The following document is intended for online publication only (authors’ webpage).



Supplement to “Identification and Estimation of
Distributional Impacts of Interventions Using
Changes in Inequality Measures”, Part I: Proofs,
derivations and some additional technical material

Sergio Firpo (sergio.firpo@fgv.br)
Cristine Pinto (cristine.pinto@fgv.br)

December 2014

1 Introduction

In the accompanying paper to this supplement we presented several theoretical results. We did not, however,
provide formal proofs for their validity in that paper. In this supplement we establish formally and in a very
detailed manner the validity of those results. We also present for the sake of completeness some specific
formulas of influence functions used in that paper. In particular, we present the formulas for the Coefficient
of Variation, the Interquartile Range, the Theil Index and the Gini Coefficient.

2 Lemmal

Proof of Lemma 1. A proof of this Lemma has two parts. The first concerns the identification of the
marginal (and conditional on T' = 1) CDF's of potential outcomes and is omitted because it follows trivially
from Firpo (2007), Lemma 1. The second part follows by the definition of ITE parameters. They are
differences in the functionals of these marginal (conditional on T" = 1) identified distributions and therefore
they can be expressed as functions of the observable data (Y, X,7). m

3 Lemma 2

Proof of Lemma 2. The proof of this second lemma is based on a similar decomposition to that
presented in the appendix of Hirano, Imbens and Ridder (2003, henceforth HIR) and therefore we use
the same notation to what had been used in that paper. Thus, our estimator of the propensity score is

p() =px () = A (HK ()T ﬁK). In fact, we set notation as in HIR to simplify the comparison of the

decomposition presented below with results presented in their appendix. We break down the difference



VN (ﬁ{:’ (y) — FY (y)) into six components:

VN (¥ () = F¥ ) M
= \/% ; (w (T, P (X)) I{Y; <y} —w (Ti,p (Xu)) I{Y; <y} (2)
ow (Ti,p (X3))
p (X0) H{Y; <y} 0k (Xi) —p(X3)))

) pr(x)

7%;\%{( )<¢pK<T§i)ff{—();j<xl)>> W
+\/1Ng(% (X)) — Wk (X )(¢pKT pf_();;(x)) %)
+\/1N§<\P <\/pKT pf(_();,j(X)) o (X0 (\/pT p(X)(Xi))>> ©
+\/1N§<w(n,p<xi>>'ﬂms@/}F;J())wo (pr p(X)(Xi)) G

with

Ty (x):/XE[awg;,(p)( ) z} A (HK ()T 7 ) 2SN (HK WK)I;:;

Uy (m):/XE [6“ g;’(i’)( ) z} N (Hi ()7 mic) Hic ()T dF (2) S50 A (Hic () wK)HQK
o (x) 5 | 22052 () 4 VaeoIaerIen) <1(o§

and

Sk = [A' (HK x)" m() Hy (X) Hx (X)T]

Sx = ;A' (Hx (X0)T ) Hic (X) Hic (X0)T

where Tx lies between Tx and 7x.
Now we show that each term can be bounded uniformly in y.



By Taylor expansion,

0w (Ti, p (Xi))

w(Ti, P (X)) = w (Ti, p (X3)) + (Px (Xi) —p(X4)) + Op (|Px (X3) — p(X0)[7) -

Ip (Xi)
We can rewrite (2) as,
RO (i (x) - p ) - i (20201 gy; <4 e () - p X))
= 0, (VN Ipx (X2) =p(X)IP) ,
where by triangle inequality
i (X0) —p (X < i (X0) — prc (XN + lpse ()~ p (XD (1)

By the mean value theorem,

Pre () = prc () = A (Hrc (2) 7o) Hic () (e = ms0).

Using this result, the first component of (11) is therefore
P (Xi) = prc (X)|* < COC (K (N))* |7k — x|

where ¢ (K) = sup, ||Hk (z)||. Next, using Lemma 1 in the appendix of HIR, the first term of the sum in
(11) is bounded by

1B (X:) = prc (X0)II” = O, (CC(K (V) K77 ) .
Using again Lemma 2 in the appendix of HIR, we can bound the last term in the expansion,

Ipx (Xi) —p (X0)|? = O, (@) .

At the end,

0y (VNI (X0) = p (X)) = Oy (g(Ki\/](va +0, (VNC(K (N)? K~ 7).



Now, we find a bound on (3). First, we rewrite this term as

jﬁz (2 Dy, < o} (e ()~ e (1) (12)
0 (T,p (z) "
_/XE[T().H{Y@} o| G () = i (0 aF (o))
Z (2 v <) o (60 - 0 () (13)
—AE{%-H{YS@/} o| o 0) - p @) @)

and denote (13) by Vk. Note that E [Vx] = 0 and that

varvi) = 8 |var | (2 SEEED ) 1y < x| o ) - 0002

o
0
+Var {E[WH{Y<ZJ}‘ } <X>—p<X>>}

< Bls| (2L 1y <) X} (pK(X>—p<X)>2]
< CCE(N)? K7
and .
B [[Vicl] < /Tar[Vid] < O (K (N) K%
and

sup |Vic| = 0, (¢ (K (V) K~%).

Now consider (12), by the mean value theorem this term can be rewritten as

\ﬁ Z {Lpiﬂ)ﬂ{n < yp A (Hx (X0 7x) Hic (X))

SEE

By a second application of the mean value theorem, we write the first term in the expression above as

1:] A (HK ()7 %K) Hy ()T dF (1:)] (Gx — 1K),

Wik vy + Wak vy — Wak ()
with
N

1
Wikwy = ﬁz

i=1
/X

{wm < ypA (Hi (X)) 7)) Hic (X2)T

&

{aw Tp(:c

x] A (HK ()" m{) Hy (z)" dF (:c)] :



Wak(ny = 2\1ﬁ Z O (T: I;((‘)X))H{Yl <y} A (HK (Xi)" %K> Hi (X;)Hg (Xi)" (Fx — 7K)

and

_ 1 ow (T, p (x))
Wakny) = ﬁ L:ZIE |: ap (2)

m] A (HK ()7 %K) Hx (2) Hy ()7 dF (z) (Fx — 7x)

where %K lies between Tx and 7. First, we calculate the variance of Wik Ny,

Var [Wikan] = E:Var{ é % () ))]I{Y<y}‘ } (HK (X)TTI'K))QHK (X) Hx (X)T}
+Var {E[ 0w (T, (X () ))]I{Y<y}‘ } (HK (X)Tm) Hy (X)T]
< E _E{(awg(p() ))> 1{Y <y} ] (A (HK (X)TW))QHK (X) Hy (X)T}

IA

CE [HK (X) Hy (X)T]

and hence

\/tr (Var [Wikn])

< C\/tr(E[HK(X)HK(X)TD
< CC(K(N)). (14)

< ‘ w (T (() Digy <ypa’ (HK(X)T%K)‘HHK(X)HK(X)TH”%K_WK”

B [[|Wixew ]

IA

Now, working with Wy (ny, we first notice that for (Y, X,T') and all y,

H ow (T, p (X))
ap (X)

Y <y} A" (Hx (X)7 Fi) Hic (X) Hic (X) " (Fic = 7x0)

and note that,

1 < b (e (07 o) | e () i (07 | e =

and,

By analogy we work with Wsk (),

A

< CC(K(N))?.




Using the triangle and Cauchy-Schwartz inequality,

- K (N))?
E H(W1K<N> + Warwy) — Wakw) | (R — TrK)H < ol \/(N)) .
Combining the bounds above, we have
sup ( D1y < 93 (o (%)~ p(X0)
yeyY

/E[ X" § 5 o] e @) - e ar @)
= 0y (c(x

) K )+Op<<<K\/%v>>2).

Now, we work with (4). Note that

o [ o[zt

QAR
+ [ 8]

Using the mean value expansion we obtain,

v [zt

ap:c
- [E[ee

and define dw (T, p ()
K= /XE{ pr(z;’)

Using this definition, we can rewrite (8) as

:c] (P (2) — p () dF ()

]( (2) - px (2)) dF ()

0
“733)) o| e (0) - p ) ar @)

x} (e () — pic (2)) dF (2)

x} A (HK ()" %K) Hy (2)T dF (2) VN (g — 7x)

[

x} A (HK ()" %K) Hy ()7 dF (z).
3 ow (T, p(2))

U () = /XIE}{ “ap’(z) < z} A (HK (z)T%K) Hi (2)T dF (2) Sy A (HK (x)TwK)HK (x)
= ExSi /N (HK ()7 WK)HK ().

The first order condition of the pseudo-maximum likelihood approach to calculate Tk is

ﬁ:HK (Xi) - (Ti —A (HK (x:)" ﬁK)) —0



and by the mean value theorem,

\/N(?T\K—WK) = (;ZHK (XZ)HK (Xi)TA, (HK (Xi)T%K)> <

and

— px (X))

: Ow(T,p(x))
Since F [ r(e)

sup

Y, [

< CVNC(K(N)K

Now we work with (5). Let us define

e 2[5

w (T, p (z
pa:

x] is bounded away on X we have that

=0 (VNC(K (N) K

} (HK (an)T TK

H{Y<y}' X (ox (0) = p (@) aF @)

2),

(T pK (Xy))

\/pK

) Hy (2)T dF (z).

(1—pr (X))



Using this definition, we can rewrite (9) as

ve@) = [B|2E2Ey <y

9 () z} A (HK (z)" 71'}() Hy (2) T dF (2) Sy A (HK (x)" WK)HK (z)

ExS /A (HK ()" WK)HK ().

Therefore, (5) can be rewritten as:

1 M- T; — (X5) B D el = s
VN ; (‘I’K (X3) =¥k (Xz)) <\/px (Xi)flepK (Xz))> =- (_KEK —EkYg ) - Brw

with
;X
Br(vy = —F= Hg (X5) (Ti — pr (X5)) -
= 7w &
Note that
- w-1 = -1 - = o1 - -1 -1
(:KEK = ) - Brv) = (:K - :K) Sk Brv) + Ex (ZK b ) Br (v
and working with the first term we obtain

~ N e 1 -
‘(EK - EK) EKlBK(N)‘ < ——— ||Bxw | HEK - EKH
)\min (ZK)

where Amin (A) is the smallest eigenvalue of a matrix A. By the mean value theorem and using the fact
that p (z) is bounded away from zero,

- H/XE {W“Y sv} Z} (A" (Hx ()T i) = A (Hie (2)T 7)) Hic ()T dF (2)

()
C [ | (#1x ) 7o) [ ) 4P (2) e = e

IN

IN

c /X | Hx ()| dF (2) [lmse — Fxcl| < O (K (N))? [l — |

and

(Ex —Ex) T Brw| < CC (K () mse = el || B |-

Now, we work with the second term

Bk (E;(1 — EK) BK(N)‘ =

xS (EK - zK) E;QBK(N)’

1 S —1=
Sy 120 ] (S =) w3

min



Define S = L SN A (HK (x)" m() Hi (Xi) Hie (X;)7 and Wi = S 2k,

| (Ex =) e
 1(5w-5e) il (5054}
< ;]ﬁ; Hic (X)T Gxc —7x) A (Fx (X)) 7 ) Hic (%) Hie (%) WKH n
\/lTV x/lﬁi (A" (Hie (X0) T i) Hic (X0) Hie (X0) T =B [A" (Hie (X)) Hi (X) Hic (X)T] ) Wie
< CQ(K (N))Z;HWK — 7| Wkl +
T | 2o 0 (000 ) o 0 )7 = (o 0 )1 (0w
Note that
Wkl < ClExK]
< CC(K(N))
and that

HVar [A’ (HK x)7 m() Hy (X) Hi (X)7 WK] H

= WxVar [A’ (HK x)" m{) Hy (X) Hy (X)T] Wi

IN

Wi E {(A (HK x)" m() Hy (X) Hx (X)T)Q] Wi

< COWgE {(HK (X) Hx (X)Tﬂ Wi
< CC(K(N)*.
Now, we look at B (x)
1 & 1 g
Do) = i 32 i () (7= p(50) + 1 3 e (X (005 = i (X0)

Since p (z)is bounded away from zero and one,

< B [p(X) (1= p (X)) Hie (X) Hie (X) "] +B (0 (X) = pic (X)) Hic (X) Hic (X)7
< Ci¢ (K (N))?+Co¢ (K (N) K™ r
and
E [[| Brawll] < C¢ (K ().
By Cauchy-Schwartz inequality we have

B

T
2

CC(K (N))
VN

(20 20) Setman <




and

At the end,

1 (5 e T; — px (Xi) o [(CE W)
\/N;(WK(X” Vi (X )(\/pK l—pK(X))>’_Op< VN >

Now we work with (6). Since (6) is a sum of iid random variables with mean different than zero, we bound
this term by deriving the order of its second moment,

(o0 (Gt - ()|
e (1= e () (01— p(X)

\/pK 1 PK (;()) p(Q() (1 p(X))

<\IIK(X)< p( ) )—\Ilo(x)< ( ) ))
p(X) (1 -p(X)) p(X)(1—p(X))

\/pK PK (X)) p(Q() (1 p(}())

(@Km( S0 )W( o))
P (1 p (X)) P (1 p (X))

e (x < Tooe) ____Tos( )]
Vrr (X)(1—pr (X)) p(X)(1-p(X))

i 40) ? Tﬁp(X) 2
(5 (X) = Wo (X)) ( p(X)(1—p (X))H

T — pk (X) T —p(X) T —p(X)
Ui (X) (Ui (X) — Vo (X - '
() (e t) (\/PK ) (1 —pk (X)) \/p(X)(l—p(X))> <\/p(X)(1—p(X))>]

We can approximate ¥k (z) as the least squares projection of ¥o (z) on Hg (x \/pK (1-px (z)). If
we assume that Wo (z) is ¢ times continuously differentiable, and using Lemma 1 of HIR we have,

E

= E

+E

|—le

+2-E

= E

+E

+2E

sup |Uo (z) — ¥k (2)] < CK™r

TEX

and hence

2 T—p(X) : _ o 2
B (Vk (X) — ¥ (X)) < p(X)(l_p(X)))] = E[(Tx (X)—To(X))]

CK™ .

IN
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Now, consider the first term in the expansion,

_ ( Top(X)  T-p(X) H
Vex (X)(1-px (X)) Vp(X)(1-p(X))
= B [wc 002 P02 g w(xf( yp(X){l ”))-1) }

p(X
pr (X) (1 —px (X)) Vo (X) (1 - pr (X

E

Using the approximation of Uk (z),

Ux ()2 < Wo (2)% + |Wo ()| CK ™7

and therefore

[ (e (X) —p (X))
B (X)X (1= px <X>>]

o r (X) — p (X)) . (b (X) = p (X))?
B () ) (1= px (X))] oK TE{'%(X”W &) (1 pre (X)J

P p(X)(1-p(X))
pr (X) (1 —px (X))

ow (T, p (X)) p(X) (1—p(X)) (px (X) —p (X))
‘E op (X) 'H{ng}’X” ) ”

IN

E -E{MP(X))-H{Y<y}’X}

IN

dp (X)

(px (X) —p(X))Q]

+CK "B

pr (X) (1 —px (X

Since p (z) is bounded from 0 and 1 on X and using Lemma 1 in the appendix of HIR,

w (T}, p (z)) VP () (L= p (50) (px (X3) — p (X0))?
| o[ 2552 1o <] pre (X0 (1~ pre (X2) ]
(px (X:) = p (X:))? .
< OB e (| S K
and
2> (px (X) —p(X))? 2 ot 9 st
B v ()7 RPN < ong (e (v 7 o Cac (5 ()
< CQ(K(N) K™+,
By analogy,
E —1) } < CC(K(N)?K ™+

o VXA =p(X)
Vil (m X) (1—px (X))

and since ¥ (x) is bounded and px (z) and p (z) are bounded away from 0 and 1,

T — px (X) T —p(X) r—pr(Y)
E |V (X) (Vg (X —‘IJO -
[ (X) (Yk (X) <¢pK Y1 —px (X)) \/p(X)(l—p(X))>< p(X)(l—p(X))>]
C-E[|¥k (X)— T (X)]]

t
CK .

INIA
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Finally,

1 Ti — px (Xi) T — p(Xi)
— 17906 — Wy (X,
N21< ( (\/PK 1—pK(X))> o )<\/p(Xi)(1—p(Xi)))>‘

Combining the bounds, we have

T *P(Xi)

Eggm(ﬁ&“(y)—ww))—jﬁ;{( (Th,p (X)) 1{Y; < g} = F¥ (1) — Wo (X)) (

= 0, (M> +0, (\Fg(K(N))QK—%)

VN

+0 (VNC(K (V) K~#) +0, (“K(N”> +0, (max (K% ¢ (K (V) K %))

V(X

VN
= O (VNG NP K7F) .0, (¢ (N)E KF) + 0, <<<K<N>>)

And under the assumptions on ¢ (K (N)) and s, this sum is 0, (1). =

4 Proof of Theorem 1

This proof is divided into two parts. First we demonstrate that H is P-Donsker, where H is the collection of
measurable functions from (Y x X x {0,1}) = R, H = {9 (Y, X, T, y)| y € Y} that are right continuous and
whose limits from the left exist everywhere in (¥ x X x {0,1}). The space D[Y x X x {0,1}] is equipped
with the uniform norm. This first part of the result be shown in an intermediate lemma. Then in the
second part we apply Donsker’s Theorem.

Lemma S. 1 (Donsker)Under assumptions 2, 3 and 5, for j = A, B, H; = {¢j Y, X,T, y)|y €V} is
Donsker with a finite envelope function.

Proof of Lemma S.1. For notational simplicity we fix and omit subscript j. The measurable collec-

tion of functions W = {I{Y < y}|y € Y} is Donsker since the bracketing number Ny (v, W, Lz (P)) < 2

2

are of the polynomial order (%) . The bracketing integral is finite since it converges at a slower rate

than (%)2 Note that the collection of indicators functions W has a finite envelope function such that
II{Y <y} < 7T (y) < oo

Now, we work the measurable functions K = { Fy (y| X)|y € Y}. Using the proof of Lemma A.2 in Don-
ald and Hsu (2014), we can claim that X is Donsker. In this proof, Donald and Hsu (2014) show that

Np(e,K, L2 (P)) <1+ (é)z, and the bracketing integral is finite since it converges at a slower rate than

(%)2 Donald and Hsu (2014) argue that we can find a collection of 0 = yo < y1 < ... < yx such that

Fy (y;1X) — F, (yj—1| X) < €% for all 1 < j < k. In this case, the approximating functions satisfy the
inequality |Fy (y;—1] X)| < F, and the collection K has a finite envelope function F.

Since p (x) is bounded away from zero and one in X, di (T, X) = w (T, p (X)) is a uniformly bounded mea-
surable function, and d; (T, X) - W is Donske with a finite envelope function. Similarly, define ds (T, X) =

E [W' X] (T —p (X)), d2 (T, X) is a uniformly bounded measurable function, and dz (T, X) - K is

12

p(Xi))

)}



Donsker with a finite envelope function.
Hence, H = {di (T, X) - W+d2 (T, X) - K|y € Y} is Donsker with a finite envelope function.We can find a
finite envelope function for the class H; such that ‘1/)]- (Y, X,T,y)| < ¥ (y) < oo for every y and p;. m
Proof of Theorem 1. In the second part of the proof, we let Px be the empirical measure of the sample
(Y, X,T). Using Lemma 1, H is P-Donsker. Now we apply Donsker’s Theorem (Theorem 19.3 at page 266
of van der Vaart, 1998) to \/ﬁ( E}’,A h F’;A
FyB — FgB
defined by G*4-B with variance-covariance matrix

, which shall converge to a zero mean Gaussian process,

E[GY (s)G** (1)] = E [(¢; (Y, X, T,s) = Iy (5)) - (v, (Y, X, T, t) — Fy2* ()],

for (s,t) € Y x Y, where jand k= A,B. =

5 Proof of Theorem 2

The proof is divided into two parts. In the first part, presented as an intermediate lemma, we fix j = A, B
and (i) derive the asymptotic distribution of v (ﬁ{?), (it) demonstrate that for a fixed y, F\ffﬁ is efficient

for Fy; and (i47) therefore v (ﬁ{?) will be efficient because v is Hadamard. Finally, in the second part, we

derive the asymptotic distribution of the difference v (ﬁg"‘) —v (ﬁgB) and demonstrate that it is efficient.

In what follows, let ~ denote convergence in law.
Lemma S. 2 (Semiparametric Efficiency) For j = A, B, if assumptions 1-6 hold then,
vN (V (ﬁg’) —v (F;’))
- (G
] X
= = wi (Tip(X:)-¢" (Yis Fy)
VN i=1

Ow; (T, p (Xy))

S )

Xi] (T: — p(X2)) + 0p (1)

where Y is the functional v’s Hadamard derivative, ¢* (Yi;-) = ¥ (dv,;-) and dy, is the Dirac measure at

observation i. Moreover, v (ﬁ;u]) is asymptotically efficient.
Proof of Lemma S.2. Again, we fix j and therefore drop the subscript. Using results in Theorem 1,
W(ﬁ? _F;) =G% +op(1) =G
where G is a Gaussian process with variance-covariance matrix given by
E[GG"](s,t) =B[(¢ (Y, X, T,s) — Fy (s)) - (¢ (Y, X, T, 1) — Fy (1))]

for (s,t) € ¥ x Y. Because the map v : F, — R is Hadamard differentiable at Fy € F, we can apply van
der Vaart’s (1998) Theorem 20.8:

VN (v (F?) = v (F9)) = v (Gx: F¥) + 0, (1)

13



And since v is Hadamard differentiable, its functional derivative ¢” (-; Fy') is linear, implying that

VORR) = =S w(Tup (X))o (Vi)

Ow (T, p (X:))

+g | 2L g (vir)

Xi:| (T; — p(Xi))-
We now establish efficiency for v (F\{}) as an estimator for v (Fy'). Consider a (regular) parametric submodel
of the joint distribution of (Y, X,T) with cdf F (y,z,t;0). The log-likelihood is

Inf(y,z,tl0) = tlnfi(ylz,0)+np(z|0)]+ (1—1)[nfo(ylz,0) +1n(1—p(z]0))] +In f (z[0)
tin f1 (y|lz,0) + (1 — t) In fo (y|z,0) + tInp (z]|0) + (1 — ) In (1 — p(z]0)) + In f (z|6)

where for j = 0,1 we use the ignorability assumption to write f (y|z,T = j;0) as f; (y|z,0), which is the
conditional density of Y (j) given z for parameter value 6. Following results in Hahn (1998), we have that
the corresponding score function:

dp (z|0)  (t—p(z|0))
o p(x|0) (1 —p(]0))

where for 5 = 0,1, s; (y|z;0) = dln f; (y|z;0) /dO and s (x]|0) = dln f (x]|0) /df. The tangent space for this
model is:

S (y, @, t]0) = ts1 (yla; 0) + (1 — 1) so (yla; 0) + + s (20)

L={S(yz1): 5y z,1) = ts1 (ylz) + (1 =) so (yz) + a () (t = p()) + s (2)}

where a (x) is a square-integrable function of z,

/ 55 (ylz) f; (ylz:60) = 0, Y, j = 0,1,

[ 5 al6) f (aloo) =o.
and for notational simplicity, p (-|60) = p (*)-

A parameter p () is pathwise differentiable if there is a differentiable zero-mean function F, (Y, X,T’) such
that F, (Y, X,T) € L and for all regular parametric models:

=E[F,(Y,X,T)-S(Y,X,T|0o)]

We specialize p (0) to Fy (y;0), the weighted distribution of Y at a given y € Y, which can be written as
(y;0)
= [ ([ 16 <0 Gz )0 (L (@) 016) £ (1) do
[ ([ 1 < 0k Gl 0) ) 0.1 016)) 1 = p (016 £ (410)
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and calculate its derivative with respect to 6, which can be written as

OFY (y;0)
20

-/ ( [ 1= < o1 Gl.0) 1 el dz) w (Lp (2l0)) p (2/6) f (2/6) da
+f ( [ 1= < 30 el2.0) o el 0 dz) w0 (0,p(2/6)) (1 - p (al6)) f (2]9) de

+/ (/ 1{z < g} f1 (2|2, 0) dz) w (1,p(z0)) dpf[g‘e)f(:cw) dz
_/ (/ 1{z < y}fo (z|z,0) dz) w (0,p (x]0)) wwﬂ@) dx

+f ( [ 1 < 351 ele) dz) w (1,p (210)) p (210) s (]6) f (2]6) da
+f ( [ 16 <o Glno) dz) @ (0, (210)) (1 — p (2]60)) s (2]6) f (2]6) da

s [ ([ 1t < b Gla0y ) 2L EN B EON 01 1 416)
0 Op (al0) dp (al6) (|
+ [ ([0 < o eloyas) 22 DL EN LD (1 ajo) £ 0l0)a

Now, evaluating that derivative at 0o we have

OFY (y; 0) =Ew(T,p (X)) I{Y < y}S(Y,X,T|60)]
89 0=0¢
dw (T,p (X)) dp (X10)
i E{W'“{Y“}‘X} T o,

and after some tedious algebra one can show that

ofu[2

o (T,
op
e {éfg;))) 1Y < )| X] (7 - (X)) 5 (4, 7100

dp (X16)
9

0=0¢

and therefore

OFY (y;0)

0=0¢
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where, for p (0) = F¥ (y;0), we have that

F,(Y,X,T)
= w(T,p(X)) Y <y} — F¥ (y;600)
Ow (T,p (X))
8| 2 < x| @ -p0)

We now show that F, (Y, X,T) € L. We rewrite ¢ (Y, X,T,y) as

Y (Y, X, T,y)
= Tw(l,p(X)) ({Y < y}—Fyx.r (yX,1;00))
+(1-T)w(0,p(X)) (I{Y <y} — Fyix.r (y|X,0;60))

ow (T, p (X))
dp (X) Y <} X}

+w (1,p (X)) Fyix,r (WX, 1;600) —w (0,p (X)) Fyx,7 (¥1X,0;60) ) (T — p (X))
+p(X)w (1,p (X)) Fyix,r (y|X,1;00) + (1 — p (X)) w (0,p (X)) Fyix,1 (y| X, 0; 6o)

+(B

and we can easily check that for j =0, 1:

and
FY (y;00) = B [Fy|x.r (ylX, 1;600)w (1,p (X)) p (X) + Fyx,7 (y| X, 0;00) w (0,p (X)) (1 — p(X))] .

According to Bickel, Klaassen, Ritov and Wellner (1993), because the estimator for Fy, F\{:’, is asymptot-
ically linear with influence function F, (Y, X,T) € L, ﬁ? is also asymptotically efficient at P, the joint
distribution of (Y, X,T'). Therefore, since v is Hadamard differentiable, by theorem 25.47 of van der Vaart
(1998) v (ﬁ;@) is asymptotically efficient at P for estimating v (Fy). ®

Proof of Theorem 2. This result follows mechanically from previous lemma. By definition,

VN (A -a)

VN (v (F2) v () - v (Bp4) = v (7))
- (GRE) — @R )
Now, for the efficiency part, let us define the functional vector v : F, — R?. Thus,

VI (v (F22) v (F27) = () — v (7))

S B D)

Result from previous lemma allows us to write

o[ Fan ] ol —e[[ Gl xEn e | o)
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~
WA

e e FuA 17" Foa
and therefore we have that v ~5 is efficient for v Yp . Moreover, v ~5
FyB Fy 1 e

-
. . 1 Fy4
is efficient for { 1 } (v({ Fes ])) ]

6 The Influence Functions of Inequality Measures

For completion, we specify the format of the function ¢” (Y; Fy’) for each one of four inequality mea-
sures considered in this paper: the Gini coefficient, the Theil Index, the Coefficient of Variation and the
Interquartile Range.

6.1 Gini Coefficient

The influence function of the Gini coefficient was derived by Hoeffding (1948) as an example of the results on
the asymptotic distribution of U-Statistics. We follow a more recent literature on the statistical properties
of inequality measures (Cowell, 2000 and Schluter and Trede, 2003), and we write the influence function of
the Gini coefficient as: o

67" (ys F) = Ac (F) + Be (F¥) + Ca (y; FY)

where
A (F2) = 2Re (F2) Ju (FE)
Be (F2) = Ac (F&) /u (F8)
Co (i F) = —2u (F) [y [1 - F¥ (4)] + GL (FE (y) , FY)]
with
Fe)= [ y-dFy
o (F2) /y y- dF¥ ()
FY(y) =Ew(T,p(X)) I{Y < y}]
R(F¥) :/0 GL (p, F2) dp
(Fg) ")
GL (p, F2) = / y-dFE ()
and

p=F ((F) " ().

6.2 Theil Index
Applying the Delta Method, we obtain de influence function of the Theil index,

w w

Theil w 1 w
. _ .1 —_ S B ol
" (s FY) e (y - log (y) —v") )’

(y— )

where
p = (Fy)

v = / y - log (y) - dFY (y)
Yy
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6.3 Coeflicient of Variation

In addition, by an application of the Delta Method, we also obtain the influence function of the Coefficient
of Variation,
1 _w)2 2 P]
(A% w Y 12 [ o) w
6% (g By = SW I 0e VO ()

peeVod o (u)

where
o? = / V2 dFE (y) — (u°)
Yy

6.4 Interquartile Range

Following Ferguson (1996) and Van de Vaart (1998), we define the influence function of the 7-th quantile
of the weighted distribution of Y as

w oy _ Ty < ¢}
T IY) = —— o
1y (a%)
where [y (¢¥) = dFY (¢¥) is the density evaluated at the quantile ¢¥, where 7 = Fy (¢¥) € [0,1]. The
influence function of the interquartile range is the difference of the two quantile influence functions,

qSIQR(y;F?) _ 0.75 *wl {Ziﬁ 4675} 025 *wl {Ziﬁ 9625}
13 (a8 75) Iy (g8 25)

7 Proof of Theorem 3

We divide the proof of this theorem into two parts. We first show in an intermediate lemma that for

Jj= A B, sup,cy ’gj (z) — Hg; (x)T/y\Z'”‘ = 0p (1). Then, we sow that because all of the nonparametric

components of the variance estimator converge uniformly in probability to their population counterparts,
the variance estimator is consistent for the asymptotic variance.

Lemma S. 3 (Uniform Consistency of Regression Component) For j = A, B and under assumptions 1-7

gi (@) — Hx, (2) " 7¢

sup = Op (1)

zeX

Proof of Lemma S.3. Again, we fix j and omit the subscript. Let us define 7%, 75 and 75

N
e . ow (T, p (X))
i = argmin ;:1 <

o0 (X 0" (Vi FY) - Hi (Xi)Tw)

p(X)=p(X;)

T = argrlgnE [(W o (Y,ﬁ?) — Hi (X)" ’Y>T

0w (T,p (X)) | v 3.y _ )
(W.d) (YvFY) HK(X) ’Y) :|

Y% = argminE
Y

Using triangle inequality,

sup g (z) — Hk (z) ' 3%| < sup ‘g(l’)—HK ()" 7%
zeX zeX

+CE) vk =l + 17k = Vil + 17 =&
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where ¢ (K) = sup, ||[Hk (z)||. First, under the assumption that the function g () is s times continuously
differentiable we have that for a fixed K:

sup |g (2) = Hx (2) " 7| < CK 7.
rzeX

We then work with differences in the coefficients:

%1;{())()) (¢ (viFe) - 0" (Yﬁg))} H

C-c(m)- [B 6" (viFE) — " (vi )] |

o HE [HK (x)

IN

Note that because p (-) is bounded away from zero and is less than one, for [ = 0,1

sup w‘ <Ci<supC; =C
zEX dp () 1
and as a result of Theorem 2
B (o (i) o (virm)| < B || 20052 } sup |7 1) — 7 ()] + | (7% — )|
z=F§ Yy
< ONV2
thus
Vi =7l < CC ()N,
Now, the difference
|’YK
_ W (Tisp (Xi)) v (. 70) ) _ Ow (T,p(X)) v (+. 20
= H - Z HK Wd) (Yu Y)) E |:HK (X) ap (X) ¢ (Y’FY):| H
1/2
oo S 1)
o 1/2
= oN (V {HK () % (¢ (v B + (07 (v ) — " (Y;Ffé)))])
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and working with the variance

v [HK (o) 22EEEED (5 (varp) + (o (Vi) o (Y;Fﬁ)))}

0w (T,p (X)) v iy, o

47 [t () 22EEED (o (vi79) - o7 (v ) |

0w(Tp (X)) 0y o
o) e (Vi) Hic (X)

CC (K) B [(¢" (v FY))’]

IN

v {HK (X)

+2

Cov {HK (X)

IA

+0¢* (K) E [(as” (viFE) — o (v; F#))Q]

+OC* (K) Cou [¢" (v; ), (¢ (Vi FF ) — 0" (Vi 1Y) )|
= CC(K)N.

Therefore we have that

7 — 7l = ONV2 (¢ (K)NT) 2 = ONTI( (K) .
Finally,
5% — 3%l
IS 0w (T1,p(X:) 0w (Ti,p (X)) v (v 70
= N ;HK(X”« e e ) (YZ”FY))H
-1 al ow (Thﬁ(Xl)) Ow (Thp(Xl)) v . @
= GLEON Z(( i G )¢ ()
8w (6,0 (@) | o1 8= vy ~o
< CCE) swp |THE ;< (X:) = p (X)) 0" (Vis FY)

and since the second derivative of with respect to p (x) is bounded,we have that

N

7 =A%l < CCOONT 30X —p (X)) ¢ (Vi )
< ccn e (vis F¥) (ug (A" (M, ()" 7 ) Hic, (2)7) u(%K—nK)n+§gg|pK<x>—p(x>|).

=1

Now let us work first with

sup (A" (Hic, () 7 ) Hico ()7 ) G = i)l + sup lpic (@) = p ()

< C(KR) (KFPNTY2 4 Ko )
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and then with

NS (Yi;F;“)' < NS e |+ ZNj(¢>” (Y;;ﬁﬁ)—cb"(n;Fﬁ))H
i=1 i=1 i=1
< 0,(1)+0, (N’lﬂ) .

We reach that P
75 = Al = O¢ () € (Kx) (KYAN T2 4 /)

Therefore, we have that

—sp/2r

0, (€ (K (V)¢ (K- (N) KY2N-7)
(¢ (5 (M) € (1w (V) K7/

(]
Proof of Theorem 3. We have that sup, |p(z) — p (z)| = op (1), for j = A, B, sup,, [g; (z) — g; ()] =

op (1) and sup,,¢y, ﬁ? (y) — Fy? (y)‘ = 0, (1). We can rewrite Vap as

N
% 1 =~ ~ ~ BoaA 1o
Vas = ;h (Ti,Yi,p(Xi) 194 (X3), 9B (X) ;FYA,FYB)
where h is a continuously differentiable function with respect to W = [p(X),ga (X),gn (X), FoA, FeB]T.
—~ o AT .
For convenience, define W = [ﬁ(X) , g4 (X), g8 (X),Fy*, Fy®| . Thus, a simple linearization of Vag

yields

IN

~sup [p(x) — p (z)| sup [ga (z) — ga (z)| sup [g (z) — g (z)|
reEX TeEX TEX

‘VAB - VAB‘ H on

sup F\)U:JB (y) - F;B ()| +op(1) =0, (1).
yey

-sup [Fy? (y) — Fy* (y)
yey

8 Proof of Theorem 4

We divide this proof into two parts. Consider the bootstrap scheme in the main text. First, we show
that given the sample Z, vV N (ﬁb - ﬁ) converges conditionally in distribution to the same limit as

VN A — A). Based on that, we show that we can use the percentile bootstrap to construct confidence

intervals for A.
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Proof of Theorem 4. First part. Fix j = A, B and omit that subscript. In the proof of Theorem 1, we
show that the class of measurable functions H = {¢ (Y, X,T,y)|y € Y} is Donsker with a finite envelope
function. Define £°° (H) as the space of bounded functions on H with supremum norm. From theorems 1
and 2, G% is a sequence of mappings with values onto the normed space, £*° (H), converging in distribution
to the Gaussian Process G*. Following van der Vaart (1998), section 23.2.1, G¥" is a sequence of mappings
with values onto the normed space, £ (H), converging (conditionally on Z) in distribution to G*. Putting
it more formally, we use van der Vaart’s theorem 23.7 to write

sup  |Bz [h(GK)] —E[h(G)]] =5 0
h€BL1 (£%°(H))

where Ez denotes the expectation conditionally on Z = {(Y;, X;, T3) :i =1,..., N}.!
Because v (-) : F, — R is Hadamard differentiable tangentially to the subset F’, and F, C £ (H),
by the Delta-method for bootstrap in probability (Theorem 23.9 in van der Vaart, 1998), condition-

ally on Z, the sequence \/N(I/ (ﬁ%) —v (ﬁ{?)) should converge in distribution to the same limit as
VN (1/ (ﬁ{?) —v (F{})) Consequently and given Z, v N (35 — 8) converges conditionally in distribution

to the same limit as v N (3 - A).
Second part. Fix a with 0 < o < 1. Define the following quantities Fx (r) and Fz. (r) for some r € R as:

Fa(r) = E[l{x/ﬁ(ﬁ—A)gr}]
Fr.(r) = B_lzjv:l{\/ﬁ(ﬁb—ﬁ)gr}

and their inverses evaluated at a as’

—1
do = F5 (a)
* —1

do = F3. (a).

Note that for an appropriate choice of h (+), we could write do = E[h (G*)] and d}, = Ez [h (GX")]. Therefore,
from the first part of the theorem, d, — da —p 0 uniformly.

Now, we show that the bootstrap confidence interval for A, CI* (A, (1 — «) %), can be rewritten using
di_o /o and d7, o

CI" (A, (1 —a)%)

(2A = Aja-a/2)n); 28 = A[(a/m»n])
3_ lfa/Z,E_ a/2) )

( VN VN

!The set BL; (¢*° (H)) consists of all functions h : £>° (H) — [—1,1] that are uniformly Lipschitz.
See van der Vaart (1998), page 332.
2If the cdfs admit flat regions, we then define their inverses (the a—quantiles) as being:

— 1 -~ >
dg, érelﬂfk Fx(d)>a

* — inf Fa > a.
dr ég%FA* (d) >«
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That happens because

p~1 i 1 {&, < A[w]}
b=1

o =
1 3 A N -~ —~

- B gl{W(Ab—A) < \/N(AM _A)}
(9 () = £

Then,
CI* (A, (1—a)%) = <3_ 91‘—\/%/273_ %)

and therefore

PriAcCr (A (-w%)] = Pr[A- d\/ﬁ/ <A<A- f/ﬂ

Fx (di_as2) — Fz (doy2)
1—a/2+ Fx (di_aj2) = Fa (di—as2) — (@/2+ F3 (days) — Fa (day2))

- Pl_aa

which holds since F'3 (+) is continuous, implying that Fx (ds) — Fx (do) —p 0 uniformly. m
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