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Appendix A: Panel Unit Root Tests

We focus on second-generation tests allowing for cross-sectional dependence. Recent work has demonstrated

the importance of accounting for cross-sectional dependence when testing the unit root hypothesis. Pesaran’s

(2007) simulations show that tests assuming cross-sectional independence tend to over-reject the null hy-

pothesis if cross-sectional dependence is present. Baltagi et al. (2007) find that when spatial autoregression

is present, first-generation tests become oversized, but the tests explicitly allowing for cross-sectional de-

pendence yield a lower frequency of type I errors. As Pesaran (2007) notes, subtracting the cross-sectional

averages from the series before applying the panel unit root test can mitigate the impact of cross-sectional

dependence even if cross-sectional demeaning would not generally be effective in conditions under which

the pairwise cross-sectional error covariances differ across individuals. Moreover, while weak cross-sectional

dependence can be addressed with a simple correction of the tests, the presence of strong cross-sectional de-

pendence is more problematic, causing the test statistics to be divergent (Westerlund and Breitung, 2009).

As we clearly documented the presence of strong cross-sectional dependence in our data, it is crucial to

apply the so-called second generation unit root tests (Bai and Ng, 2002, 2004; Moon and Perron, 2004;

Pesaran, 2007, Pesaran et al. 2013).

Bai and Ng (2004) propose decomposing the panel into deterministic, common and idiosyncratic com-

ponents as follows:

yit = Dit + ζ
′

i ft + vit,

where Dit is the deterministic component with individual effects and eventually individual trends, ζ
′

i ft the

common component, with r unobserved factors, and vit the idiosyncratic component. Such a decomposi-

tion allows us to consider factors as objects of interest and to determine not only whether the data are

stationary but also whether the eventual nonstationarity derives from a nonstationary common component,

a nonstationary idiosyncratic component or the nonstationarity of both components. More precisely, Bai

and Ng (2004) also assume the following:

(I− L) ft = C (L)ut,

(1− ρi) vit = Bi (L) εit

where C (L) =
∑∞

j=0CjL
j and Bi (L) =

∑∞
j=0BijL

j. The idiosyncratic component is I(1) if ρi = 1 and

is stationary if ρi < 1. There are r0 stationary common factors and r1 common stochastic trends, such

that r0 + r1 = r, the total number of factors; the rank of C (1) is r1. The goal of Bai and Ng (2004) is

to determine r1 and test whether ρi = 1 when neither ft nor vit is observed. This approach is known

as the PANIC (panel analysis of nonstationarity in idiosyncratic and common components) approach. A

preliminary issue that arises involves determining how many common factors, r, are necessary to capture

the existing cross-sectional dependence. To this end, we employ the information criteria suggested by Bai

and Ng (2002). They are constructed in a similar spirit as the AIC and BIC criteria for time series, involving

a trade-off between some measure of fit and a penalty for complexity. As the number of factors increases,

the fit must improve, but the penalty also increases. We compute all criteria, but following the relevant

literature (Bai and Ng, 2002; Moon and Perron, 2007; Hurlin, 2010), we pay particular attention to the IC2
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and BIC3 criteria that are expected to minimize the risk of overestimating the number of factors.1 These

criteria are applied to factors estimated by principal components on first differences (Bai and Ng, 2004).

Recent literature suggests that a small number of unobserved common factors is sufficient to explain most

of the variations in many macroeconomic variables (see, e.g., Stock and Watson, 2002; Pesaran et al., 2013;

Moon and Perron, 2007 and Hurlin, 2010). We begin our analysis by following this literature and apply the

above-discussed criteria by imposing the condition that the maximum number of factors is 6, as in Pesaran

(2007). Note that Stock and Watson (2002) also find that 6 factors account for much of the variance in their

time series. Another practical reason for such a choice is that Bai and Ng (2004) report the critical values

of the tests used determine how many of these factors are nonstationary up to 6 factors. In nearly all cases,

the criteria suggest that the number of unobserved factors, r, equals the maximum number we allowed. This

is the same result as in Pesaran (2007) and Pesaran et al. (2013), and it is not completely surprising given

our sample sizes (see also Gutierrez, 2006). This suggests that the number of factors could be even higher

than 6. However, given the possibility that the criteria overestimate the number of factors and the number

of observations available, we provide our main results without allowing the maximum number of factors

to be greater than 6 (Table A1). As a robustness check (available upon request), we also perform the

procedure of Bai and Ng (2004) to test the stationarity in the common component, to identify the number

of nonstationary common factors (if they exist) and to test the stationarity in the idiosyncratic component

for different values of r in the range 1− 20.

Notably, the nonstationarity of the idiosyncratic components can be tested without knowing whether

the factors are stationary, and vice versa. All that we need to know is the total number of factors, r. For

this reason, given the considerable uncertainty that surrounds the number of factors, we perform the tests

for a large range of possible values of r. To test the nonstationarity of idiosyncratic components, Bai and Ng

(2004) proceed by pooling individual ADF t statistics obtained on defactored components. Pooling, however,

requires cross-sectional independence of the idiosyncratic components. As the idiosyncratic components

in a factor model can be only weakly correlated across units, by construction, while the factors involve

strong correlation, the pooled tests based on defactored components appear likely to satisfy the required

cross-sectional independence assumption. The two Fisher-type statistics proposed by Bai and Ng (2004),

denoted P c
e and Zc

e , provide strong evidence for rejection of the null hypothesis of nonstationarity of the

idiosyncratic components for all variables. For domestic R&D, foreign R&D and human capital, the null

is rejected irrespective of the value of r , the total number of common factors, whereas for TFP, the null is

rejected 19 out of 20 times. Note, however, that the pooled test for the idiosyncratic component is valid

only for the intercept case. This because only in such a case the limiting distribution of the individual ADF

tests obtained on defactored components is a DF-type distribution (see also Gengenbach et al., 2009, p.

121). The two Fisher-type statistics are consequently used only for the intercept case. The rejection of the

nonstationarity of the idiosyncratic component does not imply that the series are stationary, as some of the

common factors may be nonstationary. We have already attempted to determine the total number of factors

1According to Bai and Ng (2002), the IC2 selects the true number of factors and dominates the other criteria. The

BIC3 has been shown (Bai and Ng, 2002) to perform better than the others when both T and N are small and are

roughly the same size; this result holds even if the BIC3 does not satisfy the conditions for consistency when either

N or T dominates the other exponentially.
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using information criteria on first differences, and the next task is thus to determine how many of these

factors are nonstationary. For this purpose, we follow Bai and Ng (2004) and proceed as follows. For r = 1,

we use a standard ADF test; its rejection indicates that the unique common factor is stationary. For r > 1,

we consider the MQf and MQc statistics. The limiting distributions of these statistics are nonstandard,

and critical values are reported in Bai and Ng (2004) for up to 6 factors. The results provide a very clear

picture: for all variables, regardless of the test used, the number of nonstationary common factors, r1, is

almost always equal to the total number of common factors, r. This is the same result obtained by Hurlin

(2010). The application of the PANIC approach by Bai and Ng (2004) thus suggests that the variables are

nonstationary and that this property is the result of multiple nonstationary common factors combined with

stationary idiosyncratic components.

Next, to further investigate the order of integration of the variables of interest, we follow Moon and

Perron (2004), who also allow for r unobserved common factors but propose expressing the panel in an

autoregressive form of the following type:

yit = Dit + y0it,

y0it = ρiy
0
it−1 + uit ,

uit = ζ
′

i ft + vit.

As in Bai and Ng (2004), data are first defactored, and panel unit root test statistics based on defactored

data are then proposed. Moon and Perron (2004), however, consider the factors to be nuisance parameters,

and the unit root test is only based on the estimated idiosyncratic components. This is a relevant difference

with respect to Bai and Ng (2004). The proposed test statistic uses defactored data obtained by projecting

the data onto the space orthogonal to the factor loadings. The authors derive two modified t-statistics –

denoted ta and tb – which have a Gaussian distribution under the null hypothesis, and they propose the

implementation of feasible statistics – t∗a and t∗b – based on the estimation of long-term variances. To assess

the robustness of the results to the choice of the kernel function used to estimate long-term variances, we

compute t∗a and t∗b with both quadratic spectral and Bartlett kernels. In Moon and Perron (2004), the

abovementioned information criteria to detect the number of common factors are applied to the residuals

(rather than to the first differences). Such criteria provide the same results we obtained using PANIC and

tend to select the maximum number of factors allowed (i.e., 6). To obtain results fully comparable with

PANIC, we also consider a model with an intercept but without a trend in the deterministic component.

For the model with an intercept, these tests strongly reject the unit root hypothesis, as in PANIC. The

model with a trend is generally of the same direction: the null is rejected for TFP, domestic R&D and

human capital, but not for foreign R&D. As with PANIC, we then perform the tests for all possible values

of r in the range 1-20. For the model with an intercept, these tests strongly reject the unit root hypothesis

in all cases. The model with an intercept and a trend provides a similar result: for TFP, domestic R&D and

human capital, in almost all cases, these tests strongly reject the unit root hypothesis of the idiosyncratic

components. The main difference concerns foreign R&D, for which the tests generally do not reject the null.

Detailed results obtained using the approach by Moon and Perron (2004) are available upon request.

Overall, the two approaches proposed by Bai and Ng (2004) and Moon and Perron (2004) provide a
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robust picture suggesting that the idiosyncratic component of the variables under investigation is stationary.

The PANIC approach also provides strong evidence in favor of nonstationary common factors.

Finally, we implement the tests proposed by Pesaran (2007) and Pesaran et al. (2013). Instead of

basing the unit roots tests on deviations from the estimated factors, they augment standard ADF regressions

with cross-sectional averages. In the case of a single unobserved common factor, Pesaran (2007) suggests

augmenting the standard (individual) ADF regression with the cross-sectional average of first differences

(∆ȳt = N−1
∑N

i=1 ∆yit = yt−yt−1) and lagged levels (ȳt−1) of the individual series, which are
√
N - consistent

estimators for the rescaled factors ζ̄f and ζ̄
∑t−1

j=0 fj, respectively, where ζ̄ = N−1
∑N

i=1 ζi. This expression

yields the cross-sectionally augmented Dickey-Fuller (CADF) statistics; the individual CADF statistics

are used to develop a modified version of the IPS test called CIPS. However, Monte Carlo experiments

show that Pesaran’s CIPS test has desirable small-sample properties in the presence of a single unobserved

common factor but exhibits size distortions if the number of common factors exceeds unity. Recently,

Pesaran et al. (2013) extend Pesaran’s CIPS test to the case of a multifactor error structure. They propose

utilizing the information contained in a number of k additional variables, xit, that are assumed to share the

common factors of the series of interest, yit. In particular, they propose two tests. The first test, CIPS,

is an extension of the test proposed in Pesaran (2007) and is based on the average of t-ratios from ADF

regressions augmented by the cross-sectional averages of the dependent variable as well as k additional

regressors. The second test, CSB, exploits cross-sectional augmentation for the Sargan–Bhargava test. It is

worth noting that the perspective of these tests is quite different from that of Bai and Ng (2004). Indeed,

while Bai and Ng (2004) consider whether the source of nonstationarity is due to the common factors and/or

the idiosyncratic components, neither of which are observed directly, Pesaran et al. (2013) aim to test for

the presence of a unit root in the yit process, which is observed. In doing so, they adopt an autoregressive

specification augmented with common factors, and the unit root test is performed by testing whether the

autoregressive component of the specification expressed in first difference, δi, is 0 for all i against the

alternative, which can be expressed as δi = 0 for some countries but δi < 0 for others. In such a framework,

they rule out the possibility of the factors having unit roots because, otherwise, all series in the panel could

be I(1) irrespective of whether δi = 0 (see Pesaran et al. (2013), p. 96-97). To address the uncertainty

surrounding the value of r, we follow Pesaran et al. (2013) and consider the application of the CIPS and

CSB tests by allowing the number of factors, r = k + 1, to take any value between 1 and 4, and we present

the results of these tests for all possible combinations of regressors. Note that 4 is the maximum number of

factors for which Pesaran et al. (2013) provide critical values. When k = 3, we implicitly assume that the

four observed variables used in the econometric analysis, fit, S
d
it, S

f
it, Hit, share the same common factors.

Pesaran et al. (2013) set the lag order, p̂ =
[
4 (T/100)

1/4
]
; in our case, this rule yields p̂ = 3. For small

T , as in our case, they also suggest using the CSB test, having higher power than that of CIPS. Adopting

the CSB and setting p = 3 is thus our preferred choice, with the results are summarized in Table A2. The

results for both CIPS and CSB and for p = 1, 2, 3 are available upon request. For CSB, The test outcomes

are as follows. The null hypothesis of a panel unit root is rejected in nearly all cases. This result occurs

irrespective of the lag order, p, for all variables under investigation. Few exceptions occur when r = 1,

a case that is always rejected by the above-presented criteria when choosing the number of factors with

5



PANIC and Moon and Perron (2004).2Moreover, while the results in Table A2 refer to the intercept and

trend case, when we focus on the intercept case, the null hypothesis is always rejected at standard levels

irrespective of both the lag order and the variables used to augment the ADF regression (even for r = 1).

In summary, in this appendix, we focus on second-generation tests allowing for cross-sectional depen-

dence. We consider both augmented ADF-type specifications (Pesaran, 2007; Pesaran et al., 2013) and tests

decomposing the panel into deterministic, common and idiosyncratic components (Bai and Ng, 2004; Moon

and Perron, 2004). While most previous works find evidence of nonstationary variables by applying first-

generation tests (see, e.g., Coe et al. 2009), we provide a more nuanced and thorough picture, ultimately

suggesting that while the unobserved idiosyncratic component of the variables under study is stationary, the

unobserved common factors appear to be nonstationary. This finding is highly relevant from an empirical

perspective and is related to the recent work by Kapetanios et al. (2011) showing that the CCE approach

is still valid when unobserved factors are allowed to follow unit root processes.

2When the CIPS test is used, the results are mixed and crucially depend both on the variables that are used to

augment the ADF regression and on the lag order of the autoregressive component. Rejection of the null hypothesis

is more likely to appear when r > 1.

Moreover, a high level of sensitivity to the number of lags of the AR component is also found when we consider

some first-generation tests, notably the test proposed by Im, Pesaran and Shin (2003) (IPS) and the Fisher-type tests

introduced by Maddala and Wu (1999) and further developed by Choi (2001). In particular, we documented that

when the number of lags of the autoregressive component of heterogeneous ADF-type specifications is estimated in a

model selection framework, the tests generally indicate the rejection of the null. Detailed results are available upon

request.
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Appendix B: Additional Estimation Results: Bayesian Ap-

proaches and Weighted Mean Group

This appendix aims to provide further insights on the issue of slope heterogeneity.

We first focus on a framework characterized by cross-sectional independence and extend the analysis,

with the results reported in Table 2. We take this step by applying the shrinkage estimators described in

Maddala et al. (1997): the (two-step) Empirical Bayes (EB) and Iterative Empirical Bayes (IEB) estimators.

These estimators can be viewed as a compromise between the unrealistic homogeneity assumption and

unstable heterogeneous estimates. We also apply the hierarchical Bayes approach (HB), which makes use of

Markov Chain Monte Carlo methods via Gibbs sampling, and we use the same priors as Hsiao et al. (1999).

According to Hsiao et al. (1999), this estimator is asymptotically equivalent to the MG estimator but

performs better in small samples. We also adopt a variant of the MG estimator by resorting to estimating

weighted averages of the slope parameters (WMG), and we use the same approach previously adopted by

Bond et al. (2010), based first on Huber weights and then on biweights (see Hamilton, 1991).

The results (Table B1) are as follows. Overall, the use of Bayesian methods yields estimated average

parameters that are very close to those obtained with the MG but increase the precision. The HB exhibits

the best performance in terms of precision, followed by the IEB, while the EB gives standard errors very close

to the MG. This result also complements some previous papers (Baltagi et al., 2002, 2004; Mazzanti and

Musolesi, 2013). When adopting the WMG, we instead find a substantial change in the estimated mean

parameters – and, in particular, a decrease in the parameters associated with foreign R&D and human

capital – as well as a very slight increase in precision compared with the unweighted MG, with estimates

that are not statistically significant at standard levels as for the standard MG estimator.

Second, more relevant for the present paper, we focus on a framework allowing for strong dependence and

compare the standard unweighted CCEMG with its weighted variant – where the weights are determined as

explained above – which we label CCEWMG (Table B2). The use of a weighted average in this framework

also produces some relevant changes in the estimated mean parameters and a very modest increase in the

precision of estimation. More precisely, the change in the mean parameters when adopting the CCEWMG is

very pronounced for human capital; moreover, when we use such an estimation method, the estimated mean

coefficient for human capital varies greatly (from -0.329 to 0.444) depending on the adopted specification

and is never significant. This could further confirm that the quantity of education does not affect TFP.

The other estimated mean parameters are less affected by the use of a weighted average. Adopting other

ways to endogenously determine the appropriate weights could be a focus for future studies and a means of

providing more precise estimates in a heterogeneous panel data environment.
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TABLE B1

Benchmark estimation results: additional results

MG EB IEB HB WMG

(i) (ii) (iii) (iv) (v)

logSd 0.071 0.088 0.088* 0.089** 0.067

(0.062) (0.060) (0.046) (0.044) (0.065)

logSf 0.207 0.200 0.203* 0.208** 0.118

(0.144) (0.143) (0.115) (0.101) (0.121)

logH 0.627 0.553 0.481 0.465 0.097

(0.484) (0.478) (0.323) (0.296) (0.364)

Notes:

MG: Mean Group.

EB: two-step Empirical Bayes.

IEB: Iterative Empirical Bayes.

HB: Hierarchical Bayes.

WMG: Weighted Mean Group.

***, **, *: significant at 1%, 5%, 10%, respectively.

Standard errors in brackets.

13



TABLE B2

CCEMG and CCEWMG

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

CCEMG

logSd -0.00734 0.0904 0.0551 0.0558 0.00204 0.0757 0.00973 0.0943

(0.0931) (0.0674) (0.0648) (0.0656) (0.0961) (0.0701) (0.106) (0.0623)

logSf -0.0755 0.00405 -0.116

(0.350) (0.361) (0.384)

logSf LP 0.0351** -0.00332 0.0154

(0.0178) (0.0170) (0.0165)

m∗ logSf 0.0170* 0.0171 0.0183**

(0.0101) (0.0509) (0.00714)

m ∗ logSf LP 0.0160 0.00501 0.0150

(0.0132) (0.0591) (0.0138)

logH

CCEWMG

0.523

(0.675)

0.453

(0.586)

0.425

(0.638)

0.467

(0.620)

0.398

(0.699)

0.593

(0.640)

0.471

(0.746)

0.716

(0.652)

logSd 0.0194 0.0717 0.0304 0.0323 0.0475 0.0695 0.0580 0.0726

(0.0906) (0.0677) (0.0627) (0.0635) (0.0753) (0.0695) (0.0837) (0.0657)

logSf -0.243 -0.0364 -0.159

(0.345) (0.394) (0.421)

logSf LP 0.0444** 0.0110 0.0350***

(0.0201) (0.0156) (0.0133)

m∗ logSf 0.0125 -0.0542* 0.0185**

(0.00957) (0.0277) (0.0077)

m ∗ logSf LP 0.0116 0.0717* 0.0166

(0.0141) (0.0427) (0.0139)

logH 0.444 0.0765 -0.329 -0.214 0.295 -0.101 0.299 -0.110

(0.710) (0.528) (0.434) (0.460) (0.737) (0.487) (0.825) (0.417)

CD

â

ã

-3.179

-0.077

0.406

-3.199

-0.180

0.305

-2.465

0.151

0.416

-2.663

0.045

0.349

-3.228

-0.340

0.146

-2.694

0.217

0.522

-3.132

-0.232

0.216

-2.995

0.092

0.500

Notes.

CCEMG: Common Correlated Effects Mean Group

CCEWMG: Common Correlated Effects Weighted Mean Group

***, **, *: significant at 1%, 5%, 10%, respectively

Standard errors in brackets.

â: bias-corrected version of a given by equation (13) in Bailey et al. (2015).

ã: robust estimator of a correcting for both serial correlation in the factors and weak cross-sectional dependence in the error term.

We use four principal components when estimating equation (30) in Bailey et al. (2015).
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