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1 Introduction
In the accompanying paper to this supplement we presented several theoretical results. We did not, however,
provide formal proofs for their validity in that paper. In this supplement we establish formally and in a very
detailed manner the validity of those results. We also present for the sake of completeness some speci�c
formulas of in�uence functions used in that paper. In particular, we present the formulas for the Coe¢ cient
of Variation, the Interquartile Range, the Theil Index and the Gini Coe¢ cient.

2 Lemma 1
Proof of Lemma 1. A proof of this Lemma has two parts. The �rst concerns the identi�cation of the
marginal (and conditional on T = 1) CDFs of potential outcomes and is omitted because it follows trivially
from Firpo (2007), Lemma 1. The second part follows by the de�nition of ITE parameters. They are
di¤erences in the functionals of these marginal (conditional on T = 1) identi�ed distributions and therefore
they can be expressed as functions of the observable data (Y;X; T ).

3 Lemma 2
Proof of Lemma 2. The proof of this second lemma is based on a similar decomposition to that
presented in the appendix of Hirano, Imbens and Ridder (2003, henceforth HIR) and therefore we use
the same notation to what had been used in that paper. Thus, our estimator of the propensity score isbp (�) = bpK (�) � �

�
HK (�)> b�K�. In fact, we set notation as in HIR to simplify the comparison of the

decomposition presented below with results presented in their appendix. We break down the di¤erence
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p
N
� bF b!

Y (y)� F!
Y (y)

�
into six components:

p
N
� bF b!

Y (y)� F!
Y (y)

�
(1)

=
1p
N

NX
i=1

(! (Ti; bpK (Xi)) I fYi � yg � ! (Ti; p (Xi)) I fYi � yg (2)

�@! (Ti; p (Xi))

@p (Xi)
I fYi � yg (bpK (Xi)� p (Xi)) )

+
1p
N

NX
i=1

�
@! (Ti; p (Xi))

@p (Xi)
I fYi � yg (bpK (Xi)� p (Xi))

�
Z
X
E
�
@! (Ti; p (x))

@p (x)
� I fYi � yg

����x� (bpK (x)� p (x)) dF (x)

�
(3)

+
p
N

Z
X
E
�
@! (T; p (x))

@p (x)
� I fY � yg

����x� (bpK (x)� p (x)) dF (x)

� 1p
N

NX
i=1

e	K (Xi)

 
Ti � pK (Xi)p

pK (Xi) (1� pK (Xi))

!
(4)

+
1p
N

NX
i=1

�e	K (Xi)�	K (Xi)
� Ti � pK (Xi)p

pK (Xi) (1� pK (Xi))

!
(5)

+
1p
N

NX
i=1

 
	K (Xi)

 
Ti � pK (Xi)p

pK (Xi) (1� pK (Xi))

!
�	0 (Xi)

 
Ti � p (Xi)p

p (Xi) (1� p (Xi))

!!
(6)

+
1p
N

NX
i=1

(! (Ti; p (Xi)) � I fYi � yg � F!
Y (y)) + 	0 (Xi)

 
Ti � p (Xi)p

p (Xi) (1� p (Xi))

!
(7)

with

e	K (x) = Z
X
E
�
@! (Ti; p (z))

@p (z)
� I fYi � yg

���� z��0 �
HK (z)

> e�K�HK (z)
> dF (z) e��1K r�0

�
HK (x)

> �K
�
HK (x)

(8)

	K (x) =

Z
X
E
�
@! (Ti; p (z))

@p (z)
� I fYi � yg

���� z��0 �
HK (z)

> �K
�
HK (z)

> dF (z)��1K

r
�0
�
HK (x)

> �K
�
HK (x)

(9)

	0 (Xi) = E
�
@! (Ti; p (x))

@p (x)
� I fYi � yg

����x�pp (Xi) (1� p (Xi)) (10)

and
�K = E

h
�
0 �
HK (X)

> �K
�
HK (X)HK (X)

>
i

e�K =
1

N

NX
i=1

�
0 �
HK (Xi)

> e�K�HK (Xi)HK (Xi)
> ;

where e�K lies between b�K and �K .
Now we show that each term can be bounded uniformly in y.
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By Taylor expansion,

! (Ti; bpK (Xi)) = ! (Ti; p (Xi)) +
@! (Ti; p (Xi))

@p (Xi)
(bpK (Xi)� p (Xi)) +Op

�
kbpK (Xi)� p (Xi)k2

�
:

We can rewrite (2) as,

1p
N

@! (Ti; p (Xi))

@p (Xi)
(bpK (Xi)� p (Xi))�

1p
N

NX
i=1

�
@! (Ti; p (Xi))

@p (Xi)
I fYi � yg (bpK (Xi)� p (Xi))

�
= Op

�p
N kbpK (Xi)� p (Xi)k2

�
;

where by triangle inequality

kbpK (Xi)� p (Xi)k2 � kbpK (Xi)� pK (Xi)k2 + kpK (Xi)� p (Xi)k2 : (11)

By the mean value theorem,

bpK (x)� pK (x) = �
0 �
HK (x)

> e�K�HK (x)
> (b�K � �K) :

Using this result, the �rst component of (11) is therefore

kbpK (Xi)� pK (Xi)k2 � C� (K (N))2 kb�K � �Kk2

where � (K) = supx kHK (x)k. Next, using Lemma 1 in the appendix of HIR, the �rst term of the sum in
(11) is bounded by

kbpK (Xi)� pK (Xi)k2 = Op
�
C� (K (N))2K� s

r

�
:

Using again Lemma 2 in the appendix of HIR, we can bound the last term in the expansion,

kpK (Xi)� p (Xi)k2 = Op

�
� (K (N))

N

�
:

At the end,

Op
�p

N kbpK (Xi)� p (Xi)k2
�
= Op

�
� (K (N))p

N

�
+Op

�p
N� (K (N))2K� s

r

�
:
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Now, we �nd a bound on (3). First, we rewrite this term as

1p
N

NX
i=1

�
@! (Ti; p (Xi))

@p (Xi)
I fYi � yg (bpK (Xi)� pK (Xi)) (12)

�
Z
X
E
�
@! (T; p (x))

@p (x)
� I fY � yg

����x� (bpK (x)� pK (x)) dF (x)

�
+

1p
N

NX
i=1

�
@! (Ti; p (Xi))

@p (Xi)
I fYi � yg (pK (Xi)� p (Xi)) (13)

�
Z
X
E
�
@! (T; p (x))

@p (x)
� I fY � yg

����x� (pK (x)� p (x)) dF (x)

�
and denote (13) by VK . Note that E [VK ] = 0 and that

Var [VK ] = E
�
Var

��
@! (T; p (X))

@p (X)

�
I fY � yg

����X� (pK (X)� p (X))2
�

+Var
�
E
�
@! (T; p (X))

@p (X)
I fY � yg

����X� (pK (X)� p (X))

�
� E

"
E

"�
@! (T; p (X))

@p (X)

�2
I fY � yg

�����X
#
(pK (X)� p (X))2

#
� C� (K (N))2K� s

r

and
E [jVK j] �

p
Var [VK ] � C� (K (N))K� s

2r

and
sup
y2Y

jVK j = Op
�
� (K (N))K� s

2r

�
:

Now consider (12), by the mean value theorem this term can be rewritten as

1p
N

NX
i=1

�
@! (Ti; p (Xi))

@p (Xi)
I fYi � yg�

0 �
HK (Xi)

> e�K�HK (Xi)
>

�
Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x��0 �
HK (x)

> e�K�HK (x)
> dF (x)

�
(b�K � �K) :

By a second application of the mean value theorem, we write the �rst term in the expression above as

W1K(N) +W2K(N) �W3K(N)

with

W1K(N) =
1p
N

NX
i=1

�
@! (Ti; p (Xi))

@p (Xi)
I fYi � yg�

0 �
HK (Xi)

> �K
�
HK (Xi)

>

�
Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x��0 �
HK (x)

> �K
�
HK (x)

> dF (x)

�
;
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W2K(N) =
1

2
p
N

NX
i=1

@! (Ti; p (Xi))

@p (Xi)
I fYi � yg�

00 �
HK (Xi)

> ee�K�HK (Xi)HK (Xi)
> (e�K � �K)

and

W3K(N) =
1

2
p
N

NX
i=1

E
�
@! (T; p (x))

@p (x)
I fY � yg

����x��00 �
HK (x)

> ee�K�HK (x)HK (x)
> dF (x) (e�K � �K)

where ee�K lies between e�K and �K . First, we calculate the variance of W1K(N);

Var
�
W1K(N)

�
= E

�
Var

�
@! (T; p (X))

@p (X)
I fY � yg

����X���0 �
HK (X)

> �K
��2

HK (X)HK (X)
>
�

+Var
�
E
�
@! (T; p (X))

@p (X)
I fY � yg

����X��0 �
HK (X)

> �K
�
HK (X)

>
�

� E

"
E

"�
@! (T; p (X))

@p (X)

�2
I fY � yg

�����X
#�
�
0 �
HK (X)

> �K
��2

HK (X)HK (X)
>

#
� CE

h
HK (X)HK (X)

>
i

and hence

E
�W1K(N)

� �
q
tr
�
Var

�
W1K(N)

��
� C

r
tr
�
E
h
HK (X)HK (X)

>
i�

� C� (K (N)) : (14)

Now, working with W2K(N); we �rst notice that for (Y;X; T ) and all y,@! (T; p (X))@p (X)
I fY � yg�

00 �
HK (X)

> ee�K�HK (X)HK (X)
> (e�K � �K)


�

����@! (T; p (X))@p (X)
I fY � yg�

00 �
HK (X)

> ee�K����� HK (X)HK (X)
>
 ke�K � �Kk

and note that,

E
�����@! (T; p (X))@p (X)

I fY � yg�
00 �

HK (X)
> ee�K����� HK (X)HK (X)

>
 ke�K � �Kk

�
� C

� (K (N))
3
2

p
N

and,
E
�W2K(N)

� � C� (K (N))
3
2 :

By analogy we work with W3K(N);pN2
Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x��00 �
HK (x)

0 ee�K�HK (x)HK (x)
> dF (x) (e�K � �K)


� C� (K (N))

3
2 :
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Using the triangle and Cauchy-Schwartz inequality,

E
h����W1K(N) +W2K(N) �W3K(N)

�>
(b�K � �K)

���i � C
� (K (N))2p

N
:

Combining the bounds above, we have

sup
y2Y

����� 1pN
NX
i=1

�
@! (Ti; p (Xi))

@p (Xi)
I fYi � yg (bpK (Xi)� p (Xi))

�
Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x� (bpK (x)� p (x)) dF (x)

�����
= Op

�
� (K (N))K� s

2r

�
+Op

�
� (K (N))2p

N

�
:

Now, we work with (4). Note that

p
N

Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x� (bpK (x)� p (x)) dF (x)

=
p
N

Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x� (bpK (x)� pK (x)) dF (x)

+
p
N

Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x� (pK (x)� p (x)) dF (x) :

Using the mean value expansion we obtain,

p
N

Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x� (bpK (x)� pK (x)) dF (x)

=

Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x��0 �
HK (x)

> e�K�HK (x)
> dF (x)

p
N (b�K � �K)

and de�ne e�K �
Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x��0 �
HK (x)

> e�K�HK (x)
> dF (x) :

Using this de�nition, we can rewrite (8) as

e	K (x) =

Z
X
E
�
@! (T; p (z))

@p (z)
I fY � yg

���� z��0 �
HK (z)

> e�K�HK (z)
> dF (z)��1K

r
�0
�
HK (x)

> �K
�
HK (x)

= e�K e��1K r�0
�
HK (x)

> �K
�
HK (x) :

The �rst order condition of the pseudo-maximum likelihood approach to calculate b�K is

NX
i=1

HK (Xi) �
�
Ti � �

�
HK (Xi)

> b�K�� = 0
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and by the mean value theorem,

p
N (b�K � �K) =

 
1

N

NX
i=1

HK (Xi)HK (Xi)
> �

0 �
HK (Xi)

> e�K�!�1 1p
N

NX
i=1

HK (Xi) � (Ti � pK (Xi))

!

= e��1K
 

1p
N

NX
i=1

HK (Xi) � (Ti � pK (Xi))

!

and

p
N

Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x� (bpK (x)� pK (x)) dF (x)

=

Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x��0 �
HK (x)

> e�K�HK (x)
> dF (x)

p
N (b�K � �K)

=
1p
N

NX
i=1

e�K � e��1K �
r
�0
�
HK (Xi)

> �K
�
�HK (Xi) �

(Ti � pK (Xi))r
�0
�
HK (Xi)

> �K
�

=
1p
N

NX
i=1

e	K (Xi) �
(Ti � pK (Xi))r
�0
�
HK (Xi)

> �K
�

=
1p
N

NX
i=1

e	K (Xi) �
(Ti � pK (Xi))p

pK (Xi) (1� pK (Xi))

and hence�����pN
Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x� (bpK (x)� p (x)) dF (x)� 1p
N

NX
i=1

e	K (Xi) �
(Ti � pK (Xi))p

pK (Xi) (1� pK (Xi))

�����
=

����pN Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x� (pK (x)� p (x)) dF (x)

���� :
Since E

h
@!(T;p(x))
@p(x)

���xi is bounded away on X we have that

sup
y2Y

����pN Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����X� (pK (x)� p (x)) dF (x)

����
� C

p
N� (K (N))K� s

2r = O
�p

N� (K (N))K� s
2r

�
:

Now we work with (5). Let us de�ne

�K �
Z
X
E
�
@! (T; p (x))

@p (x)
I fY � yg

����x��0 �
HK (x)

> �K
�
HK (x)

> dF (x) :
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Using this de�nition, we can rewrite (9) as

	K (x) =

Z
X
E
�
@! (T; p (z))

@p (z)
I fY � yg

���� z��0 �
HK (z)

> �K
�
HK (z)

> dF (z)��1K

r
�0
�
HK (x)

> �K
�
HK (x)

= �K�
�1
K

r
�0
�
HK (x)

> �K
�
HK (x) :

Therefore, (5) can be rewritten as:

1p
N

NX
i=1

�e	K (Xi)�	K (Xi)
� Ti � pK (Xi)p

pK (Xi) (1� pK (Xi))

!
= �

�
�K�

�1
K � e�K e��1K � �BK(N)

with

BK(N) =
1p
N

NX
i=1

HK (Xi) (Ti � pK (Xi)) :

Note that �
�K�

�1
K � e�K e��1K � �BK(N) = ��K � e�K� e��1K BK(N) + �K

�
��1K � e��1K �BK(N)

and working with the �rst term we obtain�����K � e�K� e��1K BK(N)

��� � 1

�min
�e�K�

BK(N)�K � e�K
where �min (A) is the smallest eigenvalue of a matrix A. By the mean value theorem and using the fact
that p (x) is bounded away from zero,�K � e�K

=

Z
X
E
�
@! (T; p (z))

@p (z)
I fY � yg

���� z���0 �
HK (z)

> �K
�
� �

0 �
HK (z)

> e�K��HK (z)
> dF (z)


� C

Z
X

�������HK (z)
> ee�K���� kHK (z)k2 dF (z) k�K � e�Kk

� C

Z
X
kHK (z)k2 dF (z) k�K � e�Kk � C� (K (N))2 k�K � e�Kk

and �����K � e�K� e��1K BK(N)

��� � C� (K (N))2 k�K � e�KkBK(N) :
Now, we work with the second term����K ���1K � e�K�BK(N)��� =

����K��1K �e�K � �K� e��1K BK(N)

���
� 1

�min(e�K)
BK(N)�e�K � �K���1K �K

 :
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De�ne b�K = 1
N

PN
i=1 �

0
�
HK (Xi)

> �K
�
HK (Xi)HK (Xi)

> and WK = ��1K �K ;

�e�K � �K�WK


�

�e�K � b�K�WK

+ �b�K � �K�WK


� 1

N

NX
i=1

HK (Xi)
> (e�K � �K) �

00 �
HK (Xi)

> ee�K�HK (Xi)HK (Xi)
>WK

+
1p
N

 1p
N

NX
i=1

�
�
0 �
HK (Xi)

> �K
�
HK (Xi)HK (Xi)

> � E
h
�
0 �
HK (X)

> �K
�
HK (X)HK (X)

>
i�
WK


� C� (K (N))3 k�K � e�Kk kWKk+

1p
N

 1p
N

NX
i=1

�
�
0 �
HK (Xi)

> �K
�
HK (Xi)HK (Xi)

> � E
h
�
0 �
HK (X)

> �K
�
HK (X)HK (X)

>
i�
WK

 :
Note that

kWKk � C k�Kk
� C� (K (N))

and that Var h�0 �
HK (X)

> �K
�
HK (X)HK (X)

>WK

i
= W

>
KVar

h
�
0 �
HK (X)

> �K
�
HK (X)HK (X)

>
i
WK

� W
>
KE

��
�
0 �
HK (X)

> �K
�
HK (X)HK (X)

>
�2�

WK

� CW
>
KE

��
HK (X)HK (X)

>
�2�

WK

� C� (K (N))4 :

Now, we look at BK(N)

BK(N) =
1p
N

NX
i=1

HK (Xi) (Ti � p (Xi)) +
1p
N

NX
i=1

HK (Xi) (p (Xi)� pK (Xi)) :

Since p (x) is bounded away from zero and one,

Var
�
BK(N)

�
� E

h
p (X) (1� p (X))HK (X)HK (X)

>
i
+ E

h
(p (X)� pK (X))

2HK (X)HK (X)
>
i

� C1� (K (N))2 + C2� (K (N))4K� s
r

and
E
�BK(N)� � C� (K (N))2 :

By Cauchy-Schwartz inequality we have

E
h�����K � e�K� e��1K BK(N)

���i � C� (K (N))
7
2

p
N
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and

E
h����K ���1K � e�K�BK(N)���i � C1

� (K (N))
11
2

p
N

+ C2
� (K (N))3p

N
:

At the end,����� 1pN
NX
i=1

�e	K (Xi)�	K (Xi)
� Ti � pK (Xi)p

pK (Xi) (1� pK (Xi))

!����� = Op

 
� (K (N))

11
2

p
N

!
:

Now we work with (6). Since (6) is a sum of iid random variables with mean di¤erent than zero, we bound
this term by deriving the order of its second moment,

E

" 
	K (X)

 
T � pK (X)p

pK (X) (1� pK (X))

!
�	0 (X)

 
T � p (X)p

p (X) (1� p (X))

!!2#

= E

" 
	K (X)

 
T � pK (X)p

pK (X) (1� pK (X))

!
�	K (X)

 
T � p (X)p

p (X) (1� p (X))

!!2#

+E

" 
	K (X)

 
T � p (X)p

p (X) (1� p (X))

!
�	0 (X)

 
T � p (X)p

p (X) (1� p (X))

!!2#

+2 � E
" 
	K (X)

 
Ti � pK (X)p

pK (X) (1� pK (X))

!
�	K (X)

 
T � p (X)p

p (X) (1� p (X))

!!
� 

	K (X)

 
T � p (X)p

p (X) (1� p (X))

!
�	0 (X)

 
T � p (X)p

p (X) (1� p (X))

!!#

= E

"
	K (X)

2

 
T � pK (X)p

pK (X) (1� pK (X))
� T � p (X)p

p (X) (1� p (X))

!2#

+E

"
(	K (X)�	0 (X))2

 
T � p (X)p

p (X) (1� p (X))

!2#

+2E

"
	K (X) (	K (X)�	0 (X))

 
T � pK (X)p

pK (X) (1� pK (X))
� T � p (X)p

p (X) (1� p (X))

! 
T � p (X)p

p (X) (1� p (X))

!#
:

We can approximate 	K (x) as the least squares projection of 	0 (x) on HK (x)
p
pK (x) (1� pK (x)). If

we assume that 	0 (x) is t times continuously di¤erentiable, and using Lemma 1 of HIR we have,

sup
x2X

j	0 (x)�	K (x)j < CK� t
r

and hence

E

"
(	K (X)�	0 (X))2

 
T � p (X)p

p (X) (1� p (X))

!2#
= E

�
(	K (X)�	0 (X))2

�
� CK� 2t

r :

10



Now, consider the �rst term in the expansion,

E

"
	K (X)

2

 
T � pK (X)p

pK (X) (1� pK (X))
� T � p (X)p

p (X) (1� p (X))

!2#

= E
�
	K (X)

2 (pK (X)� p (X))2

pK (X) (1� pK (X))

�
+ E

"
	K (X)

2

 p
p (X) (1� p (X))p

pK (X) (1� pK (X))
� 1
!2#

:

Using the approximation of 	K (x),

	K (x)
2 � 	0 (x)2 + j	0 (x)jCK� t

r

and therefore

E
�
	K (X)

2 (pK (X)� p (X))2

pK (X) (1� pK (X))

�
� E

�
	0 (X)

2 (pK (X)� p (X))2

pK (X) (1� pK (X))

�
+ CK� s

r E
�
j	0 (X)j

(pK (X)� p (X))2

pK (X) (1� pK (X))

�
� E

"
E
�
@! (T; p (X))

@p (X)
� I fY � yg

����X�2 p (X) (1� p (X))

pK (X) (1� pK (X))
(pK (X)� p (X))2

#

+ CK� s
r E

"����E � @! (T; p (X))@p (X)
� I fY � yg

����X�����
p
p (X) (1� p (X)) (pK (X)� p (X))2

pK (X) (1� pK (X))

##
:

Since p (x) is bounded from 0 and 1 on X and using Lemma 1 in the appendix of HIR,

E

"����E � @w (Ti; p (x))@p (x)
� I fYi � yg

����X�����
p
p (Xi) (1� p (Xi)) (pK (Xi)� p (Xi))

2

pK (Xi) (1� pK (Xi))

#

� CE
�
(pK (Xi)� p (Xi))

2

pK (Xi) (1� pK (Xi))

�
� C� (K (N))2K� s

r

and

E
�
	K (X)

2 (pK (X)� p (X))2

pK (X) (1� pK (X))

�
� C1� (K (N))2K� s

r + C2� (K (N))2K� s
r
� t
r

� C� (K (N))2K� s
r :

By analogy,

E

"
	K (X)

2

 p
p (X) (1� p (X))p

pK (X) (1� pK (X))
� 1
!2#

� C� (K (N))2K� s
r

and since 	K (x) is bounded and pK (x) and p (x) are bounded away from 0 and 1,

E

"
	K (X) (	K (X)�	0 (X))

 
T � pK (X)p

pK (X) (1� pK (X))
� T � p (X)p

p (X) (1� p (X))

! 
T � p (X)p

p (X) (1� p (X))

!#
� C � E [j	K (X)�	0 (X)j]

� CK� t
r :
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Finally,

sup
y2Y

����� 1pN
NX
i=1

 
	K (Xi)

 
Ti � pK (Xi)p

pK (Xi) (1� pK (Xi))

!
�	0 (Xi)

 
Ti � p (Xi)p

p (Xi) (1� p (Xi))

!!�����
= Op

�
max

�
K� t

2r ; � (K (N))K� s
2r

��
:

Combining the bounds, we have

sup
y2Y

�����pN � bF b!
Y (y)� F!

Y (y)
�
� 1p

N

NX
i=1

(
(! (Ti; p (Xi)) � I fYi � yg � F!

Y (y))�	0 (Xi)

 
Ti � p (Xi)p

p (Xi) (1� p (Xi))

!)�����
= Op

�
� (K (N))3p

N

�
+Op

�p
N� (K (N))2K� s

r

�
+Op

�
� (K (N))K� s

2r

�
+Op

�
� (K (N))2p

N

�
+O

�p
N� (K (N))K� s

2r

�
+Op

 
� (K (N))

11
2

p
N

!
+Op

�
max

�
K� t

2r ; � (K (N))K� s
2r

��
= Op

�p
N� (K (N))2K� s

r

�
+Op

�
� (K (N))

5
2 K� s

2r

�
+Op

 
� (K (N))

11
2

p
N

!
:

And under the assumptions on � (K (N)) and s, this sum is op (1) :

4 Proof of Theorem 1
This proof is divided into two parts. First we demonstrate that H is P-Donsker, where H is the collection of
measurable functions from (Y � X � f0; 1g)! R, H = f (Y;X; T; y)j y 2 Yg that are right continuous and
whose limits from the left exist everywhere in (Y � X � f0; 1g). The space D[Y � X � f0; 1g] is equipped
with the uniform norm. This �rst part of the result be shown in an intermediate lemma. Then in the
second part we apply Donsker�s Theorem.

Lemma S. 1 (Donsker)Under assumptions 2, 3 and 5, for j = A;B, Hj =
�
 j (Y;X; T; y)

�� y 2 Y	 is
Donsker with a �nite envelope function.

Proof of Lemma S.1. For notational simplicity we �x and omit subscript j. The measurable collec-
tion of functions W = f I fY � ygj y 2 Yg is Donsker since the bracketing number N[] (

p
";W; L2 (P )) � 2

"

are of the polynomial order
�
1
"

�2
. The bracketing integral is �nite since it converges at a slower rate

than
�
1
"

�2
: Note that the collection of indicators functions W has a �nite envelope function such that

jI fY � ygj � �(y) <1:
Now, we work the measurable functions K = fFY (yjX)j y 2 Yg. Using the proof of Lemma A.2 in Don-
ald and Hsu (2014), we can claim that K is Donsker. In this proof, Donald and Hsu (2014) show that
N[] (";K; L2 (P )) � 1 +

�
1
"

�2
, and the bracketing integral is �nite since it converges at a slower rate than�

1
"

�2
. Donald and Hsu (2014) argue that we can �nd a collection of 0 = y0 < y1 < ::: < yk such that

Fy (yj jX) � Fy (yj�1jX) � "2 for all 1 � j � k: In this case, the approximating functions satisfy the
inequality jFy (yj�1jX)j � F , and the collection K has a �nite envelope function F .
Since p (x) is bounded away from zero and one in X , d1 (T;X) � ! (T; p (X)) is a uniformly bounded mea-
surable function, and d1 (T;X) � W is Donske with a �nite envelope function. Similarly, de�ne d2 (T;X) �
E
h
@!(T;p(X))
@p(X)

���Xi (T � p (X)), d2 (T;X) is a uniformly bounded measurable function, and d2 (T;X) � K is

12



Donsker with a �nite envelope function.
Hence, H = fd1 (T;X) � W+d2 (T;X) � Kj y 2 Yg is Donsker with a �nite envelope function.We can �nd a
�nite envelope function for the class Hj such that

�� j (Y;X; T; y)�� � 	(y) <1 for every y and  j .
Proof of Theorem 1. In the second part of the proof, we let PN be the empirical measure of the sample
(Y;X; T ) : Using Lemma 1, H is P-Donsker. Now we apply Donsker�s Theorem (Theorem 19.3 at page 266

of van der Vaart, 1998) to
p
N

 bF b!A
Y � F!A

YbF b!B
Y � F!B

Y

!
, which shall converge to a zero mean Gaussian process,

de�ned by G!A;B , with variance-covariance matrix

E [G!j (s)G!k (t)] = E
��
 j (Y;X; T; s)� F

!j
Y (s)

�
� ( k (Y;X; T; t)� F

!k
Y (t))

�
;

for (s; t) 2 Y � Y, where j and k = A;B.

5 Proof of Theorem 2
The proof is divided into two parts. In the �rst part, presented as an intermediate lemma, we �x j = A;B

and (i) derive the asymptotic distribution of v
� bF bw

Y

�
; (ii) demonstrate that for a �xed y, bF bw

Y is e¢ cient

for F!
Y ; and (iii) therefore v

� bF bw
Y

�
will be e¢ cient because v is Hadamard. Finally, in the second part, we

derive the asymptotic distribution of the di¤erence v
� bF bwA

Y

�
�v
� bF bwB

Y

�
and demonstrate that it is e¢ cient.

In what follows, let  denote convergence in law.

Lemma S. 2 (Semiparametric E¢ ciency) For j = A;B, if assumptions 1-6 hold then,

p
N
�
�
� bF b!j

Y

�
� �

�
F
!j
Y

��
  �

�
G!jN ;F

!j
Y

�
=

1p
N

NX
i=1

!j (Ti; p (Xi)) � ��
�
Yi;F

!j
Y

�
+E

�
@!j (T; p (Xi))

@p (Xi)
� ��

�
Y ;F

!j
Y

�����Xi

�
(Ti � p (Xi)) + op (1)

where  � is the functional ��s Hadamard derivative, �� (Yi; �) =  � (�Yi ; �) and �Yi is the Dirac measure at
observation i. Moreover, �

� bF b!j
Y

�
is asymptotically e¢ cient.

Proof of Lemma S.2. Again, we �x j and therefore drop the subscript. Using results in Theorem 1,

p
N
� bF b!

Y � F!
Y

�
= G!N + op (1)) G!

where G! is a Gaussian process with variance-covariance matrix given by

E [G!G!] (s; t) = E [( (Y;X; T; s)� F!
Y (s)) � ( (Y;X; T; t)� F!

Y (t))]

for (s; t) 2 Y � Y. Because the map � : F� ! R is Hadamard di¤erentiable at F!
Y 2 F� we can apply van

der Vaart�s (1998) Theorem 20.8:

p
N
�
�
� bF b!

Y

�
� � (F!

Y )
�
=  � (G!N ;F!

Y ) + op (1) :

13



And since � is Hadamard di¤erentiable, its functional derivative  � (�;F!
Y ) is linear, implying that

 � (G!N ;F!
Y ) =

1p
N

NX
i=1

! (Ti; p (Xi)) � �� (Yi;F!
Y )

+E
�
@! (T; p (Xi))

@p (Xi)
� �� (Y ;F!

Y )

����Xi

�
(Ti � p (Xi)) :

We now establish e¢ ciency for �
� bF b!

Y

�
as an estimator for � (F!

Y ). Consider a (regular) parametric submodel

of the joint distribution of (Y;X; T ) with cdf F (y; x; t; �). The log-likelihood is

ln f (y; x; tj�) = t [ln f1 (yjx; �) + ln p (xj�)] + (1� t) [ln f0 (yjx; �) + ln (1� p (xj�))] + ln f (xj�)
= t ln f1 (yjx; �) + (1� t) ln f0 (yjx; �) + t ln p (xj�) + (1� t) ln (1� p (xj�)) + ln f (xj�)

where for j = 0; 1 we use the ignorability assumption to write f (yjx; T = j; �) as fj (yjx; �), which is the
conditional density of Y (j) given x for parameter value �. Following results in Hahn (1998), we have that
the corresponding score function:

S (y; x; tj�) = ts1 (yjx; �) + (1� t) s0 (yjx; �) +
dp (xj�)
d�

(t� p (xj�))
p (xj�) (1� p (xj�)) + s (xj�)

where for j = 0; 1, sj (yjx; �) � d ln fj (yjx; �) =d� and s (xj�) � d ln f (xj�) =d�. The tangent space for this
model is:

L = fS (y; x; t) : S (y; x; t) = ts1 (yjx) + (1� t) s0 (yjx) + a (x) (t� p (x)) + s (x)g

where a (x) is a square-integrable function of x,Z
sj (yjx) fj (yjx; �0) = 0, 8x, j = 0; 1;

Z
s (xj�) f (xj�0) = 0;

and for notational simplicity, p (�j�0) = p (�).
A parameter � (�) is pathwise di¤erentiable if there is a di¤erentiable zero-mean function F� (Y;X; T ) such
that F� (Y;X; T ) 2 L and for all regular parametric models:

@� (�)

@�

����
�=�0

= E [F� (Y;X; T ) � S (Y;X; T j�0)]

We specialize � (�) to F!
Y (y; �), the weighted distribution of Y at a given y 2 Y, which can be written as

F!
Y (y; �)

=

Z �Z
1Ifz � ygf1 (zjx; �) dz

�
! (1; p (xj�)) p (xj�) f (xj�) dx

+

Z �Z
1Ifz � ygf0 (zjx; �) dz

�
! (0; p (xj�)) (1� p (xj�)) f (xj�) dx
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and calculate its derivative with respect to �, which can be written as

@F!
Y (y; �)

@�

=

Z �Z
1Ifz � ygs1 (zjx; �) f1 (zjx; �) dz

�
! (1; p (xj�)) p (xj�) f (xj�) dx

+

Z �Z
1Ifz � ygs0 (zjx; �) f0 (zjx; �) dz

�
! (0; p (xj�)) (1� p (xj�)) f (xj�) dx

+

Z �Z
1Ifz � ygf1 (zjx; �) dz

�
! (1; p (xj�)) dp (xj�)

d�
f (xj�) dx

�
Z �Z

1Ifz � ygf0 (zjx; �) dz
�
! (0; p (xj�)) dp (xj�)

d�
f (xj�) dx

+

Z �Z
1Ifz � ygf1 (zjx; �) dz

�
! (1; p (xj�)) p (xj�) s (xj�) f (xj�) dx

+

Z �Z
1Ifz � ygf0 (zjx; �) dz

�
! (0; p (xj�)) (1� p (xj�)) s (xj�) f (xj�) dx

+

Z �Z
1Ifz � ygf1 (zjx; �) dz

�
@! (1; p (xj�))
@p (xj�)

dp (xj�)
d�

p (xj�) f (xj�) dx

+

Z �Z
1Ifz � ygf0 (zjx; �) dz

�
@! (0; p (xj�))
@p (xj�)

dp (xj�)
d�

(1� p (xj�)) f (xj�) dx:

Now, evaluating that derivative at �0 we have

@F!
Y (y; �)

@�

����
�=�0

= E [! (T; p (X)) 1IfY � ygS (Y;X; T j�0)]

+E

"
E
�
@! (T; p (X))

@p (X)
� 1IfY � yg

����X� dp (Xj�)d�

����
�=�0

#

and after some tedious algebra one can show that

E

"
E
�
@! (T; p (X))

@p (X)
� 1IfY � yg

����X� dp (Xj�)d�

����
�=�0

#

= E
�
E
�
@! (T; p (X))

@p (X)
� 1IfY � yg

����X� (T � p (X))S (Y;X; T j�0)
�

and therefore
@F!

Y (y; �)

@�

����
�=�0

= E [F� (Y;X; T ) � S (Y;X; T j�0)]
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where, for � (�) = F!
Y (y; �), we have that

F� (Y;X; T )

= ! (T; p (X)) 1IfY � yg � F!
Y (y; �0)

+E
�
@! (T; p (X))

@p (X)
1IfY � yg

����X� (T � p (X))

=  (Y;X; T; y)� F!
Y (y; �0) :

We now show that F� (Y;X; T ) 2 L. We rewrite  (Y;X; T; y) as

 (Y;X; T; y)

= T! (1; p (X))
�
1IfY � yg�FY jX;T (yjX; 1; �0)

�
+(1� T )! (0; p (X))

�
1IfY � yg � FY jX;T (yjX; 0; �0)

�
+(E

�
@! (T; p (X))

@p (X)
1IfY � yg

����X�
+! (1; p (X))FY jX;T (yjX; 1; �0)� ! (0; p (X))FY jX;T (yjX; 0; �0) ) (T � p (X))

+p (X)! (1; p (X))FY jX;T (yjX; 1; �0) + (1� p (X))! (0; p (X))FY jX;T (yjX; 0; �0)

and we can easily check that for j = 0; 1:

E
�
! (j; p (X))

�
1IfY � yg�FY jX;T (yjX; j; �0)

�
jX;T = j

�
= 0

and

F!
Y (y; �0) = E

�
FY jX;T (yjX; 1; �0)! (1; p (X)) p (X) + FY jX;T (yjX; 0; �0)! (0; p (X)) (1� p (X))

�
:

According to Bickel, Klaassen, Ritov and Wellner (1993), because the estimator for F!
Y , bF b!

Y , is asymptot-
ically linear with in�uence function F� (Y;X; T ) 2 L, bF b!

Y is also asymptotically e¢ cient at P, the joint
distribution of (Y;X; T ). Therefore, since � is Hadamard di¤erentiable, by theorem 25.47 of van der Vaart

(1998) �
� bF b!

Y

�
is asymptotically e¢ cient at P for estimating � (F!

Y ).

Proof of Theorem 2. This result follows mechanically from previous lemma. By de�nition,

p
N
�b���� �

p
N
�
�
� bF b!A

Y

�
� �

� bF b!B
Y

�
� (� (F!A

Y )� � (F!B
Y ))

�
  �

�
G!AN ;F!A

Y

�
�  � (G!BN ;F!B

Y )

Now, for the e¢ ciency part, let us de�ne the functional vector � : Fv ! R2. Thus,

p
N
�
�
� bF b!A

Y

�
� �

� bF b!B
Y

�
� (� (F!A

Y )� � (F!B
Y ))

�
=

p
N

�
1
�1

�> 
�

 " bF b!A
YbF b!B
Y

#!
� �

��
F!A
Y

F!B
Y

��!
:

Result from previous lemma allows us to write

@

�
F!A
Y (y; �)
F!B
Y (y; �)

��
@�

����
�=�0

= E
��

( A (Y;X; T; y)� F!A
Y (y; �0))

( B (Y;X; T; y)� F!B
Y (y; �0))

�
S (Y;X; T j�0)

�
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and therefore we have that v

 " bF b!A
YbF b!B
Y

#!
is e¢ cient for v

��
F!A
Y

F!B
Y

��
. Moreover,

�
1
�1

�> 
v

 " bF b!A
YbF b!B
Y

#!!

is e¢ cient for
�
1
�1

�>�
v

��
F!A
Y

F!B
Y

���
.

6 The In�uence Functions of Inequality Measures
For completion, we specify the format of the function �� (Y ;F!

Y ) for each one of four inequality mea-
sures considered in this paper: the Gini coe¢ cient, the Theil Index, the Coe¢ cient of Variation and the
Interquartile Range.

6.1 Gini Coe¢ cient
The in�uence function of the Gini coe¢ cient was derived by Hoe¤ding (1948) as an example of the results on
the asymptotic distribution of U-Statistics. We follow a more recent literature on the statistical properties
of inequality measures (Cowell, 2000 and Schluter and Trede, 2003), and we write the in�uence function of
the Gini coe¢ cient as:

�Gini(y;F!
Y ) = AG (F

!
Y ) +BG (F

!
Y ) + CG (y;F

!
Y )

where
AG (F

!
Y ) = 2RG (F

!
Y ) =� (F

!
Y )

BG (F
!
Y ) = AG (F

!
Y ) =� (F

!
Y )

CG (y;F
!
Y ) = �2� (F!

Y )
�1 [y � [1� F!

Y (y)] +GL (F!
Y (y) ; F

!
Y )]

with

� (F!
Y ) =

Z
Y
y � dF!

Y (y)

F!
Y (y) = E [! (T; p (X)) � 1IfY � yg]

R (F!
Y ) =

Z 1

0

GL (p; F!
Y ) dp

GL (p; F!
Y ) =

Z (F!Y )�1(p)
�1

y � dF!
Y (y)

and
p = F!

Y

�
(F!

Y )
�1 (p)

�
:

6.2 Theil Index
Applying the Delta Method, we obtain de in�uence function of the Theil index,

�Theil(y;F!
Y ) =

1

�!
(y � log (y)� v!)� v! + �!

(�!)2
(y � �!)

where
�! = � (F!

Y )

v! =

Z
Y
y � log (y) � dF!

Y (y)
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6.3 Coe¢ cient of Variation
In addition, by an application of the Delta Method, we also obtain the in�uence function of the Coe¢ cient
of Variation,

�CV (y;F!
Y ) =

1

2

(y � �!)2 � �2!
�! �

p
�2!

�
p
�2!

(�!)2
(y � �!)

where

�2! =

Z
Y
y2 � dF!

Y (y)� (�!)2

6.4 Interquartile Range
Following Ferguson (1996) and Van de Vaart (1998), we de�ne the in�uence function of the � -th quantile
of the weighted distribution of Y as

�q
!
� (y;F!

Y ) =
� � 1 fy � q!� g

f!Y (q
!
� )

where f!Y (q
!
� ) = dF!

Y (q
!
� ) is the density evaluated at the quantile q

!
� , where � = F!

Y (q
!
� ) 2 [0; 1]. The

in�uence function of the interquartile range is the di¤erence of the two quantile in�uence functions,

�IQR(y;F!
Y ) =

0:75� 1 fy � q!0:75g
f!Y (q

!
0:75)

� 0:25� 1 fy � q!0:25g
f!Y (q

!
0:25)

7 Proof of Theorem 3
We divide the proof of this theorem into two parts. We �rst show in an intermediate lemma that for

j = A;B; supx2X

���gj (x)�HKj (x)
> b!jlK

��� = op (1). Then, we sow that because all of the nonparametric

components of the variance estimator converge uniformly in probability to their population counterparts,
the variance estimator is consistent for the asymptotic variance.

Lemma S. 3 (Uniform Consistency of Regression Component) For j = A;B and under assumptions 1-7

sup
x2X

���gj (x)�HKj (x)
> b!jK ��� = op (1)

Proof of Lemma S.3. Again, we �x j and omit the subscript. Let us de�ne e!K , !K and !K

e!K = argmin


NX
i=1

 
@! (Ti; p (X))

@p (X)

����
p(X)=p(Xi)

� ��
�
Yi; bF b!

Y

�
�HK (Xi)

> 

!2

!K = argmin

E

"�
@! (T; p (X))

@p (X)
� ��

�
Y ; bF b!

Y

�
�HK (X)

> 

�2#

!K = argmin

E

"�
@! (T; p (X))

@p (X)
� �� (Y ;F!

Y )�HK (X)
> 

�2#
:

Using triangle inequality,

sup
x2X

���g (x)�HK (x)
> b!K��� � sup

x2X

���g (x)�HK (x)
> !K

���
+� (K) (k!K � !Kk+ k

!
K � e!Kk+ ke!K � b!Kk)
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where � (K) = supx kHK (x)k. First, under the assumption that the function g (�) is s times continuously
di¤erentiable we have that for a �xed K:

sup
x2X

���g (x)�HK (x)
> !K

��� � CK� s
r :

We then work with di¤erences in the coe¢ cients:

k!K � !Kk =

E �HK (X)
@! (T; p (X))

@p (X)

�
�� (Y ;F!

Y )� ��
�
Y ; bF b!

Y

���
� C � � (K) �

���E h�� �Y ; bF b!
Y

�
� �� (Y ;F!

Y )
i��� :

Note that because p (�) is bounded away from zero and is less than one, for l = 0; 1

sup
x2X

����@! (l; p (x))@p (x)

���� � Cl � sup
l
Cl = C

and as a result of Theorem 2

���E��� �Y ; bF b!
Y

�
� �� (Y ;F!

Y )
���� � E

"����� @�� (Y ; z)@z

����
z=F!

Y

�����
#
sup
y2Y

��� bF b!
Y (y)� F!

Y (y)
���+ ���� bF b!

Y � F!
Y

����2
� CN�1=2

thus
k!K � !Kk � C� (K)N�1=2:

Now, the di¤erence

k!K � e!Kk
=

N�1
NX
i=1

�
HK (Xi)

@! (Ti; p (Xi))

@p (Xi)
��
�
Yi; bF b!

Y

��
� E

�
HK (X)

@! (T; p (X))

@p (X)
��
�
Y ; bF b!

Y

��
� CN�1=2

�
V
�
HK (X)

@! (T; p (X))

@p (X)
��
�
Y ; bF b!

Y

���1=2
= CN�1=2

�
V
�
HK (X)

@! (T; p (X))

@p (X)

�
�� (Y ;F!

Y ) +
�
��
�
Y ; bF b!

Y

�
� �� (Y ;F!

Y )
����1=2
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and working with the variance

V
�
HK (X)

@! (T; p (X))

@p (X)

�
�� (Y ;F!

Y ) +
�
��
�
Y ; bF b!

Y

�
� �� (Y ;F!

Y )
���

� V
�
HK (X)

@! (T; p (X))

@p (X)
�� (Y ;F!

Y )

�
+V

�
HK (X)

@! (Ti; p (X))

@p (X)

�
��
�
Y ; bF b!

Y

�
� �� (Y ;F!

Y )
��

+2

����Cov �HK (X)
@! (T; p (X))

@p (X)
�� (Y ;F!

Y ) ; HK (X)
@! (T; p (X))

@p (X)

�
��
�
Y ; bF b!

Y

�
� �� (Y ;F!

Y )
������

� C�2 (K)E
h
(�� (Y ;F!

Y ))
2
i

+C�2 (K)E

��
��
�
Y ; bF b!

Y

�
� �� (Y ;F!

Y )
�2�

+C�2 (K)Cov
h
�� (Y ;F!

Y ) ;
�
��
�
Y ; bF b!

Y

�
� �� (Y ;F!

Y )
�i

= C�2 (K)N�1:

Therefore we have that

k!K � e!Kk = CN�1=2 ��2 (K)N�1�1=2 = CN�1� (K) :

Finally,

ke!K � b!Kk
� N�1


NX
i=1

HK (Xi)

��
@! (Ti; bp (Xi))

@p (X)
� @! (Ti; p (Xi))

@p (X)

�
��
�
Yi; bF b!

Y

��
� C� (K)N�1


NX
i=1

��
@! (Ti; bp (Xi))

@p (X)
� @! (Ti; p (Xi))

@p (X)

�
��
�
Yi; bF b!

Y

��
� C� (K) sup

t2f0;1g;x2X

����@2! (t; p (x))@p2 (x)

����N�1


NX
i=1

(bp (Xi)� p (Xi))�
�
�
Yi; bF b!

Y

�
and since the second derivative of with respect to p (x) is bounded,we have that

ke!K � b!Kk � C� (K)N�1


NX
i=1

(bp (Xi)� p (Xi))�
�
�
Yi; bF b!

Y

�
� C� (K)N�1


NX
i=1

��
�
Yi; bF b!

Y

�
�
sup
x2X

�
�
0 �
HK� (x)

> e�K�HK� (x)
>
�
k(b�K � �K)k+ sup

x2X
jpK (x)� p (x)j

�
:

Now let us work �rst with

sup
x2X

�
�
0 �
HK� (x)

> e�K�HK� (x)
>
�
k(b�K � �K)k+ sup

x2X
jpK (x)� p (x)j

� � (K�)
�
K1=2
� N�1=2 +K

�sp=2r
�

�
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and then with

N�1


NX
i=1

��
�
Yi; bF b!

Y

� � N�1


NX
i=1

�� (Yi;F
!
Y )

+N�1


NX
i=1

�
��
�
Yi; bF b!

Y

�
� �� (Yi;F

!
Y )
�

� Op (1) +Op
�
N�1=2

�
:

We reach that
ke!K � b!Kk = C� (K) � (K�)

�
K1=2
� N�1=2 +K

�sp=2r
�

�
:

Therefore, we have that

sup
x2X

���g (x)�HK (x)
> b!K���

= Op
�
K� s

r (N)
�
+Op

�
�2 (K)N�1=2

�
+Op

�
�2 (K (N))N�1�+

+Op
�
�2 (K (N)) � (K� (N))K

1=2
� N�1=2

�
+Op

�
�2 (K (N)) � (K� (N))K

�sp=2r
�

�
= op (1) :

Proof of Theorem 3. We have that supx jbp (x)� p (x)j = op (1), for j = A;B, supx jbgj (x)� gj (x)j =
op (1) and supy2Y

��� bF b!j
Y (y)� F

!j
Y (y)

��� = op (1). We can rewrite bVAB as
bVAB = 1

N

NX
i=1

h
�
Ti; Yi; bp (Xi) ; bgA (Xi) ; bgB (Xi) ; bF b!A

Y ; bF b!B
Y

�

where h is a continuously di¤erentiable function with respect to W = [p (X) ; gA (X) ; gB (X) ; F
!A
Y ; F!B

Y ]
>.

For convenience, de�ne cW =
hbp (X) ; bgA (X) ; bgB (X) ; bF b!A

Y ; bF b!B
Y

i>
: Thus, a simple linearization of bVAB

yields

���bVAB � VAB

��� �
E @h@Z (Ti; Yi;Wi)


� sup
x2X

jbp (x)� p (x)j sup
x2X

jbgA (x)� gA (x)j sup
x2X

jbgB (x)� gB (x)j

� sup
y2Y

��� bF b!A
Y (y)� F!A

Y (y)
��� sup
y2Y

��� bF b!B
Y (y)� F!B

Y (y)
���+ op (1) = op (1) :

8 Proof of Theorem 4
We divide this proof into two parts. Consider the bootstrap scheme in the main text. First, we show

that given the sample Z,
p
N
�b�b � b�� converges conditionally in distribution to the same limit as

p
N
�b����. Based on that, we show that we can use the percentile bootstrap to construct con�dence

intervals for �:
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Proof of Theorem 4. First part. Fix j = A;B and omit that subscript. In the proof of Theorem 1, we
show that the class of measurable functions H = f (Y;X; T; y)j y 2 Yg is Donsker with a �nite envelope
function. De�ne `1 (H) as the space of bounded functions on H with supremum norm. From theorems 1
and 2, G!N is a sequence of mappings with values onto the normed space, `1 (H), converging in distribution
to the Gaussian Process G!. Following van der Vaart (1998), section 23.2.1, G!�N is a sequence of mappings
with values onto the normed space, `1 (H), converging (conditionally on Z) in distribution to G!. Putting
it more formally, we use van der Vaart�s theorem 23.7 to write

sup
h2BL1(`1(H))

jEZ [h (G!�N )]� E [h (G!)]j !p 0

where EZ denotes the expectation conditionally on Z = f(Yi; Xi; Ti) : i = 1; :::; Ng.1
Because � (�) : F� ! R is Hadamard di¤erentiable tangentially to the subset F!

� ; and F� � `1 (H),
by the Delta-method for bootstrap in probability (Theorem 23.9 in van der Vaart, 1998), condition-

ally on Z, the sequence
p
N
�
�
� bF b!

Yb

�
� �

� bF b!
Y

��
should converge in distribution to the same limit as

p
N
�
�
� bF b!

Y

�
� � (F!

Y )
�
. Consequently and given Z,

p
N
�b�b � b�� converges conditionally in distribution

to the same limit as
p
N
�b����.

Second part. Fix � with 0 < � < 1. De�ne the following quantities Fb� (r) and Fb�� (r) for some r 2 R as:

Fb� (r) = E
h
1
np

N
�b���� � r

oi
Fb�� (r) = b�1

NX
b=1

1
np

N
�b�b � b�� � r

o

and their inverses evaluated at � as2

d� = F�1b� (�)

d�� = F�1b�� (�) :

Note that for an appropriate choice of h (�), we could write d� = E [h (G!)] and d�� = EZ [h (G!�N )]. Therefore,
from the �rst part of the theorem, d�� � d� !p 0 uniformly.
Now, we show that the bootstrap con�dence interval for �, CI� (�; (1� �)%), can be rewritten using
d�1��=2 and d

�
�=2:

CI� (�; (1� �)%)

=
�
2b�� b�[(1��=2)�b]; 2b�� b�[(�=2)�b]

�
=

�b�� d�1��=2p
N

; b�� d��=2p
N

�
:

1The set BL1 (`1 (H)) consists of all functions h : `1 (H)! [�1; 1] that are uniformly Lipschitz.
See van der Vaart (1998), page 332.

2If the cdfs admit �at regions, we then de�ne their inverses (the ��quantiles) as being:

d� = inf
d2R

Fb� (d) � �
d�� = inf

d2R
Fb�� (d) � �:

22



That happens because

� = b�1
NX
b=1

1
nb�b � b�[��b]

o
= b�1

NX
b=1

1
np

N
�b�b � b�� � pN �b�[��b] � b��o

= Fb��

�p
N
�b�[��b] � b��� = Fb�� (d

�
�) :

Then,

CI� (�; (1� �)%) =

�b�� d�1��=2p
N

; b�� d��=2p
N

�
and therefore

Pr [� 2 CI� (�; (1� �)%)] = Pr

�b�� d�1��=2p
N

� � � b�� d��=2p
N

�
= Pr

h
d��=2 �

p
N
�b���� � d�1��=2

i
= Fb� �d�1��=2�� Fb� �d��=2�
= 1� �=2 + Fb� �d�1��=2�� Fb� �d1��=2�� ��=2 + Fb� �d��=2�� Fb� �d�=2��
! p1� �;

which holds since Fb� (�) is continuous, implying that Fb� (d��)� Fb� (d�)!p 0 uniformly.
Q:E:D:
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