ N(0, 1)

V
− 1

2
n,ATEs,1,0

√
n( ˆATES,1 − ATES,1)

d→ N(0, 1)

Note that Proposition 2 in the main text is obtained as a special case of Proposition 5.

Proposition 5 shows that the estimators

α̂0

α̂1

, ˆATES,1, and ˆATES,0 adopt a linear

influence function asymptotic representation, so that inference by cluster bootstrap, with

clusters given by cross-sectional units, would be asymptotically valid (see e.g. Mammen

(1992)). Alternatively, one can use the analytical formula for asymptotic variance to obtain

consistent estimated variance-covariance matrix using cluster robust standard errors for two-

step estimation, with clusters given by cross-sectional units.

For simplicity the next proposition shows that these standard errors are consistent and

lead to asymptotically valid inference for the estimator

α̂0

α̂1

 only, since the same result can

be obtained for the estimators ˆATES,1 and ˆATES,0.

Proposition 6. Define Cn = 1
n

∑
i∈Mn

X̃i[1,−α̂1](W
′
iWi)

−1W
′
iZi, r̂i = âi − α̂0 − α̂1b̂i, and

Ûi = Yi−Ziγ̂. Define Σn = 1
n

∑
i∈Mn

r̂2
i X̃iX̃

′
i , Σn,γ = 1

n

∑
i=1,...,n Z

′
iMWi

ÛiÛ
′
iMWi

Zi, Σn,αγ =
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1
n

∑
i∈Mn

r̂iX̃iÛ
′
iMWi

Zi. Define An,1 = (B
′
nΣ−1

n Bn)−1B
′
nΣ−1

n , An,2 = (B
′
nΣ−1

n Bn)−1B
′
nΣ−1

n CnA
−1
n ,

Ωn =

 Σn Σn,αγ

Σ
′
n,αγ Σn,γ

, Vn = [An,1, An,2]Ωn

A′n,1
A
′
n,2

.

Under (E.1), (E.2), and Assumptions 7-9, as n→∞ while T remains fixed:

V
− 1

2
n

√
n(

α̂0

α̂1

−
α0

α1

)
d→ N(0, I2) (E.9)

Since the matrices used in Proposition 6 are stored by standard statistical software,

variance-covariance matrices using the formula given by Proposition 6 are straightforward

to compute.

Additionally, note that all estimators above can be computed as the solution to exactly

identifying moment conditions:

n∑
i=1

Z
′

iMWi
(Yi − Ziγ̂) = 0

B
′

nΣ−1
n

∑
i∈Mn

X̃i([1,−α̂1](W
′

iWi)
−1W

′

i (Yi − Ziγ̂)− α̂0) = 0

∑
i:xit=0∀ t

(
1
T

∑T
t=1(yit − zitγ̂)− α̂0

α̂1

− ˆATES,0) = 0

∑
i:xit=1∀ t

(
1
T

∑T
t=1(yit − zitγ̂)− α̂0

1 + α̂1

− ˆATES,1) = 0

so that, instead of using the formulae from Proposition 6 to compute standard errors, analyt-

ical standard errors can also be obtained directly using any command capable of numerical

differentiation in standard statistical software.
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E.3 Testing the Validity of the Extrapolation

E.3.1 Lack of testable implications with two time periods

As discussed in the main text, under the CRC model (??) and with two time periods, the

extrapolation identifying assumption (??) is equivalent to introducing identities for four pa-

rameters that were left unrestricted by the CRC model, so that the extrapolation identifying

assumption does not contain testable implications under the CRC model.

We can see this directly by considering the CRC model:

yit = ai + bixit + ft + uit, E(uit|xi1, xi2) = 0

and defining α?1 = E(ai|0,1)−E(ai|1,0)
E(bi|0,1)−E(bi|1,0)

and α?0 = E(ai|0, 1)−α?1E(bi|0, 1) if E(bi|0, 1) 6= E(bi|1, 0).

For i such that xi1 6= xi2, define ãi = ai and b̃i = bi. For i such that xi1 = 0 and xi2 = 0,

define b̃i =
ai−α?

0

α?
1

if α?1 6= 0. For i such that xi1 = 1 and xi2 = 1, define b̃i =
ai+bi−α?

0

1+α?
1

and

ãi = α?0 + α?1b̃i if α?1 6= −1.

Then we can write:

yit = ãi + b̃ixit + uit, E(uit|xi1, xi2) = 0

and

α̃i = α?0 + α?1b̃i + ξ̃i, E(ξ̃i|xi1, xi2) = 0

since ξ̃i = 0 when xi1 = xi2 and E(ξ̃i|xi1, xi2) = 0 when xi1 6= xi2.

E.3.2 Testing with three or more time periods

The extrapolation identifying assumption (E.2) implies that

E(ai − α0 − α1bi|Xi) = 0 (E.10)
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Here we propose testing an implication of this assumption, namely LP (ai−α0−α1bi|Xi, i ∈

Mn) = 0, where LP is the linear projection operator, and recall that Mn is the subset of

cross-sectional observations that are movers. This condition is equivalently written:

E(ai − α0 − α1bi|i ∈Mn) = 0 (E.11)

E(xit(ai − α0 − α1bi)|i ∈Mn) = 0 ∀ t ∈ S (E.12)

where recall that S is one of the largest subsets of time periods such that the variables

{xit}t∈S are linearly independent among observations corresponding to movers in the data.

When only two time periods are observed, i.e. T = 2, we have S = {1} or S = {2}, while in

general S = {1, ..., T} when T ≥ 3.

With a very large number of cross-sectional observations, testing (E.10) directly would

generally yield a test with larger power, similarly as in the previous section where using

interactions of the elements of Xi would lead to more moment conditions and to a more

efficient estimator in general when a large number of cross-sectional observations is available.

However with more modest sample sizes, it is possible that some values of Xi correspond

to relatively few cross-sectional observations, leading to a “small cell” problem, i.e. it is

possible that E(ai − α0 − α1bi|Xi) can only be estimated imprecisely for some values of Xi.

This could lead to size distortions in small samples. We propose a more parsimonious test

based on (E.11) and (E.12) instead.

This test is straightforward given the discussion in the previous section as long as three or

more time periods are observed. We simply add |S|+1 exactly identified moment conditions:

E(1[i ∈Mn]([1,−α1](W
′

iWi)
−1W

′

i (Yi − Ziγ)− α0)− η0) = 0

E(1[i ∈Mn]xit([1,−α1](W
′

iWi)
−1W

′

i (Yi − Ziγ)− α0)− ηt) = 0 ∀ t ∈ S

and test the null hypothesis H0 : η0 = 0, ηt = 0∀ t ∈ S using a Wald test with critical values

from a chi-squared distribution with |S| − 1 degrees of freedom. Note that when T = 2,
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|S| = 1 so that this test cannot be performed, as discussed in the main text and above.

Estimated variances for this Wald test can be obtained by cluster bootstrap, or using an-

alytical formulae as in Proposition 6, or by solving for exactly identifying moment conditions

using any command capable of numerical differentiation in standard statistical software.

This is an over-identification test similar to the Sargan-Hansen J-test discussed in Hansen

(1982) except that it accounts for the first-step estimation of the coefficients γ.

F Estimation and Inference with the Generalized Ex-

trapolation Identifying Assumption

In this section we discuss how to extend the estimation and testing methods discussed in the

previous section to the use of a generalized extrapolation where cost shifters shared by all

observations with the same value of indexing variable vi can be correlated with productivity

(ai, bi). The model considered in this section is given by:

yit = ai + bixit + zitγ + uit, E(uit|{Xj, Zj}j:vj=vi) = 0 (F.1)

ai = evi + α1bi + εi, E(εi|{Xj}j:vj=vi) = 0 (F.2)

where all variables are defined as in the previous section, and vi is a deterministic discrete

indexing variable.4 In our empirical example vi indexes farmer i’s village.

The same first-step estimator of γ is used as in the previous section. As before, it also

leads to noisy estimates of baseline heterogeneity and treatment effects, âi and b̂i, for movers,

noisy estimates of baseline heterogeneity for untreated stayers, and noisy estimates of total

heterogeneity for treated stayers.

4Note that here the exogeneity of covariates Xi and Zi in the CRC model (F.1) has been strengthened
to be strict across all observations with the same value of the indexing variable vi. This is because the
assumption of independence is relaxed below so that observations are only assumed to be independent
across different values of the indexing variable vi instead of being independent cross-sectionally. If the
assumption of cross-sectional independence held, the assumptions of exogeneity in (F.1) could be relaxed to
E(uit|Xi, Zi) = 0 as before.
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The coefficient α1 is then estimated by GMM estimation after demeaning the noisy

estimates of ai and bi obtained for movers in the first stage within the groups defined by

each value of the indexing variable vi:

äi = âi − āi, āi =
1

nvi

∑
j∈Mn,vj=vi

âj

b̈i = b̂i − b̄i, b̄i =
1

nvi

∑
j∈Mn,vj=vi

b̂j

where nv = |{i ∈ Mn : vi = v}|. In our empirical example, this amounts to demeaning

among movers within each village.

As before, define S to be one of the largest sets of time periods such that [xit]t∈S is a set

of linearly independent variables in the data among observations that correspond to movers,

in order to accommodate the case where T = 2. Redefine X̃i = [xit]t∈S to be as in the

previous section but without the constant. Then the estimator of α1 in this section is given

by:

α̂1 = (B̈
′

nΣ̈−1
n B̈n)−1B̈

′

nΣ̈−1
n

1

n

∑
i∈Mn

X̃iäi

B̈n =
1

n

∑
i∈Mn

X̃ib̈i

Σ̈n =
1

n

∑
i∈Mn,j∈Mn:vj=vi

ε̈iε̈jX̃iX̃
′

j

ε̈i = äi − α̃1b̈i

and α̃1 is the first-step estimator of α1 obtained by a fixed effects two-stage least squares

regression of âi on b̂i using X̃i as instrumental variable and with fixed effects indexed by vi.

Given this estimator of α1, we obtain a noisy estimator of the “fixed effect” term ev in
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the generalized extrapolation assumption (F.2):

êv =
1

nv

∑
i∈Mn:vi=v

(âi − α̂1b̂i) (F.3)

Estimators of ATE for stayers are then defined in this section by:

ˆATES,0 =
1

α̂1

∑
i:xit=0∀ t(âi − êvi)
|{i : xit = 0∀ t}|

, ˆATES,1 =
1

1 + α̂1

∑
i:xit=1 ∀ t(âi + b̂i − êvi)
|{i : xit = 1∀ t}|

Here we consider the case where there are few cross-sectional observations per value of the

indexing variable vi, so that the indexing variable vi takes many values. As discussed in the

main text, this corresponds to the data structure of our application where few farmers live in

each village. Considering the case where vi takes few values and where there are many cross-

sectional observations per value of vi is straightforward with cross-sectional independence or

limited forms of cross-sectional dependence.

With vi taking many values, Assumption 1 of cross-sectional independence can be relaxed

to independence across values of vi. Define Nv = |{i = 1, ..., n : vi = v}| to be the number

of cross-sectional observations with value v of the indexing variable vi.

Assumption 10. Observations are independent if they do not share the same value of the

indexing variable vi and the number of observations per group is uniformly bounded, i.e.

maxi=1,...,nNvi ≤ C ∀n for a constant C.

Note that Assumption 10 is implied by Assumption 4 in the main text.

Similarly as before, the new estimator of α1 defined above and the estimators of ATE for

stayers will be consistent and asymptotically normal if conditions hold on second moments
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of the data. Define:

ḃi = bi −
1

nvi

∑
j∈Mn,vj=vi

bj

B̈n,0 =
1

n

∑
i∈Mn

E(X̃iḃi)

ε̇i = εi −
1

nvi

∑
j∈Mn,vj=vi

εj

ṙi = ε̇i + [−1, α1]((W
′

iWi)
−W

′

iUi −
1

nvi

∑
j∈Mn,vj=vi

(W
′

jWj)
−W

′

jUj)

Σ̈n,0 =
1

n

∑
i∈Mn,j∈Mn:vj=vi

E(ṙiṙjX̃iX̃
′

j)

ẽvi =
1

nvi

∑
j∈Mn:vj=vi

(aj − α1bj)

ũi =
1

T

T∑
t=1

uit −
1

nvi

∑
j∈Mn:vj=vi

[1,−α1](W
′

jWj)
−W

′

jUj

Assumption 11. For constants C and c > 0:

a) λmin(Σ̈n,0) ≥ c ∀n ≥ C.

b) B̈
′
n,0Σ̈−1

n,0B̈n,0 ≥ c ∀n ≥ C.

c) α̃1
p→ α1 as n→∞ while T remains fixed.

d) λmin( 1
n
V ar(



∑n
i=1 Z

′
iMWi

Ui∑
i∈Mn

ṙi∑
i=1,...,n:xit=0∀ t(ai − ẽvi + ũi)∑

i=1,...,n:xit=1∀ t(ai + bi − ẽvi + ũi)


)) ≥ c ∀n ≥ C.

Assumption 11.a requires that there be within-group variation in Xi among movers since

we can rewrite Σ̈n,0 = 1
n

∑
i∈Mn,j∈Mn:vj=vi

E(rirjẊiẊ
′
j) where Ẋi = X̃i − 1

nvi

∑
j∈Mn,vj=vi

X̃j.

Define N to be the number of values taken by vi. Under Assumption 10, note that N

is of the same order as n. With two time periods, Assumption 11.a is implied by i)

V ar(ri|{Xj}j:vj=vi) ≥ c > 0 ∀ i = 1, ..., n, ∀n, ii) Cov(ri, rj|{Xi′}i′ :v
i
′=vi

) = 0 ∀ i = 1, ..., n,
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j 6= i s.t. vi = vj, ∀n and iii)

1

N

N∑
v=1

P (∃ i, j s.t. vi = vj = v, xi1 = 0, xi2 = 1, xj1 = 1, xj2 = 0) ≥ c > 0 ∀N (F.4)

As in the previous section, the first condition is fairly innocuous and simply requires that

the model composed of the CRC model (F.1) and the generalized extrapolation identifying

assumption (F.2) is not degenerate.

The second condition would be obtained by conditional cross-sectional independence of

the error terms of the CRC model (F.1) and of the generalized extrapolation identifying

assumption (F.2). This condition is imposed for simplicity but could be relaxed as long as

the within-group dependence is not strong enough to lead to linear dependence across several

observations belonging to the same group.

The third condition requires that a non-vanishing fraction of groups have both possible

profiles of movers (adopters and disadopters), so that 1
n

∑n
i=1E(Ẋ2

i ) ≥ c > 0 ∀ i = 1, ..., n,

∀n ≥ C.

Assumption 11.b requires that the within-group variation in Xi be predictive of treatment

effect bi.

As before, Assumption 11.c is imposed for convenience since the preliminary estimator

of α1, α̃1, can be shown to be consistent under a similar argument as in the proof of the

following proposition.

As before, Assumption 11.d is a regularity condition which guarantees that the estimators

for α1 and ATE are
√
n-consistent rather than being super consistent and requires that there

be no approximately exact dependence between cross-sectional observations belonging to the

same group and between the terms of unobserved heterogeneity ai and ai+bi and the average

error term of the CRC model uit.

Note that Assumptions 11.a, 11.b and 11.d are implied by Assumptions 4 and 6 in the

main text and that Assumptions 11.c is irrelevant when T = 2 since the moment condition
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used to estimate α1 in this case is exactly identifying.

Note also that Assumption 8 is implied by Assumptions 4 and 5 in the main text.

To state the next proposition, define the deterministic matrices that determine the asymp-

totic distribution of our second-step estimator α̂1:

C̈n,0 =
1

n

∑
i∈Mn

E(X̃i[1,−α1]((W
′

iWi)
−1W

′

iZi −
1

nvi

∑
j∈Mn:vj=vi

(W
′

jWj)
−1W

′

jZj)) (F.5)

and

V̈n,αγ,0 =
1

n

∑
i∈Mn,j:vj=vi

E(ṙiXiU
′

jMWj
Zj) V̈n,γ,0 =

1

n

∑
i=1,...,n,j:vj=vi

E(Z
′

iMWi
UiU

′

jMWj
Zj)

Än,1,0 = (B̈
′

n,0Σ̈−1
n,0B̈n,0)−1B̈

′

n,0Σ̈−1
n,0 Än,2,0 = (B̈

′

n,0Σ̈−1
n,0B̈n,0)−1B̈

′

n,0Σ̈−1
n,0C̈n,0A

−1
n,γ,0

Ω̈n,0 =

 Σ̈n,0 V̈n,αγ,0

V̈
′
n,αγ,0 V̈n,γ,0

 V̈n,0 = [Än,1,0, Än,2,0]Ω̈n,0

Ä′n,1,0
Ä
′
n,2,0


Define the deterministic matrices which will determine the asymptotic distribution of our
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second-step estimators ˆATES,0:

ãi = ai +
1

T

T∑
t=1

uit −
1

nvi

∑
j∈Mn:vj=vi

[1,−α1](W
′

jWj)
−1W

′

j (Yj − Zjγ)

− (E(ai)−
1

nvi

∑
j∈Mn:vj=vi

E(aj − α1bj)),

Än,ATES,0,γ,0 = − 1

α1

1
1
n

∑
i=1,...,n P (xit = 0∀ t)

1

n

∑
i=1,...,n

E(1[xit = 0∀ t]( 1

T

T∑
t=1

zit−

1

nvi

∑
j∈Mn:vj=vi

[1,−α1](W
′

jWj)
−1W

′

jZj))A
−1
n,γ,0,

Än,ATES,0,α,γ,0 =
ATES,0
α1

(B̈
′

n,0Σ̈−1
n,0B̈n,0)−1B̈

′

n,0Σ̈−1
n,0C̈n,0A

−1
n,γ,0

Än,ATES,0,α,r,0 = −ATES,0
α1

(B̈
′

n,0Σ̈−1
n,0B̈n,0)−1B̈

′

n,0Σ̈−1
n,0

Än,ATES,0,0 = [
1

α1

, Än,ATES,0,γ,0 + Än,ATES,0,α,γ,0, Än,ATES,0,α,r,0]

Ω̈ATES,0,0 = V ar(
√
n


1
n

∑
i=1,...,n 1[xit=0∀t]ãi

1
n

∑
i=1,...,n P (xit=0∀ t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

)

V̈n,ATEs,0,0 = Än,ATES,0,0Ω̈ATES,0,0Ä
′

n,ATES,0,0

Define the deterministic matrices which will determine the asymptotic distribution of our
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second-step estimators ˆATES,1:

˜a+ bi = ai + bi +
1

T

T∑
t=1

uit −
1

nvi

∑
j∈Mn:vj=vi

[1,−α1](W
′

jWj)
−1W

′

j (Yj − Zjγ)

− (E(ai + bi)−
1

nvi

∑
j∈Mn:vj=vi

E(aj − α1bj)),

Än,ATES,1,γ,0 = − 1

1 + α1

1
1
n

∑
i=1,...,n P (xit = 1∀ t)

1

n

∑
i=1,...,n

E(1[xit = 1∀ t]( 1

T

T∑
t=1

zit−

1

nvi

∑
j∈Mn:vj=vi

[1,−α1](W
′

jWj)
−1W

′

jZj))A
−1
n,γ,0,

Än,ATES,1,α,γ,0 =
ATES,1
1 + α1

(B̈
′

n,0Σ̈−1
n,0B̈n,0)−1B̈

′

n,0Σ̈−1
n,0C̈n,0A

−1
n,γ,0

Än,ATES,1,α,r,0 = −ATES,1
1 + α1

(B̈
′

n,0Σ̈−1
n,0B̈n,0)−1B̈

′

n,0Σ̈−1
n,0

Än,ATES,1,0 = [
1

1 + α1

, Än,ATES,1,γ,0 + Än,ATES,1,α,γ,0, Än,ATES,1,α,r,0]

Ω̈ATES,1,0 = V ar(
√
n


1
n

∑
i=1,...,n 1[xit=1∀t] ˜a+bi

1
n

∑
i=1,...,n P (xit=1∀ t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

)

V̈n,ATEs,1,0 = Än,ATES,1,0Ω̈ATES,1,0Ä
′

n,ATES,1,0

Proposition 7. Under (F.1), (F.2) and Assumptions 8, 10, and 11, as n → ∞ while T

remains fixed:

√
n(α̂1 − α1) = (B̈

′

n,0Σ̈−1
n,0B̈n,0)−1B̈

′

n,0Σ̈−1
n,0

1√
n

∑
i∈Mn

Xiṙi

− (B̈
′

n,0Σ̈−1
n,0B̈n,0)−1B̈

′

n,0Σ̈−1
n,0B̈n,0C̈n,0A

−1
n,γ,0

1√
n

n∑
i=1

Z
′

iMWi
Ui + op(1)

and:

V̈
− 1

2
n,0

√
n(α̂1 − α1)

d→ N(0, 1) (F.6)
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If in addition α1 /∈ {0,−1}, then we have:

√
n( ˆATES,0 − ATES,0) = Än,ATEs,0,0

√
n


1
n

∑
i=1,...,n 1[xit=0∀t]ãi

1
n

∑
i=1,...,n P (xit=0∀ t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

+ op(1)

√
n( ˆATES,1 − ATES,1) = Än,ATEs,1,0

√
n


1
n

∑
i=1,...,n 1[xit=1∀t]ãi

1
n

∑
i=1,...,n P (xit=1∀ t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

+ op(1)

and:

V̈
− 1

2
n,ATEs,0,0

√
n( ˆATES,0 − ATES,0)

d→ N(0, 1)

V̈
− 1

2
n,ATEs,1,0

√
n( ˆATES,1 − ATES,1)

d→ N(0, 1)

Note that Proposition 3 in the main text is obtained as a special case of Proposition 7.

Proposition 7 shows that the second stage estimators of α1 and of ATE for stayers have

a linear influence function asymptotic representation, so that as before consistent variance

estimation could be obtained by bootstrap resampling, although here resampling should be

clustered at the level of the indexing variable vi. Alternatively, one can also use analytical

standard errors for inference, although these standard errors should now be clustered at

the level of the indexing variable vi. As before, we only show consistency of the analytical

standard errors for α̂1 here, as the same result for ATE of stayers is obtained in a similar

way.

Proposition 8. Define C̈n = 1
n

∑
i∈Mn

X̃i[1,−α1]((W
′
iWi)

−1W
′
iZi− 1

nvi

∑
j∈Mn:vj=vi

(W
′
jWj)

−1W
′
jZj),

r̂i = âi − α̂1b̂i, r̈i = r̂i − 1
nvi

∑
j∈Mn,vj=vi

r̂j, and Ûi = Yi − Ziγ̂.

Define Σ̈n,γ = 1
n

∑
i,j=1,...,n:vj=vi

Z
′
iMWi

ÛiÛ
′
jMWj

Zj, Σ̈n,αγ = 1
n

∑
i∈Mn,j∈Mn:vj=vi

r̈iX̃iÛ
′
jMWj

Zj.

Define An,1 = (B̈
′
nΣ̈−1

n B̈n)−1B̈
′
nΣ̈−1

n , An,2 = (B̈
′
nΣ̈−1

n B̈n)−1B̈
′
nΣ̈−1

n C̈nA
−1
n , Ω̈n =

 Σ̈n Σ̈n,αγ

Σ̈
′
n,αγ Σ̈n,γ

,

43



V̈n = [Än,1, Än,2]Ω̈n

Ä′n,1
Ä
′
n,2

.

Under (F.1), (F.2) and Assumptions 8, 10, and 11, as n→∞ while T remains fixed:

V̈
− 1

2
n

√
n(α̂1 − α1)

d→ N(0, 1) (F.7)

As in the previous section, this proposition shows that asymptotically valid inference for

α1 can be based on Wald tests with analytical standard errors clustered at the level of the

indexing variable vi which account for both steps of estimation.

As in the previous section, the estimators defined above and consistent standard errors

can also be obtained by solving for exactly identifying moment conditions using any command

capable of numerical differentiation in standard statistical software.

As in the previous section, we can test the extrapolation identifying assumption (F.2) by

including additional exactly identifying moment conditions:

E(1[i ∈Mn]xit([1,−α1](W
′

iWi)
−1W

′

i (Yi − Ziγ)

− 1

nvi

∑
j∈Mn,vj=vi

[1,−α1](W
′

jWj)
−1W

′

j (Yj − Zjγ))− ηt) = 0 ∀ t ∈ S

and testing the null hypothesis H0 : ηt = 0∀ t ∈ S using a Wald test with critical values

from a chi-squared distribution with |S| − 1 degrees of freedom.

G Estimation and Inference with Unbalanced Panels

Many panel datasets available in empirical work are unbalanced, i.e. some cross-sectional

observations are only observed for a subset of the time periods t = 1, ..., T . In this section we

briefly discuss the consequences of missing data if one assumes that observations are missing

at random, i.e. that whether an observation (i, t) is observed are not is independent of all

of the variables included in our model.
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Let oit = 1[observation (i, t) is observed]. Redefine Yi = [yit]t:oit=1, Wi = [1, xit]t:oit=1,

Zi = [zit]t:oit=1, Xi = [xit]t:oit=1. Redefine Mn to be the set of cross-sectional observations

that have a change in treatment status across the time periods for which observations are

observed, i.e. Mn = {i = 1, ..., n : ∃ t, s with xit 6= xis, oit = 1, ois = 1}. With data missing

at random, under the model used in Section B given by (E.1) and (E.2), we have:

E(MWi
(Yi − Ziγ)) = 0

so that γ can be estimated by a linear regression of yit on indicator variables for each cross-

sectional observation, these indicator variables interacted with treatment status, and zit,

pooling over all observations that are observed.

We also have:

E(1[i ∈Mn]([1,−α1](W
′

iWi)
−1W

′

i (Yi − Ziγ)− α0)) = 0

E(1[i ∈Mn]oitxit([1,−α1](W
′

iWi)
−1W

′

i (Yi − Ziγ)− α0)) = 0 ∀ t

so that the parameters α1 and α0 can be estimated by GMM as in Section B, pooling over

observations that are observed for each moment condition separately for each time period t.

Similarly testing the validity of the extrapolation identifying assumption and performing

asymptotically valid inference for objects of interest such as ATE for untreated stayers can

be obtained by relying on GMM estimation and pooling across all observations that are

observed separately for each moment condition.

The same results apply to the use of the generalized extrapolation identifying assumption

discussed in Section C.
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H Proofs

H.1 Proof of Proposition 1

Recall the normalization f̂1 = 0 and the definition in the main text:

f̂2 =

∑
i 6∈Mn

∆yi2

n− |Mn|
= f2 +

∑
i 6∈Mn

∆ui2

n− |Mn|

where the second equality follows from the normalization f1 = 0 and the CRC model (??).

By convergence in mean-square error and Assumption 1 we have:

1

n
(n− |Mn|) =

1

n

n∑
i=1

1[xi1 = xi2]
p→ πS

where πS was defined in the main text to be πS = P (xi1 = xi2).

Note that by the law of total variance and the CRC model (??) we have:

V ar(1[xi1 = xi2]∆ui2) = σ2
∆u,SπS

where the main text defined σ2
∆u,S = V ar(∆ui2|xi1 = xi2). Therefore we have V ar(1[xi1 =

xi2]∆ui2) > 0 under Assumption 2.b and 2.c.

Assumption 2.a of bounded support implies that 1[xi1 = xi2]∆ui2 has bounded support.

Therefore by the Lindeberg-Levy central limit theorem for i.i.d. observations, we have:

1√
n

n∑
i=1

1[xi1 = xi2]∆ui2
d→ N(0, σ2

∆u,SπS) (H.1)

Therefore by Slutsky’s theorem, since πS > 0 by Assumption 2.b, we have:

√
n(f̂2 − f2)

d→ N(0,
σ2

∆u,S

πS
) (H.2)

This establishes the first result of Proposition 1.
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By definition, we have:

âi =

∑
i=1,2(1− xit)(yit − f̂t)∑

i=1,2(1− xit)
, âi + b̂i =

∑
i=1,2 xit(yit − f̂t)∑

i=1,2 xit

where as discussed above these estimators are both well-defined only for cross-sectional

observations that are movers.

For all cross-sectional observations such that âi is well-defined (movers and untreated

stayers), we can write:

âi =

∑
i=1,2(1− xit)(yit − ft)∑

i=1,2(1− xit)
− (1− xi2)

(f̂2 − f2)∑
i=1,2(1− xit)

= ai +

∑
i=1,2(1− xit)uit∑
i=1,2(1− xit)

− (1− xi2)
(f̂2 − f2)∑
i=1,2(1− xit)

where the first equality follows from the normalizations f1 = f̂1 = 0 and the second equality

follows from the CRC model (??).

The first result of this proposition shows that f̂2− f2 = Op(
1√
n
), and we have (1− xi2) ∈

{0, 1} and
∑

i=1,2(1− xit) ∈ {1, 2} for movers and untreated stayers.

Therefore defining ζa,i,n = (1− xi2) (f̂2−f2)∑
i=1,2(1−xit) we obtain maxi=1,...,n:xi1=0 orxi2=0|ζa,i,n| =

Op(
1√
n
).

Similarly we have for movers and treated stayers:

âi + b̂i = ai + bi +

∑
i=1,2 xituit∑
i=1,2 xit

− xi2
(f̂2 − f2)∑
i=1,2 xit

and defining ζa+b,i,n = xi2
(f̂2−f2)∑
i=1,2 xit

we obtain maxi=1,...,n:xi1=1 orxi2=1|ζa+b,i,n| = Op(
1√
n
), which

completes the proof of this proposition.

H.2 Proof of Proposition 2

Linear influence function representation for α̂0 and α̂1.
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Define An =

 |Mn|
n

1
n

∑
i∈Mn

b̂i

n01

n
1
n

∑
i∈Mn:xi1=0 b̂i

 and wn =

 1
n

∑
i∈Mn

âi

1
n

∑
i∈Mn:xi1=0 âi

 so that

α̂0

α̂1

 = A−1
n wn (H.3)

The extrapolation identifying assumption (??) and Proposition 1 imply:

âi = α0 + α1b̂i + ri + ζi,n (H.4)

where ζi,n = ζa,i,n − α1ζb,i,n and ζb,i,n = ζa+b,i,n − ζa,i,n and ri is defined in the main text as

ri = εi +
∑

t=1,2 uit((1 + α1)(1− xit)− α1xit).

Therefore we have: α̂0

α̂1

−
α0

α1

 = A−1
n en (H.5)

where en =

 1
n

∑
i∈Mn

(ri + ζi,n)

1
n

∑
i∈Mn:xi1=0(ri + ζi,n)

.

From Proposition 1, for cross-sectional observations that are movers:

ζi,n = (1 + α1)ζa,i,n − α1ζab,i,n

= (1 + α1)(1− xi2)(f̂2 − f2)− α1xi2(f̂2 − f2)

By convergence in mean-squared error:

 1
n

∑
i∈Mn

((1 + α1)(1− xi2)− α1xi2)

1
n

∑
i∈Mn:xi1=0((1 + α1)(1− xi2)− α1xi2)

 p→ c0
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where c0 =

E((1 + α1)(1− xi2)− α1xi2|xi1 6= xi2)πM

E((1 + α1)(1− xi2)− α1xi2|0, 1)π01

.

From the proof of Proposition 1, we also have:

√
n(f̂2 − f2) =

1

πS

1√
n

∑
i:xi1=xi2

∆ui2 + op(1) (H.6)

From proposition 1, we also have b̂i = bi+
∑

t xituit∑
t xit
−

∑
t(1−xit)uit∑
t(1−xit)

+ ζb,i,n where maxiζb,i,n =

op(1) and E(
∑

t xituit∑
t xit

−
∑

t(1−xit)uit∑
t(1−xit)

|xi1, xi2) = 0 for xi1 6= xi2.

Therefore under Assumption 2.a of bounded support and Assumption 1, convergence in

mean squared error implies:

An
p→ A0 (H.7)

where A0 =

πM E(bi|xi1 6= xi2)πM

π01 E(bi|0, 1)π01

 where πM = π01 + π10.

In addition Assumptions 3.a and 3.b imply λmin(A0) > 0. Therefore by the continuous

mapping theorem:

A−1
n − A−1

0 = op(1) (H.8)

Under Assumption 2.a of bounded support and Assumption 1 of cross-sectional indepen-

dence, we have 1√
n

∑
i∈Mn

ri = Op(1), 1√
n

∑
i∈Mn:xi1=0 ri = Op(1), and 1√

n

∑
i:xi1=xi2

∆ui2 =

Op(1).

Therefore we have:

√
n(

α̂0

α̂1

−
α0

α1

) = A−1
0 [I2, c0]


1√
n

∑
i∈Mn

ri

1√
n

∑
i∈Mn:xi1=0 ri

1√
n

∑
i:xi1=xi2

∆ui2

+ op(1) (H.9)

where I2 is the 2× 2 identity matrix.
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Defining ξα,i = A−1
0 [I2, c0]


1[xi1 6= xi2]ri

1[xi1 = 0, xi2 = 1]ri

1[xi1 = xi2]∆ui2

 completes the proof of the first result

of Proposition 2, showing that the estimator

α̂0

α̂1

 has an asymptotic influence function

representation.

Asymptotic normality of α̂0 and α̂1.

Define

wi =


1[xi1 6= xi2]ri

1[xi1 = 0, xi2 = 1]ri

1[xi1 = xi2]∆ui2

 (H.10)

From Assumption 2.a of bounded support, wi has bounded support.

As in the proof of Proposition 1, Assumptions 2.b and 2.c guarantee that V ar(1[xi1 =

xi2]∆ui2) > 0. Assumptions 3.a and 3.c guarantee that V ar(1[xi1 6= xi2]ri) > 0 and

V ar(1[xi1 = 0, xi2 = 1]ri) > 0.

Assumption 1 of cross-sectional independence guarantees that 1[xi1 = xi2]∆ui2 is uncor-

related with 1[xi1 6= xi2]ri and 1[xi1 = 0, xi2 = 1]ri.

Finally

Cov(1[xi1 6= xi2]ri, 1[xi1 = 0, xi2 = 1]ri) = E(1[xi1 = 0, xi2 = 1]r2
i )

= V ar(1[xi1 = 0, xi2 = 1]ri)

and

V ar(1[xi1 6= xi2]ri) = V ar(1[xi1 = 0, xi2 = 1]ri) + V ar(1[xi1 = 1, xi2 = 0]ri)

> V ar(1[xi1 = 0, xi2 = 1]ri)

where the strict inequality follows from V ar(ri|1, 0) > 0 (Assumption 3.c) and π10 > 0
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(Assumption 3.a).

Therefore |Corr(1[xi1 6= xi2]ri, 1[xi1 = 0, xi2 = 1]ri)| < 1, so that:

λminV ar(wi) > 0 (H.11)

where λmin denotes the smallest eigenvalue of a matrix.

Therefore all conditions (bounded support, positive variance, i.i.d.) are met for the

Lindeberg-Levy central limit theorem to apply:

1√
n

n∑
i=1

wi
d→ N(0, V ar(wi)) (H.12)

so that we obtain by Slutsky’s theorem:

√
n(

α̂0

α̂1

−
α0

α1

)
d→ N(0, Vα) (H.13)

where Vα = A−1
0 [I2, c0]V ar(wi)

I2

c
′
0

A−1′

0 .

Linear influence function representation and asymptotic normality of ˆATES,0

and ˆATES,1

By definition:

ˆATES,0 =
ā00 − α̂0

α̂1

=
1
n00

∑
i:xi1=xi2=0(ai + 1

2

∑
t=1,2 uit −

1
2
(f̂2 − f2))− α̂0

α̂1
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Define ãi = ai + 1
2

∑
t=1,2 uit and define:

wATE,i =

1[xi1 = xi2 = 0](ãi − E(ai|0, 0))

wi

 (H.14)

where wi was defined above as wi =


1[xi1 6= xi2]ri

1[xi1 = 0, xi2 = 1]ri

1[xi1 = xi2]∆ui2

.

As before, the variance of wi is positive definite. In addition Assumption 1 implies that

1[xi1 = xi2 = 0](ãi − E(ai|0, 0)) is uncorrelated with 1[xi1 6= xi2]ri and 1[xi1 = 0, xi2 = 1]ri.

Assumption 3.c implies that V ar(ãi|∆ui2, 0, 0) > 0, so that |Corr(1[xi1 = xi2 = 0](ãi −

E(ai|0, 0)), 1[xi1 = xi2]∆ui2)| < 1.

Therefore λminV ar(wATE,i) > 0. In addition Assumption 2.a guarantees that wATE,i has

bounded support.

Therefore by the Lindeberg-Levy central limit theorem we have:

1√
n

n∑
i=1

wATE,i
d→ N(0, V ar(wATE,i)) (H.15)

Therefore since ATES,0 = E(ai|0,0)−α0

α1
, by the δ-method we obtain:

√
n( ˆATES,0 − ATES,0) = AATE,0

1√
n

n∑
i=1

wATE,i + op(1)
d→ N(0, AATE,0V ar(wATE,i)A

′

ATE,0)

(H.16)

where AATE,0 = [ 1
α1
,− 1

α1
,−ATES,0

α1
]BATE,0 and BATE,0 =

 1
π00

0
′
2 − 1

π00
1
2

1
πS

02 A−1
0 A−1

0 c0

 where 02 is

a 2× 1 vector of zeros and A0, c0 are defined above.

The same steps can be used for ˆATES,1, which completes the proof of Proposition 2.
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H.3 Definitions and Lemma for the Proof of Proposition 3

The first step of our estimation procedure is unchanged when estimating ATE under the

generalized extrapolation identifying assumption (3.7). We first establish the same result for

these first step estimators as Proposition 1 but under Assumptions 4 and 5.

Recall the redefinition in the main text of σ2
∆u,S to σ2

∆u,S = V ar(
∑

i:vi=v,xi1=xi2
∆ui2).

Also redefine πS = E(
∑

i:vi=v
1[xi1 = xi2]).

Lemma 1. Under the CRC model (??) and Assumptions 4 and 5, as N →∞:

√
N(f̂2 − f2)

d→ N(0,
σ2

∆u,S

π2
S

) (H.17)

and wherever âi and âi + b̂i are well-defined we can write:

âi = ai +

∑
t=1,2(1− xit)uit∑
t=1,2(1− xit)

+ ζa,i,N , âi + b̂i = ai + bi +

∑
t=1,2 xituit∑
t=1,2 xit

+ ζa+b,i,N (H.18)

where maxi=1,...,n:xi1=0 orxi2=0|ζa,i,N | = Op(
1√
N

) and maxi=1,...,n:xi1=1 orxi2=1|ζa+b,i,N | = Op(
1√
N

).

Proof. As in the proof of Proposition 1, we have:

√
N(f̂2 − f2) =

∑
v=1,...,N

∑
i:vi=v,xi1=xi2

∆ui2∑
v=1,...,N

∑
i:vi=v

1[xi1 = xi2]
(H.19)

Under Assumption 4, convergence in mean-squared error implies:

1

N

∑
v=1,...,N

∑
i:vi=v

1[xi1 = xi2]
p→ πS (H.20)

and Assumption 2.b implies πS > 0.

Assumption 4 and Assumption 2.a imply that
∑

i:vi=v,xi1=xi2
∆ui2 is i.i.d. across v with

bounded support. Assumption 5 implies V ar(
∑

i:vi=v,xi1=xi2
∆ui2) = σ2

∆u,S > 0. Therefore by

the continuous mapping theorem, Slutsky’s theorem, and the Lindeberg-Levy central limit
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theorem, we have:

√
N(f̂2 − f2) =

1

πS

1√
N

∑
v=1,...,N

∑
i:vi=v,xi1=xi2

∆ui2 + op(1)

d→ N(0,
σ2

∆u,S

π2
S

)

Given this result, the rest of the proof of Lemma 1 is as in the proof of Proposition 1.

Here we also define explicitly the second-step estimator for α1 used with the generalized

extrapolation identifying assumption (3.7). A fixed effects instrumental variable regression

of âi on b̂i using xi2 as an instrumental variable, with fixed effects indexed by vi, yields the

estimator:

α̂1 =

∑
v=1,...,N

∑
i∈Mn:vi=v

xi2äi∑
v=1,...,N

∑
i∈Mn:vi=v

xi2b̈i
(H.21)

where

äi = âi − āi, āi =
1

nvi

∑
j∈Mn,vj=vi

âj

b̈i = b̂i − b̄i, b̄i =
1

nvi

∑
j∈Mn,vj=vi

b̂j

The estimated fixed effects are given by:

êv =
1

nv

∑
i∈Mn,vi=v

(âi − α̂1b̂i) (H.22)

H.4 Proof of Proposition 3

From the CRC model (??), the generalized extrapolation identifying assumption (3.7), and

Lemma 1:

âi = evi + α1b̂i + ri + ζi,n (H.23)
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where as before ri = εi+
∑

t=1,2 uit((1 +α1)(1−xit)−α1xit) and ζi,n = (1 +α1)(1−xi2)(f̂2−

f2)− α1xi2(f̂2 − f2).

Therefore we have:

α̂1 − α1 =

∑
v=1,...,N

∑
i∈Mn:vi=v

xi2(ṙi + ζ̇i,n)∑
v=1,...,N

∑
i∈Mn:vi=v

xi2b̈i
(H.24)

where ṙi = ri − 1
nvi

∑
j∈Mn:vj=vi

rj and ζ̇i,n = ζi,n − 1
nvi

∑
j∈Mn:vj=vi

ζj,n.

Considering the denominator, we have:

∑
v=1,...,N

∑
i∈Mn:vi=v

xi2b̈i =
∑

v=1,...,N

∑
i∈Mn:vi=v

xi2b̂i −
∑

v=1,...,N

nv,01

nv

∑
i∈Mn:vi=v

b̂i

=
∑

v=1,...,N

nv,01nv,10

nv
(

1

nv,01

∑
i∈Mn:vi=v

xi2b̂i −
1

nv,10

∑
i∈Mn:vi=v

(1− xi2)b̂i)

where nv,x1x2 = |{i = 1, ..., n : vi = v, xi1 = x1, xi2 = x2}|.

Under Assumption 4 we have nv,01nv,10

nv
≤ C. From Lemma 1 we therefore have:

1

N

∑
v=1,...,N

nv,01nv,10

nv
(

1

nv,01

∑
i∈Mn:vi=v

xi2b̂i −
1

nv,10

∑
i∈Mn:vi=v

(1− xi2)b̂i)

=
1

N

∑
v=1,...,N

nv,01nv,10

nv
(

1

nv,01

∑
i∈Mn:vi=v

xi2(bi + ∆ui2)− 1

nv,10

∑
i∈Mn:vi=v

(1− xi2)(bi −∆ui2)) + op(1)

and convergence in mean-squared error implies:

1

N

∑
v=1,...,N

nv,01nv,10

nv
(

1

nv,01

∑
i∈Mn:vi=v

xi2(bi + ∆ui2)− 1

nv,10

∑
i∈Mn:vi=v

(1− xi2)(bi −∆ui2))

p→ E(
nv,01nv,10

nv
(b01,v − b10,v))

Define ∆b = E(nv,01nv,10

nv
(b01,v − b10,v)). We have ∆b 6= 0 since nv,01nv,10

nv
≥ 0, nv,01nv,10

nv
≥ c

with positive probability under Assumptions 6.a and 4, nv,01nv,10

nv
has discrete support under

Assumption 4, and b01,v − b10,v > 0 whenever nv,01nv,10

nv
> 0 or b01,v − b10,v < 0 whenever
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nv,01nv,10

nv
> 0 under Assumption 6.c.

Convergence in mean-squared error and Lemma 1 imply:

1√
N

∑
v=1,...,N

∑
i∈Mn:vi=v

xi2(ṙi + ζ̇i,n)

=
1√
N

∑
v=1,...,N

∑
i∈Mn:vi=v

xi2ṙi + c0
1

πS

1√
N

∑
v=1,...,N

∑
i:vi=v,xi1=xi2

∆ui2 + op(1)

where c0 = E(
∑

i∈Mn:vi=v
xi2((1 + α1)(1− ẋi2)− α1ẋi2)), ẋi2 = xi2 − 1

nvi

∑
j∈Mn:vj=vi

xj2.

Define wv =

 ∑
i∈Mn:vi=v

xi2ṙi∑
i:vi=v,xi1=xi2

∆ui2

. E(wv) = 0 under the CRC model and the generalized

extrapolation identifying assumption. Assumption 6.d imposes that λmin(V ar(wv)) > 0. wv

has bounded support under Assumption 2.a.

Therefore under Assumption 4, the continuous mapping theorem, Slutsky’s theorem, and

the Lindeberg-Levy central limit theorem imply:

√
N(α̂1 − α1) = Aα,0

1√
N

∑
v=1,...,N

wv
d→ N(0, Vα) (H.25)

where Vα = Aα,0V ar(wv)A
′
α,0 and Aα,0 = 1

∆b
[1, c0

1
πS

].

By definition:

ˆATES,0 =

1
n00

∑
i:xi1=xi2=0(âi − 1

nvi

∑
j∈Mn:vj=vi

(âj − α̂1b̂j))

α̂1

Redefine π00 = E(
∑

i:vi=v
1[xi1 = xi2 = 0]), note that Assumption 6.d implies π00 > 0.

By convergence in mean-squared error we obtain:

n00

N

p→ π00 (H.26)
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By convergence in mean-squared error and the previous results, we can also write:

1√
N

N∑
v=1

∑
i:vi=v,xi1=xi2=0

(âi −
1

nv

∑
j∈Mn:vj=vi

(âj − α̂1b̂j))

=
1√
N

N∑
v=1

∑
i:vi=v,xi1=xi2=0

(ai +
1

2

∑
t=1,2

uit − ev −
1

nv

∑
j∈Mn:vj=vi

rj)

+d0

√
n(f̂2 − f2) + e0

√
n(α̂1 − α1) + op(1)

=
1√
N

N∑
v=1

∑
i:vi=v,xi1=xi2=0

(ai +
1

2

∑
t=1,2

uit − ev −
1

nv

∑
j∈Mn:vj=vi

rj)

+d0
1

πS

1√
N

∑
v=1,...,N

∑
i:vi=v,xi1=xi2

∆ui2

+e0
1

∆b

[1, c0
1

πS
]

1√
N

∑
v=1,...,N

wv + op(1)

where

d0 =
1

N

N∑
v=1

E(
∑
i:vi=v

(−1[xi1 = xi2]

2
− 1

nv

∑
j∈Mn:vj=vi

(−(1 + α1)(1− xj2) + α1xj2)))

e0 = E(
∑

i:vi=v,xi1=xi2=0

1

nv

∑
j∈Mn:vj=v

bj)

Therefore by the δ-method we have:

√
n( ˆATES,0 − ATES,0) =

1√
N

∑
v=1,...,N

AATE,0wATE0,v + op(1) (H.27)

where AATE,0 = [ 1
α1
,−ATES,0

α1
]BATE,0, BATE,0 =

 1
π00

e0
1

∆b
(d0 + e0

1
∆b
c0) 1

πS

0 1
∆b

1
∆b
c0

1
πS

 , and:

wATE0,v =

∑i:vi=v,xi1=xi2=0(ai − evi − E(ai − evi |xi1 = xi2 = 0) + ũi))

wv

 (H.28)
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where ũi was defined in the main text to be ũi = 1
2

∑T
t=1 uit −

1
nvi

∑
j∈Mn:vj=vi

rj and wv is

defined above.

Bounded support, Assumption 6.d, and Assumption 4 lead to the applicability of the

Lindeberg-Levy central limit theorem, so that:

√
n( ˆATES,0 − ATES,0)

d→ N(0, VATE) (H.29)

where VATE = AATE,0V ar(wATE0,v)A
′
ATE,0.

This completes the proof of this proposition since the same steps can be used to derive

the asymptotic normality of the estimator of ATE for treated stayers, ˆATES,1.

H.5 Proof of Proposition 4

The choice of generalized inverse used here (excluding the interaction between the cross-

sectional indicator variables and treatment status for stayers) implies:

(W
′

iWi)
−W

′

iZi =


[z̄0
it, z̄

1
it − z̄0

it]
′
if i is amover

[z̄0
it, 0]

′
if xit = 0∀ t

[z̄1
it, 0]

′
if xit = 1∀ t

(H.30)

where z̄0
it =

∑
t(1−xit)zit∑
t(1−xit)

and z̄1
it =

∑
t xitzit∑
t xit

, and (W
′
iWi)

−W
′
iUi has a similar representation.

Therefore under Assumption 8.a: Z
′
iMWi

Zi, Z
′
iMWi

Ui, (W
′
iWi)

−W
′
iZi and (W

′
iWi)

−W
′
iUi

have bounded support.

The definition of the estimator and (E.3) implies:

√
n(γ̂ − γ) = (

1

n

n∑
i=1

Z
′

iMWi
Zi)
−1 1√

n

n∑
i=1

Z
′

iMWi
Ui

Under Assumption 7, Z
′
iMWi

Zi and Z
′
iMWi

Ui are cross-sectionally independent.
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Therefore convergence in mean squared error implies:

1

n

n∑
i=1

Z
′

iMWi
Zi − An,γ,0

p→ 0

Assumption 8.d implies that Vn,γ,0 = V ar( 1√
n

∑n
i=1 Z

′
iMWi

Ui) ≥ c, ∀n ≥ C, for constants

c > 0 and C, and as discussed above Z
′
iMWi

Ui has bounded support.

Therefore a central limit theorem for independent observations such as Theorem 5.11 in

White (2001) implies:

V
− 1

2
n,γ,0

1√
n

n∑
i=1

Z
′

iMWi
Ui

d→ N(0, IK) (H.31)

These two results complete the proof of V
− 1

2
n,γ,0An,γ,0

√
n(γ̂ − γ)

d→ N(0, IK).

From the definition of the estimators âi and b̂i we also have:

âi
b̂i

 = (W
′

iWi)
−W

′

i (Yi − Ziγ̂)

=

ai
bi

+ (W
′

iWi)
−W

′

i (Ui − Zi(γ̂ − γ))

From the above, we have:

(W
′

iWi)
−W

′

iZi(γ̂ − γ) = (W
′

iWi)
−W

′

iZiA
−1
n,γ,0

1√
n
ζn

+ (W
′

iWi)
−W

′

iZi((
1

n

n∑
i=1

Z
′

iMWi
Zi)
−1 − A−1

n,γ,0)
1√
n
ζn

By the continuous mapping theorem and Assumption 8.c:

(
1

n

n∑
i=1

Z
′

iMWi
Zi)
−1 − A−1

n,γ,0 = op(1) (H.32)

The first result in this proof shows that (W
′
iWi)

−W
′
iZi has bounded support and we have
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shown that 1√
n
ζn

d→ N(0, 1), so that 1√
n
ζn is bounded in probability.

Therefore:

maxi=1,...,n((W
′

iWi)
−W

′

iZi)((
1

n

n∑
i=1

Z
′

iMWi
Zi)
−1 − A−1

n,γ,0)
1√
n
ζn

= Op(1)× op(1)×Op(1)

= op(1)

which completes the proof.

H.6 Proof of Proposition 5

From the definition of the estimator

α̂0

α̂1

 we can rewrite:

α̂0

α̂1

−
α0

α1

 = (B
′

nΣ−1
n Bn)−1B

′

nΣ−1
n

1

n

∑
i∈Mn

X̃i(εi + [1,−α1](W
′

iWi)
−1W

′

i (Ui + Zi(γ − γ̂)))

(H.33)

Define C?
n = 1

n

∑
i∈Mn

X̃i[1,−α1](W
′
iWi)

−1W
′
iZi. From Assumption 7 and Assumption

8.a, by convergence in mean squared error:

C?
n − Cn,0 = op(1) (H.34)

By definition:

Bn =
1

n

∑
i∈Mn

X̃i[1, b̂i]

=
1

n

∑
i∈Mn

X̃i[1, bi + [0, 1](W
′

iWi)
−1W

′

i (Ui + Zi(γ̂ − γ))]

=
1

n

∑
i∈Mn

X̃i[1, bi + [0, 1](W
′

iWi)
−1W

′

iUi] + op(1)
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where the last equality follows from Proposition 4.

As in the proof of Proposition 4, X̃i[1, bi + [0, 1](W
′
iWi)

−1W
′
iUi] has bounded support

under Assumption 8.a, so that by convergence in mean-squared error:

Bn −Bn,0 = op(1) (H.35)

By definition of Σn:

Σn =
1

n

∑
i∈Mn

ε̃2i X̃iX̃
′

i

=
1

n

∑
i∈Mn

(âi − α̃0 − α̃1b̂i)
2X̃iX̃

′

i

=
1

n

∑
i∈Mn

(âi − α0 − α1b̂i − [1, b̂i]

α̃0 − α0

α̃1 − α1

)2X̃iX̃
′

i

=
1

n

∑
i∈Mn

(ri − [1,−α1](W
′

iWi)
−1W

′

iZi(γ̂ − γ)− [1, b̂i]

α̃0 − α0

α̃1 − α1

)2X̃iX̃
′

i

From Assumption 9.c, Proposition 4, and Assumption 8.a:

maxi=1,...,n[1, b̂i]

α̃0 − α0

α̃1 − α1

 = op(1)

maxi=1,...,n[1,−α1](W
′

iWi)
−1W

′

iZi(γ̂ − γ) = op(1)

maxi=1,...,nri = Op(1)

Therefore:

Σn =
1

n

∑
i∈Mn

r2
i X̃iX̃

′

i + op(1) (H.36)
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As previously, under Assumptions 7 and 8.a, convergence in mean squared error implies:

Σn − Σn,0 = op(1) (H.37)

Therefore under Assumptions 9.a and 9.b, by the continuous mapping theorem and

Proposition 4, we have:

√
n(

α̂0

α̂1

−
α0

α1

) = (B
′

n,0Σ−1
n,0Bn,0)−1B

′

n,0Σ−1
n,0

1√
n

∑
i∈Mn

X̃iri

− (B
′

n,0Σ−1
n,0Bn,0)−1B

′

n,0Σ−1
n,0Cn,0A

−1
n,γ,0

1√
n

n∑
i=1

Z
′

iMWi
Ui + op(1)

which completes the proof of the first result of Proposition 5.

With the first result of Proposition 5 established, the second result can be obtained

by using a central limit theorem for independent observations. To apply this central limit

theorem, we show that higher moments of the linear influence function for

α̂0

α̂1

 are bounded

and that the variance of the linear influence function is uniformly positive-definite.

From Assumptions 8.a, 9.a, and 9.b, we have that the support of (B
′
n,0Σ−1

n,0Bn,0)−1B
′
n,0Σ−1

n,0X̃iri

is bounded.

From Assumptions 8.a, 9.a, 9.b, and 8.c, we have that the support of

(B
′

n,0Σ−1
n,0Bn,0)−1B

′

n,0Σ−1
n,0Cn,0A

−1
n,γ,0Z

′

iMWi
Ui (H.38)

is bounded.

Assumption 7 of cross-sectional independence, Assumption 8.b that a non-vanishing share

of the population be stayers, and Assumptions 8.d and 9.a imply that λmin(Ωn,0) ≥ c.
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Therefore λmin(Vn,0) ≥ c as long as:

λmin([An,1,0, An,2,0]

A′n,1,0
A
′
n,2,0

) ≥ c (H.39)

which follows from λmin(B
′
n,0Σ−1

n,0Bn,0)−1 ≥ c, which itself follows from λmin(B
′
n,0Σ−1

n,0Bn,0)−1 =

1

λmax(B
′
n,0Σ−1

n,0Bn,0)
, and λmaxΣ

−1
n,0 = 1

λminΣn,0
≤ C by Assumption 9.a, and λmax(B

′
n,0Bn,0) ≤ C

by Assumption 8.a.

Therefore all conditions are met to use a central limit theorem for independent observa-

tions such as Theorem 5.11 in White (2001), and we have:

V
− 1

2
n,0

√
n(

α̂0

α̂1

−
α0

α1

)
d→ N(0, I2) (H.40)

which completes the proof of the second result of Proposition 5.

We can show that the estimators of ATE for stayers, ˆATES,0 and ˆATES,1, have a linear

influence function representation using similar steps as above. Under the assumptions of this

proposition we have:

√
n( ˆATES,0 − ATES,0) = An,ATEs,0,0

√
n


∑

i:xit=0 ∀t ãi∑
i=1,...,n P (xit=0∀t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

+ op(1)

√
n( ˆATES,1 − ATES,1) = An,ATEs,1,0

√
n


∑

i:xit=1 ∀t
˜a+bi∑

i=1,...,n P (xit=1∀t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

+ op(1)

For concision we concentrate on ˆATES,0 in the remainder of this proof since the asymp-

totic normality of ˆATES,1 is derived in the same way.
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As above, An,ATEs,0,0


∑

i:xit=0 ∀t ãi∑
i=1,...,n P (xit=0∀t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

 has bounded support under the assumptions of

this proposition, so that we can apply a central limit theorem for independent observations

if V ar(
√
n


∑

i:xit=0 ∀t ãi∑
i=1,...,n P (xit=0∀t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

) is uniformly positive-definite since An,ATEs,0,0A
′
n,ATEs,0,0

≥ c

∀n ≥ C.

Assumptions 8.d, 9.a, and 9.d impose that the variance of each term in
√
n


∑

i:xit=0 ∀t ãi∑
i=1,...,n P (xit=0 ∀t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri


is uniformly positive definite.

As above, Assumptions 7, 8.b, and 8.d guarantee that 1
n

∑n
i=1 Z

′
iMWi

Ui and 1
n

∑
i∈Mn

X̃iri

are not approximately linearly dependent.

Assumption 7 of cross-sectional independence guarantees that
∑

i:xit=0 ∀t ãi∑
i=1,...,n P (xit=0∀t) and 1

n

∑
i∈Mn

X̃iri

are independent.

Assumption 9.d guarantees that
∑

i:xit=0 ∀t ãi∑
i=1,...,n P (xit=0∀t) and 1

n

∑n
i=1 Z

′
iMWi

Ui are not approxi-

mately linearly dependent.

Therefore we have λminV ar(
√
n


∑

i:xit=0 ∀t ãi∑
i=1,...,n P (xit=0 ∀t)

1
n

∑n
i=1 Z

′
iMWi

Ui

1
n

∑
i∈Mn

X̃iri

) ≥ c > 0 ∀n ≥ C and applying a

central limit theorem for independent observations such as Theorem 5.11 in White (2001)

we obtain:

V
− 1

2
n,ATEs,0,0

√
n( ˆATES,0 − ATES,0)

d→ N(0, 1) (H.41)
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H.7 Proof of Proposition 6

As in the proofs of Propositions 4 and 5, convergence in mean-squared error and the contin-

uous mapping theorem imply:

Cn − Cn,0 = op(1), Σn − Σn,0 = op(1) Σn,γ − Vn,γ,0 = op(1) Σn,αγ − Vn,αγ,0 = op(1)

An,1 − An,1,0 = op(1) An,2 − An,2,0 = op(1) Ωn − Ωn,0 = op(1) Vn − Vn,α,0 = op(1)

so that Slutsky’s theorem implies:

V
− 1

2
n

√
n(

α̂0

α̂1

−
α0

α1

)
d→ N(0, I2) (H.42)

H.8 Proof of Proposition 7

The proof of this proposition follows the same steps as the proof of Proposition 5 albeit with

different definitions and dependence being indexed by vi rather than i.

H.9 Proof of Proposition 8

The proof of this proposition follows the same steps as the proof of Proposition 6 albeit with

different definitions and dependence being indexed by vi rather than i.

I Learning and the Extrapolation Identifying Assump-

tion

In this section we briefly discuss the possibility that farmers in our empirical application do

not know exactly what their returns are prior to adopting hybrid seeds for the first time, and

learn about their returns as they use the technology. Learning could create a feedback from

past shocks to productivity, uis ∀ s < t, to current technology use, xit, if positive (negative)
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shocks to productivity while using hybrid seeds are misinterpreted as high (low) returns to

using hybrid seeds, invalidating the CRC model (2.4) used in the first step of our estimation

approach.

If farmers learn directly about their returns, without confounding their adoption of the

new technology with past productivity shocks, learning may not invalidate the extrapolation

assumption (2.11). Suppose for simplicity that immediate learning takes place, where before

her first adoption, a farmer bases her decision on whether to use hybrid seeds on the rule

xit = 1[b̃i ≥ cit] where b̃i = bi + ςi, where ςi is measurement error, and cit is the cost of using

hybrid seeds, while after having used hybrid seeds at least once she bases her decision on

the rule xit = 1[bi ≥ cit]. If ςi and cit are independent of ai and bi, this model of selection

satisfies the condition (2.15) discussed in section 2.4 in the main text.

More generally, a farmer may base her selection decision on an information set, Iit,

and the selection rule xit = 1[E(bi|Iit) ≥ cit], as in D’Haultfœuille and Maurel (2013) and

references therein. If Iit and cit are independent of ai conditional on bi, then the extrapolation

identifying assumption (2.11) holds (if the assumption of linearity (2.14) also holds). In

section 4.3 in the main text, we allow for part of a farmer’s information set to be correlated

with her baseline productivity ai or returns bi as long as it corresponds to information that

is shared by all farmers in a village.
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